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Abstract. Few previous works have studied the modeling of forest
ground surfaces from LiDAR point clouds using implicit functions. [10] is
a pioneer in this area. However, by design this approach proposes over-
smoothed surfaces, in particular in highly occluded areas, limiting its
ability to reconstruct fine-grained terrain surfaces. This paper presents
a method designed to finely approximate ground surfaces by relying on
deep learning to separate vegetation from potential ground points, filling
holes by blending multiple local approximations through the partition of
unity principle, then improving the accuracy of the reconstructed sur-
faces by pushing the surface towards the data points through an iterative
convection model.
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1 Introduction

Digital terrain model (DTM) extraction is an important issue in the field of
LiDAR remote sensing of Earth surface. Indeed, further data processing proce-
dures (segmentation, surface reconstruction, digital volume computation) usu-
ally rely on a prior DTM computation to focus on features of interest (buildings,
roads or trees for instance). In the last two decades, many filtering algorithms
have been proposed to solve this problem using Airborne LiDAR sensors (ALS)
data.

However, most previous works address DTM extraction for ALS data, which
largely differs from terrestrial LIDAR sensors (TLS) data. Unlike ALS point
clouds, TLS ones provide very dense sampling rates at the ground level, describ-
ing the micro-topography around the sensor. However, the presence of vegetation
and the terrain topography itself generate strong occlusions causing large data
gaps at the ground level, and a risk of integrating objects above the ground
within the DTM. Additionally, the scanning resolution of TLS devices depends,
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by nature, on their distance to the sensor, resulting in spatial variations in point
density. Therefore, DTM extraction for TLS data requires dedicated approaches,
in particular for 3D samples acquired in forest environments. [10] is a pioneer-
ing effort designed to reconstruct detailed DTMs from TLS data under forest
canopies using implicit function. The basic idea of this work is (1) to approxi-
mate locally the ground surface through adaptive scale refinement based on a
quad-tree division of the scene, (2) then to simultaneously filter vegetation and
correct approximations based on the points distribution in each quad-tree cell,
and (3) to blend the local approximations into a global implicit model. In the
present paper, we build upon this previous work and propose several innovations
in order to reconstruct high quality terrain models from laser scan point clouds.

2 Overview of the Method

Based on the previous work [10], our method relies on adaptive scale refine-
ment through a quad-tree division of the scene, local approximations in the
quad-tree cells, and estimation of a global model through the blending of local
approximations, to compute the first approximation of the ground surface. The
method presented in this paper offers several improvements of the previous work
to enhance the accuracy of the reconstructed terrain model: First, we relegate
the filtering out of vegetation points to a deep network based on PointNet++
[14]. Second, we attribute weights to the data points according to their local
density in order to obtain a more robust local approximation. Third, we refine
the blending of local approximations to make it compliant with the partition of
unity concept with compactly supported radial basis functions (CSRBF'). Finally,
we introduce an original deformable model, based on a convection model under
a moving least squares field and a proper functional basis. We thus push the
implicit ground surface towards data points to obtain centimeter accuracy. The
complete sequence of computational steps is shown in Fig. 1.

" > Segmentation > ‘Quadtree division and local| > First ground model from Refined ground model after,
lnputiTLS/pointicioud vegetation/ground points approximations partition of unity convection process

Fig. 1. Overview of method. The segmented ground points are colored according to
their weights coming from the local density.
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3 Filtering of Vegetation

3.1 Selection of Ground Points Using Deep Learning

In the estimation of ground surface from LiDAR point clouds, it is common
to first project the point cloud into a fine regular 2D (x,y) grid, of resolution
resyrn, and further select the points of minimum elevation in each cell. The
resulting point cloud is denoted P,,;,. In order to ease the segmentation, we
enriched each point of P,,;, by geometric descriptors encoding the local linearity
and planarity. In practice, we consider for each points its Cartesian coordinates
plus the averaged eigenvalues of the local covariance matrix of the 3D distribution
of the Kpca neighbors, Kpca being defined by the user. In order to feed these
enriched point clouds into a convolutional architecture, we define a partition of
space allowing splitting of an unordered 3D point cloud into overlapping fixed
size regions, each of them encoding the 3D local points distribution. In practice,
we divide the point cloud P, into a regular 2D (x,y) grid, then distribute
collocation points to the centroid of every occupied voxel. Then, we form each
batch %; by considering the 1024 nearest neighbors of each collocation point in
the (x,y) plane. These batches are designed to feed and train a deep learning
model; this model eventually predicts a label for each point of each batch. As
batches largely overlap, each input point belongs to several batches and thus
receive multiple predictions, one for every batch it belongs to. In the last step,
we define a voting process to extract a final segmentation from the multiple votes
per point. The resulting set of points denoted by P = {p;}i=1..nv C R? serves
as raw data for the proposed algorithm.

3.2 Weighting of Points According to the Local Density

A common practice in surface reconstruction from in-homogeneous point clouds
consists of applying a weight to each point according to the local density around
p:i- In order to take into account density irregularities due to overlapping scans
and the confidence measures attributed to the points, the proposed method by
[11] scales down the point influence in high density areas. We were inspired by
this idea but implement the opposite scaling: in forest 3D scans, while consid-
ering terrain modeling, clusters of points tend to describe accurately ground
topology whereas isolated points appear less reliable and their influence needs
to be reduced. To do so, we assigned a weight d; at each point p; given by

1
di =1~ > llpi — pyll (1)

maxy -
P; EyJK

where PjK is the K-neighborhood of point p; (from our experiments K = 20
appears as a good choice), max, is defined as:

maxrg = max Z lp; —pjll,VpieP (2)
pjeyf
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4 First Surface Estimation by Blending Local Quadrics
Approximations

4.1 Quadtree Division of the Plane

Initially, the minimum bounding rectangle of filtered minimum points is inserted
as the root of the quadtree. Then, we iteratively subdivide each cell into four
leaves. The process stops when a leaf presents a side smaller than Size,,;,, the
minimal size allowed defined by the user, or when n.; the number of points
in the cell becomes inferior to the number of parameters of the local quadric
patches (i.e. ngey < 6) described in the following Sect. 4.2.

4.2 Local Approximations

Taking into account a quadtree that divides the data points, for each of its leaves
0;, we denote by c; the center of 0.

In each cell &;, an approximate tangent plane is computed using least square
fitting. Let (u,v,w) denote a local orthonormal coordinate system such that
the direction z; is orthogonal to the fitting plane. We approximate &; by a
local implicit quadric function g;(u,v,w) = w — h;(u,v) where, in the local
coordinate system, h; is a quadratic parametric surface of the following form:
hu,v)=A-u?> +B-u-v+C-v>+D-u+ E-v+ F.In each leaf 0;,
considering p; = (uj,v;,w;) € &, coefficients A, B,C, D, E, F' are determined
by the weighted least square minimization of:

D di (wj = hlug,v;))* - Doi(

p; €

Ip; —cil) (3)

where d; is the weight defined in Sect. 3.2 and &, (|| — ¢;|) = ¢(Hx;70|\) and
¢(r) = (1—r)4 (144r) is a compactly supported Wendland’s RBF function [16].
The function ¢ is €2 and radial on R3. The parameter o controls the influence
of the local approximation of the leaf &;. In our case, in order to always cover
the bounding box of the points contained in the leaf &; by a ball of radius o,
we chose 0% = a; x /3 x 0.75, where a; is the longest side of the leaf &;.

4.3 Global Approximation by Blending Local Approximations

After estimating the local approximations of the data points for each leafs ;, the
global implicit model by blending together local patches by means of Wendland’s
CSRBF. The global implicit model f is computed as:

- Lo (|x = cill)
f(X)—C;cgz(X)- Z @Uj(Hxich)

c;eC

(4)

where g;(x) is the local approximation in the leaf &; defined in the previous
Section.

More precisely we use compactly supported Wendland’s RBF functions [16] as
a partition of unity to merge the local implicit functions (issued from parametric
patches) and compute a global implicit model.
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5 Improvement of Surface Model with a Convection
Model

Because occlusion phenomenon forces large quadtree cells, and thus coarser local
approximations, the first surface estimation described in Sect.4 can be further
improved by being pushed closer to the data point. Inspired by the level-sets
formulations [12,15] in the field of image processing, our method builds particu-
larly on the work of Gelas [6] and describes the evolution of the surface driven by
a time-dependent partial differential equation (PDE) where the so-called veloc-
ity term reflects the 3D point cloud features. The level-set PDE is then solved
through a collocation method using CSRBF.

5.1 From Blended Quadrics Model to CSRBF Model

In order to both express the refined implicit surface and discretize the numerical
problem, we create a new base of functions. This basis is built according to the
following process: collocation centers are regularly distributed on a 3D grid, of
user-defined resolution 7, around the zero-levelset of the implicit function 4. In
order to limit the number of collocations while allowing the surface to move
in the vicinity of data points but, we decimate the clouds of collocation by
removing each center further than 2 x r from a data point or further than r
from the zero-levelset. Considering 2 the set of collocation, the basis of function
is then defined as the set of translates at each remaining collocation o € 2 of
Wendland’s CSRBF &, (||x — o) = ¢(1==2l): where r, = 7 x v/3 x 0.75.

First, we approximate the implicit function f defined in Eq.4 in the new
basis Span{®,,} as g(x) = Y aq - ,,(|x — o).

o2
To retrieve {a, }oc2, We consider the system:

oo ||| = |70 (5)

where o and o' are two collocations, % o = P, (]|’ — o]|) and the implicit
function f describing the blended quadrics model is expressed by Eq. 4. Thanks
to the properties of Wendland’s CSRBF @, , the matrix of the o7, o elements is
sparse, self-adjoint and positive definite. Thus, the system is inverted by using
the LDL™ Cholesky decomposition implemented by Eigen library.

5.2 Solving Convection Evolution Equation Using CSRBF
Collocation

We define now the velocity vector ¥ (p,t),p € R3,t € R, a function reflecting
the geometrical properties of the interface according to the data, and quantifying
the local deformations over time. The velocity is actually computed at each
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collocation o € & by minimization of an energy function inspired by the snake
approaches introduced by Kass [8]. Indeed, we define the energy function Vq €
RSa f((]) =7 gdata (Q) + (1 - 7) 'gsurface(q)v where gdata (CI) gives rise to Sample
points force and &sur face(q) gives rise to external constraint forces. A weighting
scalar parameter 7y, defined by the user, adjusts the influence of both terms.

At each collocation o € &, we consider a local plane of normal n fitting the
data points. For a given point q € R?, p is its projection on the this plane, and
t the distance between q and the plane; so we have p = q — t x n. Figure2
summarizes this setup.

Fig. 2. The weight on an data point p; € P, denoted here by different shades of gray,
is a function of the distance from p; to q.

Thus, 4ata and Esur face are expressed at the point q as functions of ¢ and n:

n
gdata(tvn): Z<pi*q4rt><n>m>2 o(lefq‘i’tXIl”)
p:€EP (6)

gsurface(ty n) = <X/ —q+1tXxn, Il’>2

where n’ is the gradient of the implicit function defining the continuous tubular
model, x’ is the projection of p on the zero level-set of this function, and 6 is a
compactly supported Wendland’s RBF.

For clarity, £surface quantifies the distance between the continuous tubular
model and M LS model [1] locally approximating the data. The gradient of £ is
then expressed as V& = v - V&uata + (1 — ) - V&surface. Following Eqs. 7 and
8 detail the computation of both data and surface gradient terms, respectively

gdata and gsurfac@

n
m) Vg (t,n) - 0(|lpi —a+ ¢ xnl)

n
+(pi—q+txn,—:)2 -///(7;“) -VO(|lp: —q+t xnl)

[l

vfdata(t7n) :ZQ ' <pz —q+ t x n,
Di (7)



High Accuracy Terrain Reconstruction from Point Clouds 257

1 n-n” n
(I3 — ——) - (pi — P —
Vot = | ) Py
: Il
where Na
e///(t_’n) =|1I3-t ny
ny
- r
Vo((rl) =(—20WFH%(1—Hrm3-Wﬂ[
The second gradient term is computed as:
Vésurface(t,n) =2 M 5y - (X' —q+1t xn,n') 0 (8)

We retrieve (tmin, Dmin), minimizing £(¢,n) with the Fletcher-Reeves [5] con-
jugate gradient algorithm available in the GSL library. The minimizer is initi-
ated at the point q € R3 to (t9,ng) = (q — x’' - n’,n’). From this minimization
process computed at each collocation o arises a deformation vector defined as
Vo = —tmin X Nmin-

To push the surface to the data points according to the deformation vector
field, we propose to follow a convection model as proposed by Osher [12]:

dg(p, 1)
dt

=vp o Vyg(p,t) 9)

where vp is the deformation vector expressed at p, and o is the element-wise
product. To solve Eq. 9, we assume that space and time are separable. We decom-
pose g(p,t) = a(t) - P(p) where &(p) is made of the basis functions values eval-
uated at the point p and «(t) composed of the respective a values. Equation 9
thus becomes the ordinary differential equation of evolution:

dat

0 a(p) = vy o alt) - V(D) (10)

After the application of Euler’s method, Eq. 10 becomes:
alt+717)=at)—T1-®(p)" - H#(t,p) (11)

where 7 is the time step and J#(t,p) = vp o [a(t) - V@(p)]. The evolution of
the CSRBF coefficients is finally given by Eq. 11. From this set of CSRBF, we
compute an implicit function and finally extract its zero level-set to produce the
terrain surface model.

5.3 Re-normalization of Implicit Function

In order to prevent the apparition of new zero level components far away from the
initial surface, periodically reshaping the implicit function is a common strategy.
In order to bound the function g defined in Sect. 5.1, hence its gradient Vg, we
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bound the expansion of its coefficients a,, . In practice, inspired by [6], we bound
lee(t) || oo if ||x(t)||cc > B, Where [3 is a positive constant. The evolution equation
becomes

at+7)=a(t)—7 &(p)~' HA(tp)
a(t+7) = s - et +7), if la(t+1)le>6  (12)
at+7)=at+71), otherwise

5.4 Complexity

Using an octree data structure for the collocations layout, as advised by Wend-
land [16], the matrix @(p) computation is &(NlogN) and the implicit function
evaluation g is O(logN). According to Botsch [2], the inversion of @(p) through
the Cholesky factorization is &'(nzf), where nzf is the number of nonzero fac-
tors, which depends on the CSRBF center position and on the CSRBF support
size. The cost of the re-normalization described in Sect. 5.3 is O(N).

6 Experiment and Validation

In order to train our deep learning model, labeled point clouds of forest plot
mock-ups are required. To generate such data-sets, we simulate 3D point clouds
from artificial 3D terrains and trees models, as described in the following
Sect.6.1. As the accuracy of the terrain surface reconstructed by our method
depends first on the efficiency of our deep network segmentation, we first mea-
sured its ability to segment vegetation points from ground points on local minima
of simulated scenes. Section 6.3 describes the quantitative and qualitative results
of terrain reconstruction on simulated and real TLS scans. Moreover, we evaluate
the improvement brought by the deformable model.

6.1 Training Data Generation

Fig. 3. Models of forest 32m x 32 m plot: left side, mesh model; center and right side,
side and top view of a simulated point cloud.

To build a training data-set whose point clouds resemble the real TLS forest
scans, described later in Sect. 6.2, we designed realistic tree mesh models of
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pines, spruces and birches using SpeedTree [7]. This software is providing nowa-
days high quality 3D renderings for the gaming and film industries as well as
architectural visualization projects. Ground surfaces meshes were produced using
hybrid multi-fractal terrain method [4] implemented within Meshlab [3]. Then,
we associated ground and trees models to build 3D models of complete forest
plots, and used a LiDAR simulator based on PBRT [13] to generate point clouds.
In order to simulate the point distribution close to the ground, which is scattered
and complex due to leaves and very small vegetation, we applied a Gaussian noise
(std =10 cm) on points originating from ray hitting the ground surface. Figure 3
shows an example of a meshed forest plot mock-up along with two views of the
resulting simulated point clouds. As the goal of our deep network is to learn
how to handle different patterns of trees occlusions, we artificially increased the
training data by repeating the simulation process for six virtual scan positions
evenly distributed on a 4m circle centered on the plot. Each simulated point
cloud has around 7 million points.

6.2 Real LiDAR Scans

The real TLS scans used in the validation are the ones used in the benchmark
[9]. They were acquired in a southern boreal forest of Finland. Each of the
originating plot, of a fixed size of 32m x 32 m, was selected from varying forest-
stand conditions representing different developing stages with a range of species,
growth stages, and management activities. The plots were divided into three
categories (two plots per category) based on the complexity of their structure
(from the point-of-view of a TLS survey): easy (plot 1 and 2), medium (plot 3
and 4) and difficult (plot 5 and 6). This data-set comes with a reference ground
model, fully checked by the operator, composed of 3D points laying over a 2D
grid of 20 cm resolution. Each plot was scanned from five positions: one scan at
the plot center and four scans at the four quadrant directions.

6.3 Experiments and Discussions

As pointed out earlier, the performance of our method relies first on its abil-
ity to filter out vegetation points based on the deep learning segmentation. In
order to assess this performance, we first compute the mean kappa indicator of
the classification of all the simulated scenes, for different values of resp;rny the
resolution of the 2D grid used in the extraction of the minimum points P,
and Kpcoa the number of neighbors used in the local PCA analysis described
in Sect.3.1. Through sensitivity analysis, we obtained the best average kappa
(0.977) on the simulated data-set for respy;ry = 10cm and Kpoa = 128. We use
those parameter values for the rest of the validation. Using a pre-trained model
with these parameters, we analyzed the distance between the input data of our
method and the reconstructed surfaces it produces.
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Simulated Data. In each step of the validation, we checked the robustness of
our method by asserting that the reconstructed surfaces were made of a single
continuous patch without holes covering the full extent of the input data. Then,
we measured its accuracy by computing the distance between the input data and
the surface model. To do so, we defined a distance distribution by computing
the euclidean distance in between each vertices of the resulting surfaces to the
closest vertex of the reference surfaces. The Table1 presents the segmentation
result and the distance distribution for one scan of each artificial forest scan.

Table 1. Distance between reconstructed terrain surface and reference: (Top) Results
of segmentation of the simulated point cloud. The vegetation points that are filtered out
are represented in green. (Middle) The euclidean distance to the reconstructed surface
represented as a color gradient at each vertex of the reference surface. (Bottom) The
distribution of distances represented as box-plots (without outliers).

Segmentation

Distance (cm)

T T T T
Plot 1 Plot 2 Plot 3 Plot 4

For every artificial plot, our model efficiently filters out the vegetation points.
Moreover, the reconstructed surfaces are placed at a mean distance of 2cm
from the terrain model produced with Meshlab, except in large occlusions where
ground points are missing and where the reconstructed surface is approximated
from the surroundings.

Real Data. While dealing with real TLS scans, we reconstructed, for each
plot, the terrain surface from the single central scan and also from a point
cloud resulting of the fusion of all five available scans per plot. This allows
evaluation of the method performance for various point density in different forest
environments. Having access to the reference terrain model, we computed the
distance in between surfaces, vertex to vertex. In the case of real data, we first
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extract the ground points using our deep learning network, then compute the
distance between the vertices of the reconstructed surface and the ground points
packaged with the LiDAR scans. The results are shown in Table 2.

Finally, we analyzed the evolution of terrain model the iteration of deforma-
tion, by measuring its distance distribution to the segmented ground points. The
results are presented in Tables 3 and 4, for single and multiple scans respectively.

Table 2. Mean Hausdorff distance (cm) between reconstructed surface from sin-
gle/multiple scan(s) and reference ground model.

Plot 1 2 3 4 5 6
Single - Mean Distance (cm) 6.04 | 5.8222.23 | 26.89 | 12.85 | 21.76
Multiple - Mean Distance (cm) | 2.58 |3.14| 5.93| 8.27| 2.88| 7.17

As pointed out in the Table 2, the efficiency of our method to reconstruct a
terrain model close to the reference depends on the terrain complexity and on the
nature of the scans: for the simpler forest plots (1 and 2) single scans, our method
produces accurate terrain models that are positioned 6 cm from the reference.
Due to the missing points in the occlusion that expands with complexity, this
distance increases for plots 3, 4, 5, and 6. However, in the case of multiple scans,
the occlusion phenomenon lessens, which makes available anchor points allowing
sharper terrain surfaces to be produced. In such cases, with our method, the
mean distances are around 3cm on the simpler plot, and from 3 to 8cm on a
more complex topology.

In Tables 3 and 4, we analyzed the contribution of the deformation produced
by the convection in the final accuracy of our terrain surfaces. For every plot,
the mean of the distance distribution and its standard deviation decreases for
both single and multiple scans. The stronger drops occurs at the first iteration,
the following ones remaining light in comparison. Except for plot 3 and 4 single
scans, the reconstructed surface sets at 2cm on average from the segmented
ground points after five iterations of convection.

The single scans of plots 3 and 4 highlight the limitation of our method:
while the mean distance from the segmented ground points remained at 2 to
3cm, the distance distribution presents extreme values above 20cm. This is
due to the failure of our deep learning model to correctly filter out vegetation
points. Those two particular plots, while being scans from a single point presents
problematic 3D points patterns, which vanish if scanned from multiple points
of view. The forest mock-ups are crucial; they need to take proper account of
the actual reality. Indeed, they are used to produce simulated data training and
determine the quality of the segmentation, which is the first step of our method
and condition the reconstruction of the overall scene.



J. Morel et al.

262

Lhdd

teration
teration
teration
H
teration
Mteration

H
Meration
H

o

(wo) oueisig (wo) eoversig

(ws) soueisia (ws) soumisig (w0 soueisig

-

T 01d ¢ 19ld

€ 10ld ¥ 30ld G 19ld 9 191d

“UOIJRULIOJOD JO UOIJRISII [RISASS I0] sjutod punois pajusudes oy} pue [9POW UIRLIS) PaIONIJSUOIT
oY} UOAM]D( 9OURISIP 97} JO UOIIM[OAD O} MOTS UWN[OD SB[ 9], ‘Syutod WNWIUIW S} JO UOIIRIUOWS0S o) Juesold uwnjod pIy o J,
“Ay1suep jurod [e00[ o) pue uorjessde jutod oy} 03 SUIPIOIIR POZLIO[0D Uea( aAey spnofo jutod oY) ‘esodind uorjezifensia 10 ‘pnop jurod
a1} Jo mo1a doj pue apIs oY) MOYS SUWN[OD JSI OM) 9], "SURIS J[3UIS G[[, U0 paseq adejIns punoid sjord 1se10] Jo uopewW)sy ¢ a[qel,



263

High Accuracy Terrain Reconstruction from Point Clouds

teration
teration

H
teration
teration

H

(wo) soversia (o) souersiq (wo) soversiq (wo) souersia (o) souersiq (o) souersiq

0
8
6
N
2
o
s
6
N
2
o
0
8
6
s
2
o
6
s
s
3
2
1
o
0

T 01d ¢ 9ld € 90ld % uoﬁm G %old 9 19ld

"UOT}RULIOJOP JO UOIYeId)I [BIoAdS 10§ sjurod punoid pajuswi3es oy} pue [oPOW UIRLId) PIJOTLIISUOIDI O}
U99MI9( 9OURISIP Y[ JO UOIIN[OAD S} MOYS UWMN[0D ISB[ 9], "Syulod WNWIUTW S} JO UOI}BJUSUWSSS 1) Juasaid UWnN[od Py} oy ], ‘A}ISUsp
jutod [e20[ oY) pue uorjeAd[d jurod oY} 0} SUIPIOIIR PIZLIO[0D U aArY spnopd jurod oY) ‘esodind uoryezirensia 10 “pnoo juiod o13 Jo
mora doy pue opIS Y} MOUS SUWN[OD JSI 0m) S, ‘sueds o[dijnur §T.J, U0 paseq soejins punois sjo[d 1s910j Jo uoryewysy *§ o[qel,



264 J. Morel et al.

7 Conclusion

In this work, we propose an efficient method designed to recover terrain surface
model from 3D sample data acquired in forest environments. Our approach relies
on deep learning to separate ground points from vegetation points. It handles
the occlusion and builds a first approximation of the ground surface by blending
implicit quadrics through the partition of unity principle. Then our method gets
rid of the rigidity of the previous model by projecting it in a CSRBF basis before
deforming it by convection. These contributions enable us to achieve state of the
art performance in terrain reconstruction. In the future, it is worthwhile thinking
of how to design forest mock-ups adapted to train networks able to filter different
forest environments.
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ful comments and efforts towards improving our manuscript and the Japan Society for
the Promotion of Science (JSPS) for providing Jules Morel fellowship.
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