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Abstract. This paper discusses the uncertainty in the automation of
knowledge building from heterogeneous raw datasets. Ontologies play a
critical role in such a process by providing a well consolidated support
to link and semantically integrate datasets via interoperability, as well
as semantic enrichment and annotations. By adopting Semantic Web
technology, the resulting ecosystem is fully machine consumable. How-
ever, while the manual alignment of concepts from different vocabularies
is reasonable at a small scale, fully automatic mechanisms are required
once the target system scales up, leading to a significant uncertainty.
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1 Introduction

Data integration, defined as “the problem of combining data residing at different
sources, and providing the user with a unified view of these data” [21], can be
considered a classic research field as could witness the myriad of contributions
in literature. Its relevance is determined by the practical implications in the
different applications domains.

In this respect, we rely on an ontological approach to support the data inte-
gration process. The benefits of ontology in the different application domains
are well-known and have been extensively discussed from different perspectives
in several contributions. The knowledge building process, as understood in this
paper, is not limited to data integration but it also includes semantic enrichment
and annotations. By adopting Semantic Web technology, the resulting ecosystem
is fully machine consumable. However, while the manual alignment of concepts
from different vocabularies is reasonable at a small scale, fully automatic mech-
anisms are required once the target system scales up, leading to a significant
uncertainty.
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This paper provides two key contributions:

– the manual knowledge building process is described and implemented by a
tool which systematically supports data integration and semantic enrichment.

– the uncertainty introduced by the automation of the process is discussed.

2 Related Work

The scrutiny of data integration adopting an ontological approach sheds light
on some key issues, to wit data semantics and uncertainty representation.

– Ontological approach to Data Integration: The role of semantic tech-
nology in data integration [21] has been deeply explored during the past
years. The contributions currently in literature clearly show that semantic
technology provides a solid support in terms of data integration and reuse
via interoperability [26]. For instance, [6] proposes an ontological approach to
federated databases; ontology-based integration strategies have been proposed
to a range of real scientific and business issues [15], such as the integration
of biomedical [33] and cancer [39] data, and the integration among systems
[25]. Last but not least, ontologies are contributing significantly to an effec-
tive approach to the integration of Web Resources (normally in XML [2])
and to linked open data [16]. Ontology may be adopted to support different
strategies and techniques [38] and result very effective in presence of hetero-
geneity [12]. For instance, central data integration assumes a global schema
to provide access to information [15], while in peer-to-peer data integration
there is no global point of control [15].

– Data Semantics: Associating formal semantics to data is a well-known prob-
lem in the fields of artificial intelligence and database management. Again,
ontological structures play a key role [31] and they normally support an effec-
tive formalization of the semantics, which becomes a key asset in the context
of different applications, for instance to interchange information [1,27] or to
improve data quality [22]. In general, the importance of data semantics to
support interoperability is gaining more and more attention within different
communities, for example within the geo-spatial information [19] and within
the medical community [4,20]. Moreover, the analysis of semantic data may
support sophisticated data mining techniques [8,10].

– Uncertainty Representation: Probability theory and fuzzy logic have been
used to represent uncertainty in data integration works [23]. Uncertainty man-
agement works also include possibilistic and probabilistic approaches [14].
A probabilistic approach towards ontology matching was utilized in several
works, where machine learning was utilized in estimating correspondence sim-
ilarity measures [14]. To refine the matcher uncertainty and improve the
precision of its alignment, Gal [13] proposed a method to compute top-K
alignments instead of computing a best single alignment, and proposed a
heuristic to simultaneously compare/analyze/examine the generated top-K
alignments and choose one good alignment among them. The best alignment
is an alignment that optimizes a target function F between the two schemata.
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Typical ontology matching methods commit to the best alignment which max-
imizes the sum (or average) of similarity degrees of pairwise correspondences.
To model the ontology matching uncertainty, Marie and Gal [24] proposed to
use similarity matrices as a measure of certainty. They aim at providing an
answer to the question of whether there are good and bad matchers.
To represent the inherent uncertainty of the automatic schema matching,
Magnani and Montesi [23] used the notion of probabilistic uncertain semantic
relationship (pUSR), which is a pairwise correspondence defined as a tuple
(E1, E2, R, P ) where E1 and E2 are two elements/entities, R is a set of rela-
tionship types (equivalence, subsumption, disjointness, overlap, instantiation,
etc.), and P is a probability distribution over R. The pUSRs form an uncer-
tain alignment.
Dong et al. [9] proposed a system that models the uncertainty about the
correctness of alignments by assigning each possible alignment a probability.
The probabilities associated with all alignments sum up to 1. The authors
define a probabilistic schema mapping (alignment) as a set of correspondences
between a source schema and a target schema, where each uncertain map-
ping/alignment has an associated probability that reflects the likelihood that
it is correct.
Po and Sorrentino [30] quantify uncertainties as probabilities. They define the
notion of probabilistic relationship as a couple (〈ti, tj , R〉, P ) where 〈ti, tj , R〉 is
a relationship between ti and tj of the type R, and P is the probability (confi-
dence) value (in the normalized interval [0–1]) associated to this relationship.
Within the range [0–1], they can distinguish between strong relationships
and uncertain relationships (i.e., relationships with a low probability value).
Uncertain relationships could be seen as candidate relationships that need
further confirmation by a human expert.
There are several pairs of entities in different ontologies that are related to
each other but not necessarily with one of the typical well-defined relation-
ships. However, these correspondences vary in their degree of relatedness.
This information is difficult to formalize. Therefore, Zhang et al. [40] proposed
a new type of relation called Relevance. The latter represents relationships
between entities that are not covered by a strict relation such as equivalence,
subsumption or disjointness, etc. In this context, we think that the relevance
relation is very similar to the overlap relation. The authors also presented the
notion of fuzzy ontology alignment, that uses fuzzy set theory to model the
inherent uncertainty in the alignment correspondences.

3 Knowledge Building by Data Integration

The knowledge building process is ideally composed of two sequential steps that
we refer to as physical and logical integration:

– Physical Integration: The Virtual Table Model. As the name suggests,
the physical integration aims to convert data in an interoperable format that
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ultimately defines the target data space. By adopting Semantic Web technol-
ogy, physical integration is required only if the target dataset is not already
available in a semantic format (e.g. RDF or OWL). The Virtual Table model
(Fig. 1) is a simple and intuitive approach to data integration that assumes
the target dataset described as one or more tables according to the classical
relational model. An external dataset may be mapped into a virtual table and
automatically converted in OWL. Data may be automatically retrieved from
a relational table [29] or inserted manually by users through the copy&paste
functions provided by the user interface as in the tool described later on in
the paper.

Fig. 1. Virtual Table model.

– Logical Integration: Semantic Alignment, Internal and External
Linking. Logical integration assumes a given data set already imported
within the data space and consists in the consolidation and enrichment of
data semantics by specifying additional relationships, such as semantic equiv-
alences, internal and external links. Once a data set has been imported within
the semantic data space, it may need to be logically linked to other data
and semantically enriched. We structure our knowledge building process by
including three different kind of semantic enrichment (Fig. 2): internal linking,
metadata association and external linking.

DataSet i

DataSet k

Direct Linking

Upper Vocabulary

Indirect  
Linking

DataSet Descriptor  
(Metadata) Semantic Web

Fig. 2. Semantic linking and enrichment.
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Internal linking is an ontology alignment process among the different datasets
which are considered part of the data space. That is a key process to
enable the effective integration at an user level of heterogeneous datasets.
For instance, two attributes belonging to two different datasets may have
the same meaning. Semantic technology provides simple and effective mech-
anisms to establish semantic equivalences among classes, instances, relation-
ships and attributes. As discussed in the following section, these mechanisms
may be used in a relatively easy way, if they properly supported by user-
friendly interfaces. Semantic correspondences among ontology elements may
be established directly or indirectly (Fig. 2). Direct linking, namely semantic
equivalences established directly from a dataset to another, is simple from a
management perspective but may result not too much effective in complex
environments, i.e. within collaborative systems, or, more in general, when the
scale of the system in terms of number of linked datasets becomes relevant.
On the other side, indirect linking established through upper vocabularies
is well-known and consolidated techniques that may result in a much more
effective approach. However, it introduces an additional cost from a manage-
ment perspective. The semantic infrastructure allows generic linking within
the semantic space or externally. So a dataset or an element belonging to a
dataset may be related with other concepts to define or extend the seman-
tics associated. For example, a given dataset may be related to a number
of keywords, to a research project or to a scientific paper by adopting the
PERSWADE-CORE vocabulary [28].

A simple example of data integration involving two datasets is represented
in Fig. 3. As shown, both target datasets address information related to cities.
Figure 3a represents dataset in their original format, while Fig. 3b depicts the
integrated space as a knowledge graph. The column city is considered like a Web
Resource that in this case is also the primary key for both tables. Although
the two datasets present some redundancies, they provide, in general, different
information about cities. In this case, the integration process will enable the two
original datasets within the semantic data space assuring semantic consistency
among the different fields and concepts. Indeed, from a semantic perspective,
even this simple use case proposes a number of potential issues that have to be
addressed in order to guarantee a correct and effective integration. As shown
in the figure, there are several semantic equivalences among the two datasets
to be represented. They include attributes (columns in the virtual table model)
that have the same name and the same meaning within their original context, as
well as attributes that have different names but the same meaning. For instance,
the attributes “Population” and “Residents” refer to the same concept, namely
the number of people currently living in a given city. Additionally, equivalent
resources have to be semantically related. In the example, “Rome” appears in
both tables. This syntactic equivalence is integrated by a semantic one to prop-
erly address the reference to the city of Rome. OWL provides simple mechanisms
to define equivalences among concepts.
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Overall, a simplification of the scenario previously discussed can be rep-
resented by the knowledge graph in Fig. 3b that adopts OWL 2 structures.
More concretely, the equivalence among classes is enforced by the OWL rule
OWL:equivalentClass, as well as the equivalences among properties is specified by
OWL:equivalentProperty. Similarly, an OWL statement including OWL:sameAs
applies to instances of classes.

Fig. 3. An example of integration of two datasets.

3.1 A Tool for Supervised Data Integration

Our implementation supports most part of the knowledge building process as
previously presented and discussed. It is based and relies on intuitive user inputs
rather than on strong skills in ontology and Semantic Web technology. However,
it assumes the understanding of basic concepts, i.e. the difference between an
object and an attribute. The primary goal of the tool is to support the systematic
conversion of a given dataset into an independent and self-contained ontology
in OWL. The user interface (Fig. 4 allows to directly import a relational table.
Regardless of the method used to import data (based on copy&paste in this
case), the user is asked to characterize the table each column according to one
of the following options:

– ID. It is normally equivalent to the primary key in the relational model.
However, it is assumed to be an unique data field. Therefore, keys composed
by multiple fields cannot be directly used and need to be encoded previously.

– Resource. By using this option, associated data is considered like an object,
namely a Web resource in Semantic Web technology. A Web resource has an
unique identifier and can be further characterized.

– Attribute. It’s a normal data field, e.g. a text or a number.
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Fig. 4. User interface.

Through the provided interface, users may specifies meta data for the
imported table, such as source. license, description and publisher. Last but not
least, relatively friendly alienation among concepts is supported.

3.2 Semantic Representation

The output of the example proposed in Fig. 4 is represented as a knowledge
graph in Fig. 5a. As shown, the IDs (as previously defined) is associated with
a new class (A in this case) and the instances of ID (ID1 and ID2 ) are also
stated as member of the internal class TableRaw. This last concept identifies
rows in the virtual table TEST table, which is stated as a member of the class
RelationalTable. Resources (B in the example) are converted in OWL Object
properties, while attributes (C in the example) are converted in OWL data
properties. The resulting schema may be semantically enriched trough concept
alignment and external linking (Fig. 5b).

Fig. 5. Semantic representation of the integrated dataspace.
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4 Uncertainty in Non-supervised Ontology Alignment

Uncertain schema correspondence is often generated by (semi-)automatic unsu-
pervised tools and not verified by domain experts. Even in manual or semi-
automatic tools, the users may not understand enough the domain and, thus, pro-
vide incorrect or imprecise correspondences. In some domains, it is not clear what
the correspondences should be [9]. Schema elements (entities) can be ambigu-
ous in their semantics [30] because entities are close (i.e., related to each other)
but neither synonyms (i.e., completely similar) nor dissimilar (i.e., completely
different) [5,17]. Therefore, matching systems turn out to be uncertain, since
it is not accurate to declare whether two entities are equivalent or not [40].
In the ontology domain, ontological entities do not always correspond to single
physical entities, they rather share a certain amount of mutual information [40].
Indeed, real-world ontologies generally have linguistic, structural and semantic
ambiguities, resulting from their heterogeneous domain conceptualizations [3].
Eventually, ambiguity and heterogeneity in ontology models/representations are
carried in the process of matching and integrating ontologies [3]. Finally, Uncer-
tain query is commonly associated with multiple structured queries generated
by the system as candidate queries reflecting uncertainty about which is the real
intent of the user.

Klir and Yuan [18] defined two basic types of uncertainty: (i) Fuzziness which
is the lack of definite or sharp distinctions; and (ii) Ambiguity which is the
existence of one-to-many correspondences that may introduce a disagreement in
choosing among several correspondences.

There are two choices to remove (or at least reduce) the alignment uncertainty
in schema matching processes: either with the support of a user (manually) or
by using a threshold. According to the former approach, aka user feedback, users
can manually select matching and non-matching correspondences from the align-
ment, i.e. in semi-automatic matching process when the system requests help [7].
The latter approach is based on a threshold that can be established in a semi-
automatic manner (i.e. using user feedback cycles) or in an automatic manner (i.e.
using learning approaches) in order to minimize the introduction of false corre-
spondences. A matcher filters/discards correspondences having a confidence value
that does not reach a certain threshold, assuming that correspondences with low
confidence/similarity measures are less adequate than those with high similarity
measures. However, separating correct from incorrect correspondences in an align-
ment is a hard task [14]. To find the optimal/best threshold, many trials should be
made by varying/tuning the confidence value threshold [30]. In addition, different
thresholds can be assigned to different applications. For example, a recommenda-
tion system may have relatively low thresholds since false positives are tolerated,
while a scientific application may have high thresholds [40]. As a rule of thumb,
the information loss, caused by the removal of uncertainty, leads to a worsening of
the alignment quality [30]. In fact, any selection of a threshold often yields false
negatives and/or false positives. Therefore, the exact alignment cannot be found
by setting a threshold [13].
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Generally speaking, the uncertainty generated during the matching process
is lost or transformed into exact one (defuzzification) [23]. Therefore, there is
a concrete need to incorporate uncertain/inaccurate correspondences and han-
dle uncertainty in alignments [14], due to the inherent risk of losing relevant
information [23].

Uncertainty Management. From a literature review, we have identified two
different levels to deal with uncertainty management in schema matching: some
solutions try to quantify the uncertainty of an entire alignment when there are
many alignments produced for the same matching case; others try to represent
and quantify the uncertainty of the correspondences of a given alignment.

Management of Ontology Alignment Uncertainty. A semantic alignment
(aka mapping), denoted as A = {c1, c2, . . . , cn}, is a set of semantic correspon-
dences between two or more matched ontologies. It is the result/output of the
ontology matching process.

The uncertainty of a matcher should be explicitly reflected in an uncertainty
measurement in order to be able to choose good enough alignments [32]. The
work in [9] introduced the notion of probabilistic schema alignments, namely a
set of alignments with a probability attached to each alignment. The purpose
of defining probabilistic alignments is to answer queries with uncertainty about
(semi-)automatically created alignments [32].

Management of Correspondence Uncertainty. In general, given two
matched ontologies O1 and O2, a semantic correspondence (aka a relation or
a relationship) is a 4-tuple < eO1 , eO2 , r, n > where eO1 is an entity belong-
ing to O1, and eO2 is an entity belonging to O2, r is a semantic relation
holding (or intended to hold) between eO1 and eO2 , such as equivalence (≡),
subsumption (�/�), disjointness (⊥), or overlap (�), and n is a confidence
value/measure/probability assigning a degree of trust/reliability/correctness on
the identified relation and ranging typically between [0, 1], where 0 represents
no similarity and 1 represents full similarity. In the equivalence case, n indicates
whether both entities have a high or low similarity measure/degree. The higher
the confidence degree, the more likely the relation holds [11]. A matcher would
be inclined to put a similarity value of 0 for each entity pair it conceives not
to match, and a value higher than 0 (and probably closer to 1) for those corre-
spondences that are conceived to be correct [13]. On the other hand, in the crisp
correspondences (composing the crisp alignments), the confidence values of all
correspondences are equal to 1.

Correspondences Generated by a Matcher Aggregation. Some matchers assume
that similar entities are more likely to have similar names. Other matchers
assume similar entities share similar domains. Other matchers assume that sim-
ilar entities are more likely to have similar neighbors (parents, children, and
siblings). And others assume that similar entities are more likely to have sim-
ilar instances [24]. In order to combine principles by which different schema
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matchers judge the similarity between entities, the combined matcher aggre-
gates the outcome (i.e., the output alignment) of all matchers to produce a
single alignment. It automatically computes the overall similarities of correspon-
dences by aggregating the similarity degrees assigned by individual matchers. In
the automatic process of matching, it is proven that an ensemble (a combination)
of complementary matchers (e.g., string-based, linguistic-based, instance-based,
and structural matchers, etc.) outperforms the behavior of individual match-
ers [30] since they compensate for the weaknesses of each other [24]. In recent
years, many matching tools use schema matcher ensembles to produce better
results. Therefore, the similarity measure of a correspondence is generally the
result of aggregating multiple similarity measures [7], and as the number of such
similarity measures increase, it becomes increasingly complex to aggregate the
results of the individual measures. The generated similarity degrees of corre-
spondences are dependent to the choice of the weights of individual matchers
assigned by aggregation algorithms for the similarity combination [40]. There-
fore, a similarity degree of a given correspondence represents the “belief” of a
matcher in the correctness of that correspondence [13]. However, the real issue
in any system that manages uncertainty is whether we have reliable probabilities
(degrees of similarity), because unreliable probabilities can lead us to choose erro-
neous or not good enough correspondences. Obtaining reliable probabilities for
uncertainty management systems is one of the most interesting areas for future
research [9]. Finally, disregarding semantic similarity degrees of the alignment
correspondences may impede the overall integration process [5].

Correspondence Ambiguity. An ambiguous alignment [11] is a one-to-many
(1 : n), a many-to-one (n : 1), or a many-to-many (n : n) alignment. This means
that it contains some ambiguous correspondences [11] (i.e., that match the same
entity from one ontology with more than one entity from the other ontology).
An ambiguous correspondence is a correspondence in which at least one entity is
also involved in other correspondences. Contrary to one-to-one (1 : 1) alignments
in which an entity appears in at most one correspondence.

The ambiguous correspondences are generally a source of uncertainty because
they can be interpreted in two ways: (i) A first point of view considers that only
a single ambiguous equivalence correspondence (probably the one that has the
highest confidence value) truly reflects a synonym/alternative entity, while the
remaining ones (having lower confidence values) rather reflect similar, related or
overlapping terms, not strictly denoting equivalent entities [37]; (ii) A second
point of view considers the ambiguous equivalence correspondences as actually
subsumption correspondences, because an entity in one ontology can be decom-
posed into several entities in another ontology [13]. This happens in case where
one ontology is more granular (or general) than the other one [37].

Correspondences in Coherent and Conservative Alignments: Consistency Princi-
ple. The consistency principle [36] states that the integrated ontology –resulting
from the integration of the input ontologies– should be coherent (i.e., all enti-
ties of the integrated ontology should be satisfiable), assuming that the input
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ontologies are also coherent (i.e., the input ontologies also do not contain any
unsatisfiable entities). An unsatisfiable entity (class or property) is an entity
containing a contradiction in its description, for which it is not possible for any
instance to meet all the requirements to be a member of that entity. In some
applications where the logical reasoning is involved, ensuring coherence is of
utmost importance since the integrated ontology must be logically/semantically
correct to be really useful, otherwise it may lead to incomplete or unexpected
results.

Conservativity Principle. The conservativity principle [34–36] requires that the
original description (especially the is-a structure/class hierarchy) of an input
ontology should not be altered after being integrated. Hence, the introduction of
new semantic relations between entities of each matched ontology is not allowed,
especially new subsumption relations causing structural changes. The conser-
vativity principle aims that the use of the new integrated ontology –resulting
from the integration of the input ontologies– does not affect the original behav-
ior of the applications already functioning with the input ontologies (that were
integrated).

Example 1 (Coherence/Conservativity Violation). Suppose that we have a class
A in O1, two disjoint classes (B and C) in O2, and two correspondences c1 and
c2 stating that A is a subclass of B and C. Formally,

O1 = {A} O2 = {B ⊥ C}
A = {c1, c2} c1 =< A � B > c2 =< A � C >

If a reasoning process is applied on the integrated ontology O3, then A will
be an unsatisfiable class since it will become a subclass of two disjoint classes.

Now if we consider the following two ontologies: O1 has two classes A and
B, and O2 has two classes A′ and B′ where B′ is a subclass of A′. Formally,

O1 = {A,B} O2 = {B′ � A
′}

A = {c1, c2} c1 =< A ≡ A
′
> c2 =< B ≡ B

′
>

If the ontology matching generates two correspondences c1 and c2 stating
that A is equivalent to A′, and B is equivalent to B′, then the original structure
of O1 will change in the integrated ontology O3 because of the addition of a new
subsumption linking A and B.

Whenever an unsatisfiable entity or a conservativity violation is identified in
the integrated ontology, then an alignment repair algorithm first identifies the
correspondences causing these problems. The identified correspondences may
actually be erroneous correspondences, but may also be correct correspondences
introducing violations because of the incompatible conceptualizations of the
matched ontologies. A human expert can then be notified and pointed to manu-
ally check and specify his/her opinion on these correspondences, to give his/her
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contribution to the matching process [23]. Otherwise, the alignment repair sys-
tem can resolve these violations by automatically removing the identified corre-
spondences and generating a repaired (coherent and conservative) output align-
ment. In a text annotation application, it is not necessary to ensure the coherence
of the integrated ontology. However, in other applications, e.g., query answer-
ing, logical errors in the integrated ontology may have a critical impact in the
query answering process. Similarly, in some cases, the conservativity principle is
no longer required, since the integrated ontology will be used by another spe-
cific application, i.e. not by the applications already using the ontologies that
were integrated. Therefore, there is a need to represent/express correspondences
causing (consistency and conservativity) violations in the forthcoming integrated
ontology, and model them in the Alignment format [23]. The Alignment1 format,
(aka the RDF Alignment format), is the most consensual ontology alignment for-
mat used for representing simple pairwise alignments. In this format, we can not
differentiate between a normal correspondence and a repaired one (involved in
integration violations and identified by alignment repair systems). Therefore,
there is a representation problem in the ontology alignment repair area.

5 Conclusions and Future Work

This paper presented a simple approach for knowledge building from raw datasets
by adopting rich data models (ontologies). The tool developed proposes some
automatic features to import data, which is mapped on virtual tables. Never-
theless, we need to automate the key mechanism to enforce semantic consistence
among the different datasets is supposed. It becomes unrealistic once the scale of
the system becomes significant or in presence of heterogeneity. Future work will
be oriented to the automation of the whole process by particularizing existing
techniques to the specific case of datasets mapped on virtual tables. Furthermore,
we will include an additional virtual structure to support multi-dimensional data
based on the RDF Data Cube Vocabulary2.
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