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grzegorz.andrzejczak@p.lodzd.pl

3 Cz ↪estochowa University of Technology, Cz ↪estochowa, Poland
rafal.scherer@pcz.pl

Abstract. Precise segmentation/partition is an essential part of many
point cloud processing strategies. In the state-of-the-art methods, either
the number of clusters or expected supervoxel resolution needs to
be carefully selected before segmentation. This makes these processes
semi-supervised. The proposed Normal Grouping- Density Separation
(NGDS) strategy, relying on both grouping normal vectors into cardi-
nal directions and density-based separation, produces clusters of bet-
ter (according to use quality measures) quality than current state-of-
the-art methods for widely applied object-annotated indoor benchmark
dataset. The method reaches, on average, lower under-segmentation error
than VCCS (by 45.9pp), Lin et al. (by 14.8pp), and SSP (by 26.2pp).
Another metric - achievable segmentation accuracy - yields 92.1% across
the tested dataset what is higher value than VCCS (by 14pp), Lin et
al. (by 3.8pp), and SSP (by 10.3pp). The experiment carried out indi-
cates superiority of the proposed method as a partition/segmentation
algorithm - a process being usually a preprocessing stage of many object
detection workflows.

Keywords: Space partition · Superpoints · Point cloud segmentation ·
NGDS

1 Introduction

Point clouds have recently become a powerful representation of the environ-
ment due to the inherent spatial cues that they possess. Depth information,
provided either by a depth camera, multiple-view interpolation, or by a laser
scanner, is clue information exploited for retrieval relationships among objects in
a scene [7]. This is a reason for such wide and various application of point clouds
[9,16,33,35]. Depth information can be also used in other fields, such as computer
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graphics, from rasterization and ray tracing algorithms [28] known for decades to
modern screen-space methods of accelerating calculations without loss of image
quality based on the prior creation of depth information in individual image
pixels [30].

One of the key aspects of a point cloud processing is object detection
[12,17,26,37] and, in general, semantic analysis [8,29,36,38]. In many aspects
of a point cloud processing, the strategy relying on either ordering points or
excessive partition followed by the aggregation (top-bottom-top) is frequently
applied [13]. The strategy, relies on excessive space/surfaces segmentation (top-
bottom, in order to minimize under-segmentation) and aggregation (bottom-
top, so that over-segmentation could be decreased, keeping under segmenta-
tion error low) [5,6,11] followed by features analysis [10,26] or deep learning
pipeline [2,12,17,38]. Such an approach requires a process of over-segmentation
(top-bottom) to be efficient, granular on objects’ edges and corners, and, what
is the most important, devoid of overlapping areas between semantically dif-
ferent objects. In this article, the novel, intuitive and high-quality method for
over-segmentation, called Normal Grouping- Density Separation (NGDS), is pre-
sented. The novelty of the presented method relies on clever application of effi-
cient grouping algorithm in order to detect primary plane directions in a point
cloud followed by histogram- and density-based separation within points belong-
ing to a primary direction. Unlike current state-of-the-art methods, the presented
strategy does not require predefined, manually selected proper number of seg-
ments to produce expected and sufficiently granular over-segmentation result
suitable in the context of object detection. Most of parameters are calculated
based on provided point cloud characteristic and just a few are required to be
set by a user.

2 Related Works

A popular strategy of a point cloud processing, in any form, either semantic
segmentation, or object detection, is to reduce the size of a problem by means of
over-segmentation algorithms [32] which group points - consistent according to
some criterion - into clusters whose number is usually tremendously lower than
the cardinality of a point cloud. This allows applying just a few groups instead
of hundreds of thousands of points. Such an strategy lies behind the idea of
compression - to use approximate larger regions by means of a small representa-
tive entity [18]. However, the problem of current over-segmentation algorithms
is the fact that they focus on class-driven approach rather than object-driven
one. As a result, such methods produce clusters of preserved boundaries between
objects of different classes whereas objects within the same class are not parti-
tioned properly. This disables benchmark methods to be successfully applied as
over-segmentation strategy for object detection purposes.

One of first benchmark partition strategy - VCCS - was introduced in [22].
The method presented therein focuses on quasi-regular clusters called supervox-
els. The researchers used 39 point features to make sure that points inside a
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single cluster/supervoxel are consistent (intra-cluster consistency). 33 of those
39 features are traits of Fast Point Feature Histogram, the others are geomet-
rical coordinates and color in CIELab space. VCCS relies on efficient k-means
clustering to group points to clusters of predefined seeds. Though pretty effi-
cient, the method suffers some issues. The first problem is initialization of the
algorithm itself. The seed points need to be carefully chosen and the number of
those seeds (hence clusters) has to be selected before. The desired method solv-
ing the issue should somehow recognize the optimal number of resulting clusters
in unsupervised manner, because improper choice can make a method pointless.
Too low number of clusters results in insufficient segmentation - output clusters
overlap many ground-truth clusters. Too high number, in turn, wreaks longer
time processing and loss of the context. Furthermore, as indicated in [14], VCCS
may segment borders inaccurately.

To overcome the issue related to borders and seed points selection, Lin
et al. [14] proposed extension of VCCS. In these studies, suggested cost function,
which optimization provides representative points, consists of two counteractive
components: the first one ensuring a representative point approximates well a
collection of points; and the second one - constraining the number of expected
representative points to be as close to the predefined value as possible.

Having selected all representative points, optimization of cost function is
continued by assigning non-representative points to those representative points
for which dissimilarity distance is the lowest.

Though improved with respect to its predecessor, the method of Lin et al.
still requires the number of resulting clusters to be selected in advance what
cannot be reliably done in unsupervised partition process. Moreover, the result-
ing groups/clusters are similar to quasi-regular grid of VCCS what produces
high over-segmentation error in regions where it is redundant. The clue is to
design a method which maintains the proper balanced between both under- and
over-segmentation keeping both of them low.

To reduce the problem of excessive partition keeping under-segmentation
error low, Landrieu and Boussaha [11] proposed the SSP method mixing deep
learning approach with analytical strategies. Applying PointNet-like neural net-
work enables the authors to extract high-level object-oriented features, called
embeddings. Such embeddings are calculated for each point in a data set based on
its vicinity. Based on embeddings and spatial connectivity, Generalized Minimal
Partition Problem is solved with the method �0 presented in [12]. The method
yields good results in class-driven approach, however, taking into account single
objects, the method is not reliable. It is caused by embeddings, which them-
selves cannot differentiate points belonging to different objects of the same class.
Because of this, the method leaks intra-class separation what is crucial element
of partition oriented to objects. The last drawback of SSP method is the fact
that it may requires color information to produce reliable result.

To sum up, the methods of VCCS and Lin et al. inherently take into account
spatial connectivity of points what is beneficial in terms of object-oriented sep-
aration of clusters, however, they perform many redundant subdivisions, which
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increase over-segmentation error. On the other hand, the SSP method avoid
excessive partition at the cost of class-oriented partition rather than the object-
one. In addition, all those methods require an expected number of clusters to be
defined prior to computation what makes these methods difficult to be applied
successfully in unsupervised segmentation. Hence, there is a need to develop a
method which automatically splits points into geometrically coherent sets. And
it turns out that relying only on normal vector may lead to sufficiently detailed
space partition which quantizes well points of objects.

3 Methodology

At first, let the point cloud P be of the cardinality ||P|| = N . Let the two
clusterings S and G be also defined, where S of cardinality |S| = m consists of
a set of m clusters: S = {s1, s2, s3, ..., sm} being the output of a method, and
G = {g1, g2, g3, ..., gn}, of cardinality |G| = n, represents a set of n ground-truth
(real) clusters (single objects in a scene: 1st chair, 2nd chair, 1st table, etc.). It is
crucial to note that ground-truth clusters are single objects in a scene, while for
algorithms’ output clusters encompass usually subsets of objects and the goal of
each partition method is to produce output clusters as alike to ground-truth ones
as possible. Following the literature approaches for partition and segmentation
validation [5,14,22], below quality measure were engaged.

3.1 Quality Measures

Under-Segmentation Error (UE). Also referred to as under-segmentation
rate, indicates insufficient partition. In short, an output cluster overlaps more
than one ground-truth cluster. Its value varies from 0 - if none of output clusters
overlap more than one ground-truth cluster, and 1 if |S| = 1 and |G| > 1. In
general, if m < n then UE is in-between 0% and 100%. UE is expressed by (1).
For visualization, see Fig. 1.

UEG(S) =
1
m

[(
∑

gj∈G

∑

si∈S
<

|si ∩ gj |
|gj | > ε <) − m] (1)

where < · < is an Iverson bracket which takes 1 if inner condition is True and
0 otherwise, ε is a very small value (here it is 0.1%).

Weighted Under- and Over-Segmentation Error (wUE, wOE). The
formula (1) relies on binary values (sum 1 if overlapping exceeds the threshold
value ε. But, according to [27], the measure to express UE may be weighted
with the intersection part- wUE (2). In similar manner wOE may be expressed-
wOE (3). Their best values are 0% which means all points within a single cluster
are associated with the only one ground-truth cluster, i.e. object and vice versa.

wUEG(S) =
∑

si∈S
(|si| − max

j
|si ∩ gj |)/N (2)
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Fig. 1. Visualization of sample overlapping cases. Dashed lines represent ground- truth
clusters whereas solid ones- the output cluster of a method. Black shaded region rep-
resents intersection lower than ε, so it is counted as 0 while red shaded region exceeds
ε and is counted as 1. (Color figure online)

where N is the cardinality of a point cloud (|P| =
∑ |gj | = N)

wOEG(S) =
∑

gj∈G
(|gj | − max

i
|si ∩ gj |)/N (3)

Harmonic Segmentation Error (HSE). Similarly to F1 score, which con-
nected both precision and recall of classification in the form of harmonic mean,
HSE may be defined as a single measure of error taking into account both
weighted over- and under-segmentation errors (4).

HSEG(S) = 2 · wUEG(S) · wOEG(S)
wUEG(S) + wOEG(S)

(4)

Achievable Segmentation Accuracy (ASA). ASA is one of quality metrics
used by [15] to evaluate maximum possible accuracy in object detection task
while applying proposed clusters as units. The best possible value it takes is
100%. Formally, this measure may be expressed by (5).

ASAG(S) =

∑
si∈S maxj |si ∩ gj |∑

gj∈G |gj | (5)

Some literature studies made use of, so called, boundary recall and boundary
precision [5,14]. However, indicating “boundary” points as done in [5,34] is, at
least, questionable and ambiguous. Moreover, UE with low overlapping threshold
ε and wUE directly point out if objects’ borders are crossed or not. That is why
boundary-based measures were skipped in the considerations presented in these
studies.
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3.2 Database

To make the method comparable, benchmark data sets need to be used. However,
among all indoor databases widely used in studies, like: NYU RGBD v2 [21],
ScanNet [4], or S3DIS [1] only the latter one distinguishes single objects. The
others contained points labeled only by class what makes them useless in terms of
verification of the partition method dedicated to object detection task. Therefore,
S3DIS database was only selected as it is the only one available indoor database
annotated by object.

S3DIS is one of the basic indoor benchmark dataset for semantic segmen-
tation and object detection task. It was used, among others, in [5,11,12]. It
contains 273 indoor-scene point sets of quite uniform densities with moderate
scanning shadows present.

4 Proposed Method

In this paper, the novel partition method relying on spatial point connectivity
and geometrical features - NGDS - is presented. The method consists of 6 stages:

a) normal vector estimation;
b) normal vector alignment;
c) primary directions detection;
d) level detection;
e) 2D density separation;
f) Lost points appending;

Normal Vector Estimation. Normal vector, yet trivial, is a kind of hand-
crafted point feature, contrary to traits learned with deep learning models [24].
Computation of a normal vector ni of a point pi is carried out by means of
fitting a plane to the vicinity N of that point. In literature it is usually done
with by eigendecomposition of the covariance matrix of neighbours’ coordinates.
This phase, taking into account efficient neighbours retrieving with kd-tree [3],
is of time complexity: O(n · log n) + O(|N | · n) + O(n) ≡|N |=const O(n · log n)

Normal Vector Alignment. Any method of calculating normal vector, which
does not take into account constant reference point, cannot assure coherent ori-
entation of normal vectors. This is the result of plane ambiguity (6).

n · p = −d ∼ −n · p = d (6)

Making normal vectors coherent across the same orientation simplifies to
satisfying the condition (7) [23].

ni · (vp − pi) > 0 (7)

where vp is a viewpoint, which in our studies is assumed to be in the mass
center of a point cloud: vp = p̄ = 1

n

∑n
i=1 pi.
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In this way, parallel normal vectors get coherent orientation in symmetry
with respect to vp. This allows also distinguishing parallel planes on opposite
sides of vp (Fig. 2).

Fig. 2. Two parallel walls with associated normal vectors (brightness presents angle
between a normal vector and camera optical axis). On the left- not aligned and on the
right- aligned with respect to viewpoint

The stage of normal vector alignment is of linear time complexity- O(n).

Primary Directions Detection (Normal Grouping). Having aligned point
normal vectors, some primary directions may be identified taking a look at the
distribution of normal vectors’ orientations (Fig. 3a).

Such distribution seems to be dedicated for efficient k-means clustering algo-
rithm. Though, relatively quick, it will be further accelerated if mini-batch based
approach is used [25]. Though burdened with heuristics, mini-batch k-means
clustering usually supplies results of sufficient accuracy with respect to optimum
result in the sense of Maximum Likelihood estimation.

Widely known problem with k-means clustering concerns the proper selection
of a number of resulting clusters k. In these studies, it is fixed. If normal vectors
are oriented as in Fig. 3a - on unit sphere, then the allowed angle between normal
vectors forms a spherical cap (Fig. 3b). Assuming expected angular tolerance to
be Δθ, the spherical cap surface associated to Δθ is expressed by (8).

Pc = 2 · π · (1 − cos(2 · Δθ)) (8)

Knowing that the unit sphere has the surface of Ps = 4 · π, the expected
number of clusters k may be calculated as k = �Ps/Pc�.

Time complexity of the mini-batch version of k-means algorithm is O(n)
assuming fixed number of maximum iterations and that the kd-tree for neigh-
bours retrieving is already calculated.

Level Detection. The result of primary detection clustering provides groups
of points representing a single primary direction (Fig. 4a).

Considering a single primary direction, let us define a group of points Di ⊆ P
belonging to i− th primary direction. As a one group, the points Di should be
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Fig. 3. (a) Unit sphere representing distribution of point normal vectors (b) spherical
cap (in gray) of area Pc associated with angular tolerance Δθ on the unit sphere

described by a single normal vector, which may be calculated as a unit-length
average normal vector n̂i of the group. Since they are said to share a common
normal vector n̂i, particular planar fragments may be easily distinguished by
means of planes’ constant factor (d, Eq. 6). For each point (and associated with it,
plane fitted to its former vicinity N ), its constant factor is calculated according
to the formula: d = −pj · n̂i (assuming pj ∈ Di). Based on those values, a
histogram may be constructed. Its peaks would clearly indicate planar fragments
hung at different levels (Fig. 5). As a result, sets of co-planar points are retrieved:
L1,L1,L3, ... (Fig. 4b).

Fig. 4. (a) Groups of points around the single primary direction pointed by red arrow
(b) points belonging to the same primary directions: L1,L2, ..., split according to asso-
ciated constant factors (Color figure online)

In order to make extraction accurate, desired number of histogram bins
should be carefully chosen. Intuitively, it is involved with a point cloud acquisi-
tion device tolerance, usually denoted as σ. It is involved with precision of points
coordinates while noise is modelled with Gaussian distribution. The problem is,
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Fig. 5. Histogram of constant factors for point-planes of common primary direction

that sigma is usually not provided for indoor scans like S3DIS and it has to be
somehow estimated. To do so, several random samples of all points are drawn
and the distance (Euclidean or [31]) to their closest neighbours is calculated.
The maximum value of this distance is saved. Across several samples, the mean
maximum distance is calculated as the estimation of σ. The time complexity of
this stage is linear- O(n), since sigma approximation may be thought of to be of
constant time complexity O(1) and histogram construction takes O(n) time for
each primary direction.

2D Density-Based Clustering (Density Separation). Levels L1,L3, ...
detected in the previous stage contain points said to be co-planar. In real cases,
especially when we bear in mind object detection task, co-planar points may
quite often lead to insufficient partition is some areas. An example of such case
is presented in Fig. 6, where two tops of two separate tables form a common
group Li.

Fig. 6. Two tops of two separate tables detected as a single group Li

To avoid such issues, density-based HDBSCAN clustering [20] is carried out
for points contained in each Li. Since points within Li are co-planar, density
separation may be reduced from 3D to 2D problem by means of Principal Com-
ponent Analysis (9) so that computation time and occupied memory are both
reduced. In this way, from a set Li several subsets Li = {L′

i,1,L′
i,2,L′

i,3, ...}
are extracted and the set of noise points Li,noise. (HDBSCAN is able to detect
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points deemed as noise in the context of local points density- those noise points
are rejected and considered in the next stage.)

L2D
i = Li × E (9)

where E is a column-wise matrix of eigenvectors
Though, HDBSCAN may yield sub-quadratic time complexity, it cannot

achieve O(n·log n), however, [19] suggests that it may approach log-linear asymp-
totic complexity for a number of data sets.

Lost Points Appending. During all previous stages, some points may be
rejected due to rank-deficiency or density changes in HDBSCAN (noise points).
To make the output point cloud conformed to the original one, these lost points
need to be appended to the best matched clusters, to form S1,S2, .... Assignment
is done based on similarity function, defined like in [14] (10) taking as R the
estimated values of σ (R = σ).

D(pi, pj) = 1 − abs(ni · nj) + 0.4 · |pi − pq|
R

(10)

where R is an assumed resolution of partition, ni and nj are normal vectors
associated to the i− th and j−th point, | · | states for a norm of a vector.

The proposed method NGDS was validated on the benchmark database for
indoor scenes, namely S3DIS [1].

5 Experiments

To compare the proposed NGDS method with the state-of-the-art solutions,
following experiments were conducted. For benchmark dataset - S3DIS [1] par-
tition according to VCCS [22], Lin et al. [14], and [11] methods were conducted.
Ground-truth clusters G = {g1, g2, g3, ..., gn} are single objects in a scene, pro-
vided by the dataset. Experiments for VCCS and for the method of Lin et al.
were carried out for all point clouds contained in the aforementioned database.
To compare the state-of-the-art solutions with the proposed one, publicly avail-
able implementation of those algorithms were employed:

– Point Cloud Library implementation of VCCS was used [23] in the experi-
ments.

– The code for the method of Lin et al. is provided by the authors on the
publicly available repository 1.

– The code for SSP method is accessible in the public repository managed by
the author 2.

1 https://github.com/yblin/Supervoxel-for-3D-point-clouds.
2 https://github.com/loicland/superpoint graph.

https://github.com/yblin/Supervoxel-for-3D-point-clouds
https://github.com/loicland/superpoint_graph
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6 Results

The results for the proposed NGDS method juxtaposed with the current state-of-
the-art methods [11,14,22] for benchmark object database S3DIS are presented
below (Table 1). For quality measures of the proposed method associated stan-
dard deviations are given.

Table 1. Comparison of quality measures for the benchmark partition methods and
the proposed method NGDS for S3DIS

Method UE [%] wUE [%] wOE [%] HSE [%] ASA [%]

VCCS [22] 46.4 21.9 89.2 35.2 78.1

Lin et al. [14] 15.3 11.8 92.7 19.6 88.3

SSP [11] 26.7 18.2 35.9 24.2 81.8

Proposed method (NGDS) 0.5 ± 0.4 4.7 ± 3.2 48.7 ± 11.5 8.6 92.1 ± 3.9

There are exemplary results of three state-of-the-art methods and NGDS
presented in the Fig. 7

The results presented in Table 1 show superiority of the NGDS method over
state-of-the-art solutions in terms of all presented quality measures. They prove
high quality of NGDS as a partition method dedicated to object detection task.
Under-segmentation error for the proposed method is lower by 99%, 97%, and
98% for VCCS, Lin et al., and SSP respectively. This confirms that clusters cre-
ated by NGDS method do not tend to cross object boundaries, even within the
same class. Lower weighted under-segmentation error, in turn, proves that only
4.7% of points are mismatched. On the other hand, weighted over-segmentation
error shows that less redundant subdivisions were done with respect to the
method of Lin et al. and VCCS. In comparison to SSP, wOE is slightly higher.
To infer an overall trade-off of under- and over-segmentation, HSE indicator
was introduced. Undoubtedly, it attains the best (lowest) value for the proposed
method - respectively lower by 26.6pp, 11pp, and 15.6pp than VCCS, Lin et al.,
and SSP. Also the average Achievable Segmentation Accuracy clearly points out
that having applied NGDS method for the task of indoor object detection, the
highest accuracy may be achieved among all four methods.
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Fig. 7. Results for conferenceRoom 1 from Area 1 for (a) VCCS (b) Lin et al., (c) SSP,
and (d) for NGDS

7 Conclusions

Based on performed evaluation, it may be clearly noted that the proposed
method yields better results for indoor scenes than state-of-the-art partition-
ing algorithms. NGDS provides partition result less over-segmented than VCCS
or the method of Lin et al. keeping under-segmentation ratio at the very low
level (lower than competitive methods). The limitation of the method is the fact
that in case of a point cloud of extremely uneven density, the over-segmentation
ratio deteriorates significantly, keeping over-segmentation rate at similar, low
level. Further research will focus on applying the proposed NGDS method for
indoor object detection.
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