
Visual Self-healing Modelling for Reliable
Internet-of-Things Systems

João Pedro Dias1,2(B) , Bruno Lima1,2 , João Pascoal Faria1,2 ,
André Restivo1,3 , and Hugo Sereno Ferreira1,2

1 DEI, Faculty of Engineering, University of Porto, Porto, Portugal
{jpmdias,bruno.lima,jpf,arestivo,hugosf}@fe.up.pt

2 INESC TEC, Porto, Portugal
3 LIACC, Porto, Portugal

Abstract. Internet-of-Things systems are comprised of highly hetero-
geneous architectures, where different protocols, application stacks, inte-
gration services, and orchestration engines co-exist. As they permeate
our everyday lives, more of them become safety-critical, increasing the
need for making them testable and fault-tolerant, with minimal human
intervention. In this paper, we present a set of self-healing extensions
for Node-RED, a popular visual programming solution for IoT sys-
tems. These extensions add runtime verification mechanisms and self-
healing capabilities via new reusable nodes, some of them leveraging
meta-programming techniques. With them, we were able to implement
self-modification of flows, empowering the system with self-monitoring
and self-testing capabilities, that search for malfunctions, and take subse-
quent actions towards the maintenance of health and recovery. We tested
these mechanisms on a set of scenarios using a live physical setup that
we called SmartLab. Our results indicate that this approach can improve
a system’s reliability and dependability, both by being able to detect
failing conditions, as well as reacting to them by self-modifying flows, or
triggering countermeasures.

Keywords: Internet-of-Things · Runtime verification · Self-healing ·
Software engineering · Visual programming

1 Introduction

The Internet-of-Things (IoT) is a network of programmable uniquely identifiable
devices, known as things, that can sense (i.e., sensors) and change (i.e., actua-
tors) their environment [22]. Within the nature of IoT systems, there are sev-
eral particularities that, although not new or unique, congregate at an unprece-
dented scale in terms of interconnected devices, people, systems, and information
resources, leading to an ever-increasing complexity that developers must address.
These systems—typically built with heterogeneous parts, mostly resulting from
the integration of different, and, sometimes, already existent, systems (i.e., sys-
tems of systems [8])—are not only logically distributed but also geographically,
and commonly have to deal with power constraints and real-time needs.
c© Springer Nature Switzerland AG 2020
V. V. Krzhizhanovskaya et al. (Eds.): ICCS 2020, LNCS 12141, pp. 357–370, 2020.
https://doi.org/10.1007/978-3-030-50426-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50426-7_27&domain=pdf
http://orcid.org/0000-0001-9066-6436
http://orcid.org/0000-0003-2572-047X
http://orcid.org/0000-0003-3825-3954
http://orcid.org/0000-0002-1328-3391
http://orcid.org/0000-0002-4963-3525
https://doi.org/10.1007/978-3-030-50426-7_27


358 J. P. Dias et al.

The wide range of IoT application scenarios urges the need for tools that allow
users with reduced technical knowledge to configure and adapt their systems to
their needs. These requirements lead to the birth of several different low-code
and visual programming solutions that try to reduce the inherent complexity of
programming and configuring these systems. Ray et al. [29] identify several visual
programming solutions tailored to this domain. To get a grasp on the popular-
ity of these solutions, we surveyed open-source tools (hosted on GitHub), using
the number of stars as the primary metric. We can observe that the most pop-
ular visual programming solution for this domain is, by far, Node-RED (9600
stars), followed by XOD (583), Ardublock (376, Arduino-only development),
Snap4Arduino (99, Arduino-only), Wyliodrin (84), Intel IoT Services Orches-
tration Layer (80), miniBloq (72), and NETLabToolkit (17, Arduino-only).

As systems’ complexity increases, it inevitably results in people becoming
“overwhelmed by the effort to properly control the assembled collection,” [28]
increasing the probability of human-induced errors and failures; developing
becomes hard, labor-intensive, and expensive, no matter how low-code the infras-
tructure is [16]. IoT is acknowledged to be a particular example of these com-
plex systems [23], where recovering from faults becomes challenging [14]. As a
result of this inherent complexity, researchers have argued that there is an immi-
nent need for autonomic components [3,4,31]. From single devices (e.g., smart
locks) to whole systems (e.g., smart homes), components should be capable of
self-management, reducing the need for frequent human interactions [18]. This
becomes essential in mission-critical systems, or when devices are deployed in
remote locations (e.g., wildfire control) or hard to access areas (e.g., inside walls).

Ganek and Corbi [13] identify four desired self properties, namely: self-
configuring, self-healing, self-optimization, and self-protection. All these charac-
teristics require a certain degree of runtime introspection [19] from the system.
Monitoring has been the most common approach for understanding a running
system [1,12,15]; this technique allows one to retrieve operational data about
running systems by using several distinct methods, but it is usually done by
external tools and without a feedback loop. Some authors do propose the usage
of runtime verification as a way to detect malfunctions and failures of system
elements and their interactions [1], which act as a lightweight verification mech-
anism, complementing techniques such as model checking and testing. The main
difference lies in providing the missing feedback loop, allowing taking actions as
soon as some incorrect behavior is detected [21]. This verification mechanism
can be used as a foundation for self-healing IoT systems.

Our work focuses on the principle that systems should be able to reconfigure
themselves to recover from failures introduced by faulty parts. To achieve this,
the running system must be able to model itself so that it can identify the faulty
components during its operation (i.e., runtime), without the need for human
inspection. Our main contribution is the ability to visually model diagnosis and
recovery/maintenance of health mechanisms to improve IoT systems’ reliability,
thus enabling them to be self-healing. These mechanisms have been developed,
applied, and tested, as extensions that we named Self-Healing Extensions for



Visual Self-healing Modelling for Reliable IoT Systems 359

Node-RED (SHEN). We validated our approach by executing a set of scenarios
on top of a live, physical setup, called SmartLab. The in-place based system
was first upgraded with the designed extensions; then, a set of common scenar-
ios was executed, and the resulting system behavior observed. Our experiments
show the feasibility of the approach, pointing to improvements in terms of sys-
tem reliability and dependability, despite several limitations and challenges that
this particular VPL language poses, and which limit the full potential of our
approach.

The structure of the remaining paper is as follows: Sect. 2 provides an
overview of the main concepts, Sect. 3 explores related work, Sect. 4 describes
our approach for runtime verification and self-healing as Node-RED extensions,
Sect. 5 describes the experimental phase, Sect. 6 discusses the limitations, chal-
lenges, and benefits of our approach and Node-RED itself, and lastly, Sect. 7
provides some final remarks.

2 Preliminaries

The following paragraphs introduce some fundamental building blocks and
key concepts of this work, focusing on IoT. The Node-RED tool is presented
(Sect. 2.1) along with additional details about its functioning and known limita-
tions. The current practices, in terms of validation and verification, are briefly
presented and discussed (Sect. 2.2). Lastly, the concepts of autonomic comput-
ing, more specifically, self-healing, are presented (Sect. 2.3).

2.1 Node-RED

Node-RED is an open-source mashup-based1 approach for developing IoT sys-
tems. Its “programs” are a set of flows, which consist of nodes connected by
wires. Several node templates are usually provided that can be used (e.g., drag-
and-dropped) into a flow canvas. Once the developer creates or updates a flow,
it must be deployed ; a process that persists the new flow version and (re-)starts
the whole system [7]. More recently, flows acquired the ability to be version
controlled and exported. The portfolio of available nodes can be extended via
plugins that implement new ones, either in (1) JavaScript, or (2) by the compo-
sition of existent nodes in the form of sub-flows. Input nodes typically subscribe
to external services, listen for data on a specific port, or start processing HTTP
requests. Once the data is processed by a given node, either from an external
service or from an upstream node, a method is called with the resulting data on
downstream nodes that can either generate additional events or push the results
to outside services or systems [7]. Mashup tools are known to lower the barrier
of application development significantly [24].

Despite its features and popularity, this tool still presents several limitations
to our objective. There are no proper mechanisms for debugging and testing
1 Mashup-based developed systems are the result of composing or mashing up existing

services, components, and devices [26].



360 J. P. Dias et al.

flows, beyond adding special nodes having logging capabilities. The message
passing mechanism is not typed, which means simple connection errors are not
detected before they are deployed. Meta-facilities, such as reflection and reifi-
cation, are not available for usage in the flows, which might be due to it not
leveraging the usage of a formally defined meta-model as a way of representing
its abstractions [27]. The tool is also designed as a centralized orchestrator, in
the sense that every flow—particularly every message passing activity—must
be executed by it, even if several nodes gather or publish their information to
external systems. One contributing factor to this limitation is the non-usage of
model-based techniques, which leads to a platform-dependent specification, hin-
dering the ability to generate target-specific code. Its design favors the modeling
of the system’s overall behavior as a dataflow, but the behavior of each particular
component is mostly opaque and must be implemented manually. As such, it is
harder to inspect, simulate, analyze, and change flows as a whole when compared
to model-based systems—including during runtime.

The result is that, although Node-RED presents an easy platform to proto-
type simple systems, it quickly falls behind once the complexity starts increasing.
Ray’s survey findings [29] concur with our analysis, arguing that although sev-
eral domains of applications already take great advantage of the use of recent
advances in Visual Programming Languages, the emerging field of IoT is still
lingers far behind other sectors.

2.2 Validation and Verification of IoT Systems

The complexity of our target systems affects not only their design and develop-
ment processes but also implies a greater complexity of their verification and val-
idation procedures. Traditional approaches for testing software-only systems are
mostly limited and insufficient by overlooking fundamental factors about inter-
action with the real world, and mostly ignoring the hardware counterpart [9].
Of the available solutions, most focus solely on a specific platform, language,
or standard, hindering overall improvement or extension, and do not provide
out-of-the-box functionality [9]. The lack of IoT-specific testing systems can also
lead to the adoption of poor testing practices; a closer examination allows the
identification of recurring behaviors in these applications and a set of correspond-
ing testing strategies [10]. Pontes et al. [25] proposed a pattern-based approach
to IoT testing by identifying five specific test patterns, namely: Test Periodic
Readings, Test Triggered Readings, Test Alerts, Test Actions, and Test Actua-
tors. They claim that once these are available as test patterns, the overall process
of testing becomes easier, as they can be reused to test recurrent behaviors in
different scenarios.

2.3 Self-healing Systems

Ghosh et al. [14] describe systems with self-healing capabilities to be those that
can deal with disruptions in their operation by (1) detecting system failures and
possibly diagnosing the root cause of the problem, (2) determining a fix (i.e.,



Visual Self-healing Modelling for Reliable IoT Systems 361

maintenance of health), and (3) recovering (even if only to a less capable but
safe and healthy state). Self-healing may use models (external or internal) that
monitor the system’s behavior (probes), allowing it to adapt to environmental or
operational circumstances. These approaches can be intrusive, if implemented
internally within the system itself, or non-intrusive, if they consider the guarded
system as a complete unit; they are closed-loop when they try to avoid all a
priori known failure sources (i.e., all possible states are known before recov-
ery), or open-loop otherwise [28]. The typical recovery mechanisms employed
include reconfiguration and replication of components (hardware and software)
and degradation of the quality-of-service (QoS) [1].

3 Related Work

Athreya et al. [5] suggest devices should be able to manage themselves both in
terms of configuration (self-configuration) and resource usage (self-optimization),
proposing a measurement-based learning and adaptation framework that allows
the system to adapt itself to changing system contexts and application demands.
Although their work has some considerations about resilience to failures (e.g.,
power outages, attacks), it does not address self-healing concerns.

The concept of responsible objects, introduced by Angarita et al. [3], states
that things should be self-aware of their context (passage of time, the progress
of execution and resource consumption), and apply smart self-healing decisions
taking into account component transaction properties (backward and forward
recovery). Their approach shows limitations, viz. (1) when applied to time-
critical applications, as it is not clear how much time we should wait for a
transaction to finish, (2) some processes, such as those triggered by emergencies,
cannot be compensated, and (3) when is it acceptable to perform checkpoints in
a continuously running system that cannot be rolled-back? It also disregards the
typical capability of devices (e.g., limited memory, power) that might challenge
the implementation of transactions.

Aktas et al. [1] are amongst the first to purpose runtime verification mecha-
nisms to identify issues by resorting to a complex event processing (CEP) tech-
nique and “applying rule-based pattern detection on the events generated real-
time”. They do not address self-healing and only convey a summary of problems
or possible problems to human operators. Leotta et al. [20] also present run-
time verification as a testing approach by using UML state machine diagrams to
specify the system’s expected behavior. However, their solution depends on the
definition of a formal specification of the complete system, which is unfeasible
for highly-dynamic IoT environments (e.g., dynamic network topology).

We could not find any work that focuses on bringing runtime verification
mechanisms for visual programming environments. This is not unexpected, as
Leotta et al. [20] point out that “software testing (in IoT) has been mostly
overlooked so far, both by research and industry,” and later corroborated by
Seeger et al. [30], claiming that most of the research being conducted in visual
programming for IoT has been disregarding failure detection and recovery.



362 J. P. Dias et al.

4 System Architecture and Behavior

We encapsulate runtime verification and self-healing mechanisms by extending
Node-RED with new nodes. The following subsections detail our approach for
those that are subsequently used in the validation scenarios (Sect. 5.1), but they
are part of a more extensive palette [11].

4.1 Visual Runtime Verification

Node-RED has several limitations regarding testing and debugging of flows, from
not providing out-of-the-box nodes capable of doing these tasks, to some design
decisions of the programming environment itself.

Probes Errors
Recovery & Main-
tenance of Health

Mechanisms

detect &
identify

managed &
recovered by

Fig. 1. Self-healing sequence. The use of runtime verification probes the system for
errors, and the self-healing is accomplished by the activation of system recovery and/or
maintenance of health mechanisms.

Regarding runtime verification capabilities, we created nodes that allow
inspecting the system under test (SUT), i.e., probing the system (Fig. 1), includ-
ing the test patterns presented in Pontes et al. [25] and detailed in Sect. 5.1. Some
devices and services (e.g., message brokers, datastores, third-party services) can
only be tested by implementing black-box reachability checking, such as the new
MQTTBrokerTimeout node that asserts if the broker is still alive.

4.2 Visual Self-healing Approach

Following the self-healing loop described by Psair et al. [28], our detection com-
ponent is composed by nodes that allow runtime testing and provide diagnosis
information (Fig. 1), after which the recovery process is accomplished by nodes
that implement maintenance of health and recovery mechanisms:

Replacement. Replace a faulty component with a duplicate spare one;
Balancing. Reduce or manage the load of a component to avoid damage;
Isolation. Isolate the failing component to keep the system in a healthy state;
Persistence. Assume that a failure does not cause further system degradation;
Redirection. Change the flow during a failure to a recovery routine and then

back to the original;
Relocation. Move a system component (along with its dependencies) from a

faulty host to a healthy one;
Diversity. Switch between different approaches or processes during runtime.



Visual Self-healing Modelling for Reliable IoT Systems 363

Supporting these features requires meta-facilities that allow changing a sys-
tem’s behavior during runtime. As Node-RED does not formally provide them,
we found a workaround by resorting to its external REST API from inside our
nodes, thus gaining the ability to create, delete and change the configuration of
flows and other nodes. This is exemplified by the SetFlowStatus node, which
allows toggling flows on and off, thus providing the necessary capabilities for
redirection, replacement, and isolation. We were then able to change between
instances of message brokers and create a balancing mechanism. Other self-
healing mechanisms were implemented by adding secondary flows and sub-flows,
that are triggered when some precondition is met.

5 Experimental Scenarios and Results

Validating new solutions for runtime verification and self-healing requires sce-
narios representative of the characteristics, issues, and challenges of real-world
IoT environments, such as heterogeneity and real-time needs. We carried experi-
ments on SmartLab, an experimental testbed with four actuators and three sens-
ing devices (each having more than one sensor) deployed in a laboratory (Fig. 2),
responsible for a set of user-interaction features.

5.1 Scenarios

We devised three scenarios to demonstrate both the necessity of runtime verifica-
tion as well as self-healing mechanisms. Although these scenarios do not cover all
possibilities, we believe them to be sufficient to show the complexity, challenges,
and, in this case, Node-RED limitations and trade-offs.

Unavailability of Message Broker. MQTT is the base of most of our Smart-
Lab communications; thus, it needs a message broker. Typically, the defined

On-premises
Server

On-premises
Datastore

SN-2

AN-1 SN-1

AN-2

AN-3

SN-3

Third-Party
Services

Control
Dashboard

Broker

AN-4

AN

SN

REST Communication

MQTT Communication

Actuator Node

Sensor Node

Fig. 2. System component diagram, showing the main system parts, along with the
different devices (actuators and sensors) and the enabling communication protocols.



364 J. P. Dias et al.

Fig. 3. MQTTServerTimeout example, for detecting and healing (using a replacement
strategy) a potential unavailability of the broker.

flows are triggered when a new message is received (the flow subscribes to a spe-
cific topic). In this scenario (cf. Fig. 3), the message broker is both the bottleneck
and a single point of failure (SPOF) of the system; if it fails, the functionality
of the system is compromised. To verify its availability (i.e., health status), a
heartbeat pattern was followed: when the broker stops sending its periodic signal,
it is assumed that some fault occurred. The same logic can be easily applied to
other publish-subscribe protocols. When this kind of fault is detected, a redirec-
tion strategy is followed, ensuring the continuation of communications. In our
scenario, we trigger a change from the MQTT-dependant flow to the alternative
HTTP-based flow.

Erroneous Sensor Readings. SmartLab relies on the readings from different
sensors so that it can act according to user-defined rules. As an example, if smoke
is detected, an alarm or another notification mechanism should be triggered (and
possibly trigger some contention mechanism like sprinklers). These procedures
depend on the timeliness and correctness of readings. Sensor malfunctioning can
display an array of different behaviors, such as outputting out-of-bound or out-of-
spec values; these can lead to wrong decisions and may end up having nefarious
effects to the point of impacting the well-being of humans. Several strategies
can be used separately or in combination to detect sensor malfunction. Sensors
that provide periodic readings can be verified by analyzing the expected period-
icity (cf. Sect. 2.2). Other errors, such as out-of-bounds and out-of-spec readings
require customized verification and tailored failure conditions. Fortunately, these
are usually available; e.g., the DHT11 temperature/humidity sensor is capable
of readings ranging from 0 ◦C to 50 ◦C, and 20% to 80% humidity. Values out-
side these ranges should be considered erroneous by default. In this scenario,
an isolation strategy is followed; when an out-of-spec problem is detected, the
readings are ignored via the TestAndFilter node. In the presence of redun-
dant sensors, other readings may still be used by the system; otherwise, all the
actuating components that depend on that sensor cease their activity (Fig. 4).

Connectivity Issues. Devices that are part of our SmartLab provide HTTP
and MQTT connectivity. These devices (especially actuators) depend on receiv-
ing messages to work as supposed. However, in some situations, the devices are
not accessible by the protocol used by default (e.g., MQTT) due to connectiv-
ity disruptions, protocol bugs, or other reasons, thus becoming inaccessible and
eventually causing problematic side-effects (e.g., sprinklers not turning on in



Visual Self-healing Modelling for Reliable IoT Systems 365

Fig. 4. TestAndFilter example in a flow that triggers an actuator if the humidity is
above 80%, but verifies for correct sensor readings beforehand.

Fig. 5. TestAction example, where a verification is made to check if the lights turn on
(request sent via MQTT) after a given interval, by checking if the luminosity lowers
below 50 lux. If not, a secondary flow sends a new on request via HTTP.

the presence of a fire). In this case, a verification can be carried after a certain
amount of time (cf. Sect. 2.2), asserting if the request has been processed by the
device, preferentially using an alternative communication protocol. As an exam-
ple, after a state change request message is sent to an actuator via MQTT, one
could request its status, after a given time, to verify if the reported state corre-
sponds to what was expected. Fixing scenarios in which the state of the system
does not correspond to the expected, requires a diversity strategy. Having things
that are capable of using different protocols allows us to adapt by dynamically
switching to the most stable one given the systems’ conditions (although usually
incurring in a trade-off, such as the differences in energy consumption between
MQTT and HTTP). As an example, if the light controlling device does not turn
on the lights, as requested by the MQTT broker, a second request is made to the
same device, this time using HTTP. This only can be implemented if both the
device and the system can communicate using several different protocols. For
this, we implemented a TestAction node that connects to the trigger and actu-
ator nodes and checks if actions are triggered correctly. If not, a secondary flow
is triggered, repeating the failed request using a different protocol. The resulting
scenario implementation is depicted in Fig. 5.

5.2 Results

We showed improvements to SmartLab reliability and dependability both by
detecting failures as they happen and recovering or maintaining the systems’
health. Node-RED does not provide any out-of-the-box solution for dealing with
failing components, nor to dynamically change the system’s behavior during



366 J. P. Dias et al.

runtime, which is essential to enable self-healing. After adding such function-
alities via new nodes, users can now leverage these new capabilities. Our first
example scenario shows how it becomes possible to test and recover from a
SPOF (exemplified as a message broker failure). The same method could be
used to deal with other SPOFs, including failures of Node-RED itself, with
a RedundancyManager node that activates duplicated and inactive flows on a
different Node-RED instance (provided one is available). The second scenario
shows how to isolate a system’s component to ensure that its misbehaviors do
not compromise the system as a whole. The last scenario shows how we can
now manage several (redundant) communication protocols as an enabler of self-
healing mechanisms, and the importance of continuously asserting the actuators
outcome.

6 Discussion

Ensuring the dependability of software systems has been the goal of most fault-
tolerance research in the past years [6]. In IoT, ensuring systems are secure,
reliable, and compliant is becoming a paramount concern due to the recent
increase in safety-critical applications. Fault-tolerance becomes more challenging
due to several factors, including, but not limited to: (1) the high heterogeneity
of devices, (2) the interaction and limitations of systems deployed in a physical
world, (3) the fragmentation of the field, ranging from the unusually high number
of communication protocols, to the different and competing standards, and (4)
the intrinsic dependability on hardware that might simply fail [2]. Moreover, in a
perfect environment, every actuator should possess a monitoring sensor capable
of verifying its intended end state; however, real-world cost efficiency might limit
their availability to critical components.

The pervasiveness and complexity of IoT have contributed to the rise of visual
programming, in particular Node-RED, as the go-to solution (see Sect. 1). Never-
theless, as it slowly permeates our lives, it becomes crucial to ensure proper func-
tioning through self-verification and self-recovery features: self-healing. Although
previous work attempted to tackle runtime verification and self-healing mecha-
nisms to specific IoT systems (see Sect. 3), none was found to provide this kind of
feature in a visual environment. Previous work also relies heavily on new systems
(e.g., rule-based monitoring services and CEP approaches), without attempting
to integrate into the existent ecosystem of tools and platforms.

Although we chose to extend Node-RED due to its popularity, several chal-
lenges limit its potential concerning our use-cases (or introduce unnecessary
accidental complexity). We already discussed some in Sect. 2.1, but while imple-
menting our test scenarios (Sect. 5.1), the following issues became disproportion-
ately prominent, namely:

Support for labels and annotations: Nodes do not visually provide sufficient
information about their connectors and internal status, making flows harder
to construct, debug, and adapt. Most (if not all) nodes configuration cannot



Visual Self-healing Modelling for Reliable IoT Systems 367

Fig. 6. Mockup of possible node interface with annotations, labels and multiple
inputs/outputs.

be set or changed by other nodes. A solution similar to Fig. 6 seems more
useful, not only in presenting this information but also in terms of flexibility
regarding our goals;

Multiple inputs: Although Node-RED supports several outputs per node, they
cannot have differentiated inputs (see Fig. 6). This poses both a cognitive
and technical difficulty in defining and readjusting the behavior of nodes
both during the design and runtime phases, including the configuration of
test conditions and recovery measures;

Types and static analysis: Nodes do not have the notion of types; this allows
the user to incorrectly connect two nodes, where the destination expects a
different data type than the one sent by the origin one. This leads to common
(and simple) errors that only make themselves noticeable after deployment
of the whole flow, possibly introducing severe inconsistencies in the system;

Debugging: Besides the provided logging capabilities of Node-RED, using
debug nodes, no other debugging technique is available. This means that
breakpoints, node inspection, value history, and other apparatus are absent,
severely hindering the ability for the developer to understand what went
wrong in the internal logic of a node;

Meta-programming: Formal mechanisms of introspection and reification,
essential for effective meta-programming, are non-existent. This limits the
possibility of adjusting flows in runtime and forces us to rely on external
APIs that were not designed for this particular purpose and which might
easily break.

Despite these limitations, it was possible (up to a certain extent) to fulfill
our goals mostly by using its visual notation, as seen in Sect. 5 and discussed in
Sect. 5.2. It should be noted that all implemented strategies fall into the forward
error recovery category, i.e., “continue from an erroneous state by making selec-
tive corrections to the system state” [17]. Exploration of backward error recovery
techniques is harder due to the dependency of system state checkpoints, that
needs to capture a mix of device internal states, concurrent communication pro-
tocols messages, and controller state.

To further improve the self-healing capabilities of systems such as the pre-
sented SmartLab, devices should have extra features such as diverse communi-



368 J. P. Dias et al.

cation channels (e.g., Wi-Fi and ZigBee), remote management capabilities (e.g.,
independent watchdogs that allow to gracefully restore a device), and capabil-
ity announcement, which would empower dynamic usage of redundant devices.
We observe these features are mostly absent from consumer-grade devices, most
probably due to cost efficiency.

Several challenges remain unaddressed by this work, such as (1) dealing with
concurrent inputs that can lead to unexpected states (e.g., the system decides
to turn on the lights and the user manually turns them off), which may result in
false assertions by the runtime verification mechanisms, (2) auto-discovery and
configuration of new devices in the system (e.g., a new mobile device can be
used as a redundant sensing node while it remains in the system network), and
(3) what are the reasonable operational states that the system should converge
to in the case of failure (e.g. if the system has to decide between shutting down
the smoke alarm or the surveillance system, which one should take prevalence?).
Supporting and articulating with other self-* aspects is also an open challenge
towards fully autonomic systems; this includes self-protection, self-optimization,
and self-configuration [13].

7 Conclusion

IoT systems are perhaps one of the most significant examples of heterogeneous
architectures in existence. Different protocols, different application stacks, dif-
ferent integration services, and different orchestration engines, all must come
together in a technological solution that allows both an organic growth from
end-users, as well as dealing with security and privacy concerns at unprecedented
levels. The consequence is that the system is required to keep functioning at min-
imal levels, even when parts of it become non-compliant, faulty, or even under
attack. Requiring the end-user to address these challenges is unrealistic, as most
of them are not developers. Even most system integrators cannot keep up with
the pace of release devices, which very seldom adhere to open standards.

In this paper, we argue that an IoT system that attempts to tackle the
presented challenges must be capable of self-healing. This is not a small feat,
as most of the research being conducted in integration tools for IoT recurrently
disregard failure detection and recovery. We fulfill these desiderata with SHEN,
Self-Healing Extensions for Node-RED. As this very popular tool lacks built-
in testing and self-healing capabilities, we use it as a case-study for common
failure and recovery scenarios, and (1) show how to leverage meta-programming
techniques to allow self-modification of flows via a custom plugin, (2) explore
common self-healing patterns and how they can be solved by such techniques,
(3) provide them as reusable nodes for others to incorporate in their systems,
and (4) discuss which challenges remain open and which might need rethinking
architectural and design decisions.

To validate our claims, we applied SHEN to the existing SmartLab, and
proceed to show its behavior for three different scenarios, viz. (1) Unavailability
of Message Broker, (2) Erroneous Sensor Readings and (3) Connectivity Issues.



Visual Self-healing Modelling for Reliable IoT Systems 369

We conclude that we can improve the system’s reliability and dependability,
both by being able to detect failing conditions, as well as reacting to them
by self-modification of defined flows. Future work includes (a) the extension of
the SHEN palette with more runtime verification’s and self-healing mechanisms,
and (b) case studies over various degrees of systems complexity, and in different
contexts and scales.

Acknowledgement. This work was partially funded by the Portuguese Foundation
for Science and Technology (FCT), under the research grants SFRH/BD/144612/2019
and SFRH/BD/115358/2016.

References

1. Aktas, M.S., Astekin, M.: Provenance aware run-time verification of things for
self-healing Internet of Things applications. Concurr. Comput. 31(3), 1–9 (2019)

2. Aly, M., Khomh, F., Gueheneuc, Y.G., Washizaki, H., Yacout, S.: Is fragmentation
a threat to the success of the internet of things? IEEE Internet Things J. 6(1),
472–487 (2019)

3. Angarita, R.: Responsible objects: towards self-healing Internet of Things applica-
tions. In: Proceedings - IEEE International Conference on Autonomic Computing,
ICAC 2015, pp. 307–312 (2015)

4. Ashraf, Q.M., Habaebi, M.H.: Introducing autonomy in Internet of Things. In:
14th International Conference on Applied Computer and Applied Computational
Science (ACACOS 2015) (2015)

5. Athreya, A.P., DeBruhl, B., Tague, P.: Designing for self-configuration and self-
adaptation in the Internet of Things. In: Proceedings of the 9th IEEE International
Conference on Collaborative Computing: Networking, Applications and Workshar-
ing, COLLABORATECOM 2013, pp. 585–592 (2013)

6. Avizienis, A., Laprie, J.C., Randell, B.: Fundamental Concepts of Dependability.
Technical Report Series University of Newcastle Upon Tyne Computing Science,
vol. 1145, no. 010028, pp. 7–12 (2001)

7. Blackstock, M., Lea, R.: Toward a distributed data flow platform for the Web of
Things (Distributed Node-RED). In: Proceedings of the 5th International Work-
shop on Web of Things - WoT 2014, pp. 34–39 (2014)

8. Delicato, F.C., Pires, P.F., Batista, T., Cavalcante, E., Costa, B., Barros, T.:
Towards an IoT ecosystem. In: Proceedings of the First International Workshop
on Software Engineering for Systems-of-Systems, SESoS 2013, pp. 25–28. ACM
(2013)

9. Dias, J.P., Couto, F., Paiva, A.C.R., Ferreira, H.S.: A brief overview of existing
tools for testing the Internet-of-Things. In: IEEE International Conference on Soft-
ware Testing, Verification and Validation Workshops, pp. 104–109, April 2018

10. Dias, J.a.P., Ferreira, H.S., Sousa, T.B.: Testing and deployment patterns for the
Internet-of-Things. In: Proceedings of the 24th European Conference on Pattern
Languages of Programs. EuroPLop 2019. ACM (2019)

11. Dias, J.P.: jpdias/node-red-contrib-self-healing: Replication package for ICCS
2020, April 2020. https://doi.org/10.5281/zenodo.3746414

12. Dundar, B., Astekin, M., Aktas, M.S.: A big data processing framework for self-
healing Internet of Things applications. In: 2016 12th International Conference on
Semantics, Knowledge and Grids (SKG), pp. 62–68. IEEE (2016)

https://doi.org/10.5281/zenodo.3746414


370 J. P. Dias et al.

13. Ganek, A.G., Corbi, T.A.: The dawning of the autonomic computing era. IBM
Syst. J. 42(1), 5–18 (2003)

14. Ghosh, D., Sharman, R., Rao, H.R., Upadhyaya, S.: Self healing systems—-survey
and synthesis. Decis. Support Syst. 42(4), 2164–2185 (2007). Decision Support
Systems in Emerging Economies

15. İnçki, K., Arı, İ., Sözer, H.: Runtime verification of IoT systems using complex
event processing. In: 2017 IEEE 14th International Conference on Networking,
Sensing and Control (ICNSC), pp. 625–630. IEEE (2017)

16. Janssen, P., Erhan, H., Chen, K.W.: Visual dataflow modelling - some thoughts
on complexity. In: Proceedings of the 32nd eCAADe Conference (2014)

17. Jia, W., Zhou, W.: Reliability and replication techniques. In: Distributed Network
Systems: From Concepts to Implementations, pp. 213–254 (2005). https://doi.org/
10.1007/0-387-23840-9 9

18. Kopetz, H.: Real-Time Systems. Real-Time Systems Series. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-1-4419-8237-7

19. Krupitzer, C., Roth, F.M., VanSyckel, S., Schiele, G., Becker, C.: A survey on
engineering approaches for self-adaptive systems. Pervasive Mob. Comput. 17, 184–
206 (2015)

20. Leotta, M., Ancona, D., Franceschini, L., Olianas, D., Ribaudo, M., Ricca, F.:
Towards a runtime verification approach for Internet of Things systems. In: Pau-
tasso, C., Sánchez-Figueroa, F., Systä, K., Murillo Rodŕıguez, J.M. (eds.) ICWE
2018. LNCS, vol. 11153, pp. 83–96. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-03056-8 8

21. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Program. 78(5), 293–303 (2009)

22. Minerva, R., Biru, A., Rotondi, D.: Towards a definition of the Internet of Things
(iot). IEEE Internet Initiative 1, 1–86 (2015)

23. Morin, B., Harrand, N., Fleurey, F.: Model-based software engineering to tame the
IoT jungle. IEEE Softw. 34(1), 30–36 (2017)

24. Patel, P., Cassou, D.: Enabling high-level application development for the Internet
of Things. J. Syst. Softw. 103(C), 62–84 (2015)

25. Pontes, P.M., Lima, B., Faria, J.a.P.: Test patterns for IoT. In: Proceedings of the
9th ACM SIGSOFT International Workshop on Automating TEST Case Design,
Selection, and Evaluation, A-TEST 2018, pp. 63–66. ACM (2018)

26. Prehofer, C., Chiarabini, L.: From IoT mashups to model-based IoT. In: W3C
Workshop on the Web of Things (2013)

27. Prehofer, C., Chiarabini, L.: From Internet of Things mashups to model-based
development. In: 2015 IEEE 39th Annual Computer Software and Applications
Conference, vol. 3, pp. 499–504. IEEE (2015)

28. Psaier, H., Dustdar, S.: A survey on self-healing systems: approaches and systems.
Computing (Vienna/N.Y.) 91(1), 43–73 (2011)

29. Ray, P.P.: A survey on visual programming languages in Internet of Things. Sci.
Program. 2017, 1–6 (2017)

30. Seeger, J., Bröring, A., Carle, G.: Optimally self-healing IoT choreographies (2019)
31. Vermesan, O., et al.: Internet of Things strategic research roadmap. Internet

Things-Glob. Technol. Soc. Trends 1(2011), 9–52 (2011)

https://doi.org/10.1007/0-387-23840-9_9
https://doi.org/10.1007/0-387-23840-9_9
https://doi.org/10.1007/978-1-4419-8237-7
https://doi.org/10.1007/978-3-030-03056-8_8
https://doi.org/10.1007/978-3-030-03056-8_8

	Visual Self-healing Modelling for Reliable Internet-of-Things Systems
	1 Introduction
	2 Preliminaries
	2.1 Node-RED
	2.2 Validation and Verification of IoT Systems
	2.3 Self-healing Systems

	3 Related Work
	4 System Architecture and Behavior
	4.1 Visual Runtime Verification
	4.2 Visual Self-healing Approach

	5 Experimental Scenarios and Results
	5.1 Scenarios
	5.2 Results

	6 Discussion
	7 Conclusion
	References




