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Abstract. Multi-class imbalanced classification tasks are characterized
by the skewed distribution of examples among the classes and, usually,
strong overlapping between class regions in the feature space. Further-
more, frequently the goal of the final system is to obtain very high pre-
cision for each of the concepts. All of these factors contribute to the
complexity of the task and increase the difficulty of building a quality
data model by learning algorithms. One of the ways of addressing these
challenges are so-called binarization strategies, which allow for decom-
position of the multi-class problem into several binary tasks with lower
complexity. Because of the different decomposition schemes used by each
of those methods, some of them are considered to be better suited for
handling imbalanced data than the others. In this study, we focus on the
well-known binary approaches, namely One-Vs-All, One-Vs-One, and
Error-Correcting Output Codes, and their effectiveness in multi-class
imbalanced data classification, with respect to the base classifiers and
various aggregation schemes for each of the strategies. We compare the
performance of these approaches and try to boost the performance of
seemingly weaker methods by sampling algorithms. The detailed com-
parative experimental study of the considered methods, supported by
the statistical analysis, is presented. The results show the differences
among various binarization strategies. We show how one can mitigate
those differences using simple oversampling methods.

Keywords: Multi-class classification - Imbalanced data - Binarization
strategies

1 Introduction

The goal of the supervised learning is to build a data model capable of mapping
inputs x to outputs y with a good generalization ability, given a labeled set
of input-output pairs D = (xi,yi)fil, D being the training set and N being
the number of training examples. Usually, each of the training inputs x; is a
d-dimensional vector of numbers and nominal values, the so-called features that
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characterize a given example, but z; might as well be a complex structured object
like an image, a time series or an email message. Similarly, the type of the output
variable can in principle be anything, but in most cases it is of a continuous
type y; € R or a nominal type y; € C, where, considering an m class problem,
C ={ec1, ..., cm}. In the former case, it is a regression problem, while in the latter,
it is a classification problem [10,22]. Classification problems are very common
in a real-world scenario and machine learning is widely used to solve these types
of problems in areas such as fraud detection [6,24], image recognition [17,26],
cancer treatment [3] or classification of DNA microarrays [19].

In many cases, classification tasks involve more than two classes forming so-
called multi-class problems. This characteristic often imposes some difficulties on
the machine learning algorithm, as some of the solutions were designed strictly
for binary-class problems and may not be applicable to those kinds of scenarios.
What is more, problems, where multiple classes are present, are often character-
ized by greater complexity than binary tasks, as the decision boundaries between
classes tend to overlap, which might lead to building a poor quality model by
a given classifier. Usually, it is simply easier to build a model to distinguish
only between two classes than to consider a multi-class problem. One approach
to overcome those challenges is to use binarization strategies that reduce the
task to multiple binary classification subproblems - in theory, with lower com-
plexity - that can be solved separately by dedicated models, the so-called base
learners [2,11,13,14]. The most commonly used binarization strategies are One-
Vs-All (OVA) [25], One-Vs-One (OVO) [12,16] and Error-Correcting Output
Codes (ECOC) [9], which is a general framework for the binary decomposition
of multi-class problems.

In this paper, we focus on the performance of the aforementioned binariza-
tion strategies in the context of multi-class imbalanced problems. We aim to
determine whether there are statistically significant differences among the per-
formances of those methods, provided the most suitable aggregation scheme for a
given problem. If so - whether or not one can nullify those differences by improv-
ing the quality of base learners within each binarization method with sampling
algorithms. The main contributions of this work are:

— an exhaustive experimental study on the classification of multi-class imbal-
anced data with the use of OVA, OVO and ECOC binarization strategies.

— a comparative study of the aforementioned approaches with regard to a num-
ber of base classifier and aggregation schemes for each of the them.

— a study on the performance of the binarization strategies with the sampling
algorithms used to boost the quality of their base classifiers.

The rest of this paper is organized as follows. In Sect. 2, an overview of bina-
rization strategies used in the experiments is given. In Sect. 3 the experimental
framework set-up is presented, including the classification and sampling algo-
rithms, performance measures and datasets used in the study. The empirical
analysis of obtained results has been carried out in Sect.4. In Sect.5 we make
our concluding remarks.
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2 Decomposition Strategies for Multi-classification

The underlying idea behind binarization strategies is to undertake the multi-
class problems using binary classifiers with divide and conquer strategy [13]. A
transformation like this is often performed with the expectation that the result-
ing binary subproblems will have lower complexity than the original multi-class
problem. One of the drawbacks of such approach is the necessity to combine
the individual responses of the base learners into the final output of the deci-
sion system. What is more, building a dedicated model for each of the binary
subproblems significantly increases the cost of building a decision system in com-
parison to undertaking the same problem with a single classifier. However, the
magnitude of this problem varies greatly depending on the chosen binarization
strategy as well as the number of classes under consideration and the size of
the training set itself. In this study, we focus on the most common binarization
strategies: OVA, OVO, and ECOC.

2.1 One-Vs-All Strategy

OVA binarization strategy divides an m-class problem into m binary problems.
In this strategy, m binary classifiers are trained, each responsible for distinguish-
ing instances of a given class from the others. During the validation phase, the
test pattern is presented to each of the binary models and the model that gives a
positive output indicates the output class of the decision system. This approach
can potentially result in ambiguously labeled regions of the input space. Usually,
some tie-breaking techniques are required [13,22].

While relatively simple, OVA binarization strategy is often preferred to more
complex methods, provided that the best available binary classifiers are used as
the base learners [25]. However, in this strategy, the whole training set is used to
train each of the base learners. It dramatically increases the cost of building a
decision system with respect to the single multi-class classifier. Another issue is
that each of the binary subproblems is likely to suffer from the aforementioned
class imbalance problem [13,22].

2.2 One-Vs-One Strategy

OVA binarization strategy divides an m-class problem into W binary
problems. In this strategy, each binary classifier is responsible for distinguish-
ing instances of different pair of classes (¢;, ¢j). The training set for each of the
binary classifiers consists only of instances of the two classes forming a given pair,
while the instances of the remaining classes are discarded. During the validation
phase, the test pattern is presented to each of the binary models. The output of
a model given by ;; € [0,1] is the confidence of the binary classifier discriminat-
ing classes ¢ and j in favour of the former class. If the classifier does not provide
it, the confidence for the latter class is computed by rj; = 1 —r;; [12,13,22,29].
The class with the higher confidence value is considered as the output class of
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the decision system. Similarly to OVA strategy - this approach can also result
in ambiguities [22].

Although the number of base learners in this strategy is of m? order, the
growth in the number of learning tasks is compensated by the learning set reduc-
tion for each of the individual problems, as demonstrated in [12]. Also, one has
to keep in mind that in this method, each of the base classifiers is trained using
only the instances of two classes, deeming their output not significant for the
instances of all the remaining classes. Usually, the assumption is that the base
learner will make a correct prediction within its domain of expertise [13].

2.3 Error-Correcting Output Codes Strategy

ECOC binarization strategy is a general framework for the binary decomposition
of multi-class problems. In this strategy, each class is assigned a unique binary
string of length n, called code word. Next, n binary classifiers are trained, one
for each bit in the string. During the training phase on an example from class
i, the desired output of a given classifier is specified by the corresponding bit in
the code word for this class. This process can be visualized by a m x n binary
code matrix. As an example, Table 1 shows a 15-bit error-correcting output code
for a five-class problem, constructed using exhaustive technique [9]. During the
validation phase, the test pattern is presented to each of the binary models.
Then the binary code word is formed from their responses. The class which code
word was the nearest to the code word formed from the base learners’ responses,
according to the Hamming distance, indicates the output class of the decision
system.

Table 1. A 15-bit error-correcting output code for a five class problem.

Class | Code word
112/3/4/5/6|7/8/9/10|11|12|13|14|15
1 i{1j1jr/1j1jrfr;1j1 v |1 |1 |1 |1
2 o/ojojojojojolof1|1 |1 |1 |1 |1 |1
3 o/o/jo/0f1f1,1{1/0/0 |0 /O |1 |1 |1
4 0/0/1/1/0/0/1|1/0/0 |1 |1 |O |0 |1
5 0/1/0/1/0/1/0[1/0/1 0|1 |0 |1 0O

In contrast to OVA and OVO strategies, ECOC method does not have a
predefined number of binary models that will be used to solve a given multi-
class problem. This number is determined purely by the algorithm one chooses
to generate the ECOC code matrix. A measure of the quality of error-correcting
code is the minimum Hamming distance between any pair of code words. If the
minimum Hamming distance is [, then the code can correct at least 1—71 single-bit
€rrors.
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2.4 Aggregation Schemes for Binarization Techniques

For the binarization techniques mentioned above, an aggregation method is nec-
essary to combine the responses of an ensemble of base learners. In the case of
ECOC binarization strategy, this aggregation method is embedded in it. An
exhaustive comparison study has been carried out in [13], including various
aggregation methods for both OVA and OVO binarization strategies. For our
experimental study, the implementations of the following methods for OVA and
OVO decomposition schemes have been used:

- OVA
1. Maximum Confidence Strategy;
2. Dynamically Ordered One-Vs-All
- OVO
1. Voting Strategy;
2. Weighted Voting Strategy;
3. Learning Valued Preference for Classification;
4. Decision Directed Acyclic Graph

For ECOC strategy, the exhaustive codes were used to generate the code
matrix if the number of classes m in the problem under consideration satisfied
3 <m < 7. In other cases, the random codes were used as implemented in [23].

3 Experimental Framework

In this section, the set-up of the experimental framework used for the study
is presented. The classification and sampling algorithms used to carry out the
experiments are described in Sect.3.1. Next, the performance measure used to
evaluate the built models is presented in Sect. 3.2. Section 3.3 covers the statis-
tical tests used to compare the obtained results. Finally, Sect. 3.4 describes the
benchmark datasets used in the experiments.

3.1 Classification Used for the Study

One of the goals of the empirical study was to ensure the diversity of the classi-
fiers used as base learners for binarization strategies. A brief description of the
used algorithms is given in the remainder of this section.

— Naive Bayes [22] is a simple model that assumes the features are conditionally
independent given the class label. In practice, even if Naive Bayes assumption
is not true, it often performs fairly well.

— k-Nearest Neighbors (k-NN) [22] is a non-parametric classifier that simply uses
chosen distance metric to find & points in the training set that are nearest to
the test input z, and returns the most common class among those points as
the estimate.
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— Classification and Regression Tree (CART) [22] models are defined by recur-
sively partitioning the input space, and defining a local model in each resulting
region of input space.

— Support Vector Machines (SVM) [27] maps the original input space into a
high-dimensional feature space via so-called kernel trick. In the new feature
space, the optimal separating hyperplane with maximal margin is determined
in order to minimize an upper bound of the expected risk instead of the
empirical risk.

— Logistic Regression [22] is the generalization of the linear regression to the
(binary) classification, so called Binomial Logistic Regression. Further general-
ization to Multi-Class Logistic Regression is often achieved via OVA approach.

During the building phase, for each of aforementioned base classifiers an
exhaustive search over specified hyperparameter values was performed in attempt
to build the best possible data model for a given problem - the values of hyper-
parameters used in the experiments are shown in Table 2. Furthermore, various
sampling methods were used to boost the performance of base learners, namely
SMOTE [7], Borderline SMOTE [15], SMOTEENN [4] and SMOTETomek [5].
All of the experiments were conducted using the Python programming language
and libraries from the SciPy ecosystem (statistical tests and data manipulation)
as well as scikit-learn (classifier implementations and feature engineering) and
imbalanced-learn (sampling algorithms implementations) [18,23,28].

Table 2. Hyperparameter specification for the base learners used in the experiments.

Algorithm Hyperparameters

Naive Bayes —
k-Nearest Neighbors | k € {1, 3,5}

Distance metric = Minkowski metric

CART Split criterion € {Gini Impurity, Information Gain}
Maximum depth = (3,11)

Minimum leaf samples € {1,3,5}

SVM Kernel type € {RBF, Linear}

Regularization parameter € {0.001, 0.01, 0.1, 1}
Kernel coefficient € {0.0001, 0.001, 0.01, 0.1, 1}
Logistic Regression | Regularization parameter € {0.001, 0.01, 0.1, 1}
Penalty € {I1,12}
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3.2 Performance Measures

Model evaluation is a crucial part of an experimental study, even more so when
dealing with imbalanced problems. In the presence of imbalance, evaluation met-
rics that focus on overall performance, such as overall accuracy, have a tendency
to ignore minority classes because as a group they do not contribute much to
the general performance of the system. To our knowledge, at the moment there
is no consensus as to which metric should be used in imbalance data scenarios,
although several solutions have been suggested [20,21]. Our goal was to pick
a robust metric that ensures reliable evaluation of the decision system in the
presence of strong class imbalance and at the same time is capable of handling
multi-classification problems. Geometric Mean Score (G-Mean) is proven metric
that meets both of these conditions - it focuses only on recall of each class and
aggregates it multiplicatively across each class:

G — Mean = (H ri)t/m, (1)

i=1

where r; represents recall for ¢ — th class and m represents number of classes.

3.3 Statistical Tests

The non-parametric tests were used to provide statistical support for the analysis
of the results, as suggested in [8]. Specifically, the Wilcoxon Signed-Ranks Test
was applied as a non-parametric statistical procedure for pairwise comparisons.
Furthermore, the Friedman Test was used to check for statistically significant
differences between all of the binarization strategies, while the Nemenyi Test
was used for posthoc comparisons and to obtain and visualize critical differ-
ences between models. The fixed significance level a« = 0.05 was used for all
comparisons.

3.4 Datasets

The benchmark datasets used to conduct the research were obtained from the
KEEL dataset repository [1]. The set of benchmark datasets was specially
selected to ensure the robustness of the study and includes data with a vary-
ing numbers of instances, number and type of class attributes and the imbal-
ance ratio of classes. The characteristics of the datasets used in the experiments
are shown in Table3 - for each dataset, it includes the number of instances
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(#Inst.), the number of attributes (#Atts.), the number of real, integer and
nominal attributes (respectively #Real., #Int., and #Nom.), the number of
classes (#Cl.) and the distribution of classes (#Dc.). All numerical features
were normalized, and categorical attributes were encoded using the so-called
one-hot encoding.

4 Experimental Study

In this section, the results of the experimental study are presented. Table4
shows the results for the best variant of each binarization strategy for the
benchmark datasets without internal sampling. As we can see, in this case the
OVO strategy outperformed the other two methods. Friedman Test returned
p — Value = p = 0.008, pointing to a statistically significant difference between
the results of those methods. However, Nemenyi Test revealed only the statisti-
cally significant difference between OVO and ECOC methods. Results obtained
for each binarization strategy and critical differences for posthoc tests are visu-
alized respectively in Fig. 1 and Fig. 2.

Table 3. Summary description of the datasets.

Dataset #Inst.|#Atts.|#Real.|#Int.|#Nom.|#Cl.|#Dc.

Automobile 159 |25 15 0o |10 6 |48/46/29/20/13/3
Balance 625 4 4 0 0 3 |288/288/49

Car 1728 6 0 0 6 4 1210/384/69/65
Cleveland 297 |13 13 0 0 5 160/54/35/35/13
Contraceptive [1473 9 6 0 3 3 ]629/511/333
Dermatology | 358 |34 0 34 |0 6 |111/71/60/48/48/20
Ecoli 336 | 7 7 0o o 8 |143/77/52/35/20/5/2/2
Flare 1066 |11 0 0 |11 6 |331/239/211/147/95/43
Glass 214 9 o |o 6 |76/70/29/17/13/9
Hayes_roth 160 0 4 0 3 |65/64/31

Led7digit 500 7 0 10 |57/57/53/52/52/51/49/47/45/37
Lymphography | 148 |18 3 0 15 4 |81/61/4/2

New_thyroid 215 5 4 1 0 3 150/35/30

Pageblocks 548 |10 10 0o |o 5 492/33/12/8/3

Thyroid 720 |21 6 0 |15 3 [666/37/17

Vehicle 846 |18 0 18 0 4 218/217/212/199

Wine 178 |13 13 0 3 |71/59/48
Winequality_red|1599 |11 11 0 6 |681/638/199/53/18/10
Yeast 1484 | 8 8 0 10 |463/429/244/163/51,/44/35/30/20/5
Zoo 101 |16 0 0 |16 7 |41/20/13/10/8/5/4
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Table 4. G-mean results for tested binarization strategies without sampling.

Dataset OVA OovOo ECOC

G-mean Rank | G-mean Rank | G-mean Rank
Automobile 0.514+0.17 |3 0.57 +£0.17 |2 0.58+0.17 |1
Balance 0.914+0.02 |3 0.94 £0.02 |2 0.954+0.02 |1
Car 0.92+0.02 |2 0944+0.02|1 0.81 £0.05|3
Cleveland 0.20+0.06 | 1 0.17 +£0.08 | 2 0.14+0.06 | 3
Contraceptive | 0.53 +0.02 |1 0.50+£0.02 |2 0.49+0.01|3
Dermatology 0.97+0.01 1.5 0.96 +£0.01 | 3 0.97+0.01 1.5
Ecoli 0.254+0.01 |2 0.25£0.01 |2 0.254+0.01 |2
Flare 0.47+£0.04|1 0.46 +0.08 | 2 0.414+0.08|3
Glass 0.51+£0.15|2 0.55+0.10|1 0.444+0.11 |3
Hayes_roth 0.834+0.02|1.5 0.83+£0.03|1.5 0.74 +£0.08 | 3
Led7digit 0.72+0.02 |2 0.75+0.01 ' 1 0.71+0.02| 3
Lymphography |0.67+0.14 |1 0.57 £ 0.26 | 2 0.38+0.23 |3
New_thyroid 0.944+0.02|1.5 0.94+0.02|1.5 0.90 £0.05 |3
Pageblocks 0.50+£0.23 | 3 0.57+0.21 |1 0.54 +£0.25|2
Thyroid 0.88 +0.07 | 3 0.90 +0.07 | 2 0.924+0.05|1
Vehicle 0.80 +£0.02 | 2 0.814+0.03|1 0.77+0.03 |3
Wine 0.99+0.01 |1 0.98 +£0.01 | 2 0.974+0.01 |3
Winequality_red | 0.18 £ 0.06 | 1.5 0.18 £0.06 | 1.5 0.10£0.03 | 3
Yeast 0.40+0.04|1.5 |0.404+0.04|1.5 0.37+0.05 |3
Zoo 0.844+0.13|1.5 0.84 +£0.12|1.5 0.79+0.19 |3
Avg. rank — 1.8 |— 1.675 | — 2.525

Table 5 shows results for binarization strategies after enhancing the perfor-
mance of base learners with sampling methods. Although the results are visibly
better than they were obtained using pure binarization schemes, the hierarchy
seems to be preserved with OVO outperforming the other two techniques, which
is confirmed by the Friedman Test returning p — Value = p = 0.006 pointing
to statistically significant difference and Nemenyi Test revealing only statistically
significant difference between OVO and ECOC strategies. Those results seem to
be consistent with the study carried out in [11], which points out that OVO app-
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roach confronts a lower subset of instances and, therefore, is less likely to obtain
a highly imbalanced training sets during binarization. Results obtained for each
binarization strategy with the usage of internal sampling algorithms and critical
differences for posthoc tests are visualized respectively in Fig. 3 and Fig. 4.

Wilcoxon Signed-Ranks Test was performed to determine whether or not
there is a statistically significant difference between each strategy pure variant
and variant enhanced with sampling algorithms. As shown in Table6, in every
case, the usage of sampling algorithms to internally enhance base models signif-
icantly improved the overall performance of the binarization strategy.

Table 5. G-mean results for tested binarization strategies with sampling.

Dataset OVAsampling OVOsampling ECOCsampling
G-mean Rank | G-mean Rank | G-mean Rank

Automobile 0.56 +£0.22 | 3 0.61£0.19|1 0.60 £0.20 | 2
Balance 0.88£0.08 |3 0.61+0.19|1 0.924+0.02 |2
Car 0.91£0.02 |2 0.93+0.02 |1 0.824+0.07 |3
Cleveland 0.24 +£0.06 | 2 0.254+0.05|1 0.18+0.06 | 3
Contraceptive | 0.53 +0.02 |1 0.52 +0.03 | 2 0.48+0.02 | 3
Dermatology 0.96 £0.01 | 2.5 0.96 £0.01 | 2.5 0.974+0.02 |1
Ecoli 0.26 £0.01 | 2 0.26 £0.01 | 2 0.26 £0.01 | 2
Flare 0.56 +0.03 | 2 0.574+0.03 |1 0.524+0.03 |3
Glass 0.65+0.07 |1 0.62 +0.05 |3 0.64 +0.06 | 2
Hayes_roth 0.844+0.04 |1 0.83+0.04 | 2 0.68 +0.07 | 3
Led7digit 0.724+0.02 | 2.5 0.744+0.01|1 0.724+0.02 | 2.5
Lymphography |0.66 +0.20 | 1 0.58+0.26 | 2 0.55+0.33|3
New_thyroid 0.944+0.02|1.5 0.94+0.04|1.5 0.924+0.06 | 3
Pageblocks 0.57+0.26 | 3 0.63+0.20 |1 0.594+0.16 | 2
Thyroid 0.90 £ 0.06 | 3 0.92 +0.06 | 2 0.95+0.05|1
Vehicle 0.814+0.02/1.5 |0.814+0.02/1.5 |0.80+0.023
Wine 0.98+0.01|1.5 10.98+0.01|/1.5 |0.97+£0.01 3
Winequality_red | 0.36 & 0.08 | 1 0.33+0.08 | 2 0.14+0.05| 3
Yeast 0.50 +0.03 | 2 0.514+0.03|1 0.414+0.05|3
Zoo 0.85+0.13 1 0.84+0.12 |2 0.80+0.16 | 3
Avg. rank — 1.875 | — 1.6 | — 2.525
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Fig. 1. G-mean results for tested binarization strategies without sampling.
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Fig. 2. Critical differences for Nemenyi Test for tested binarization strategies without
sampling.
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Fig. 3. G-mean results for tested binarization strategies with sampling.
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Fig. 4. Critical differences for Nemenyi Test for tested binarization strategies with
sampling.
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Table 6. Wilcoxon Signed-Ranks Test to compare binarization strategies variants with
and without internal sampling. RT corresponds to the sum of the ranks for pure bina-
rization strategy and R~ for variant with sampling.

Binarization strategy | Rt | R~ | Hypothesis (a = 0.05) p-value
OVA 43 | 161 | Rejected for OVA sampling |0.02612
OvVO 18 | 164 | Rejected for OVO sampling | 0.00518
ECOC 33 | 174 | Rejected for ECOC sampling | 0.00836

5 Concluding Remarks

In this paper, we carried out an extensive comparative experimental study
of One-Vs-All, One-Vs-One, and Error-Correcting Output Codes binarization
strategies in the context of imbalanced multi-classification problems. We have
shown that one can reliably boost the performance of all of the binarization
schemes with relatively simple sampling algorithms, which was then confirmed
by a thorough statistical analysis. Another conclusion from this work is that the
data preprocessing methods are able to partially mitigate the quality differences
among different strategies, however the statistically significant difference among
obtained results persists and OVO binarization seems to be the most robust of

all three - this conclusion confirms the results of previous studies carried out in
this field.
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