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Abstract. JPEG algorithm defines a sequence of steps (essential and
optional) executed in order to compress an image. The first step is an
optional conversion of the image color space from RBG (red-blue-green)
to YCbCr (luminance and two chroma components). This step allows to
discard part of chrominance information, a useful gain due to the fact,
that the chrominance resolution of the human eye is much lower than
the luminance resolution. In the next step, the image is divided into 8×8
blocks, called MCUs (Minimum Coded Units). In this paper we present
a new adaptive bitmap compression algorithm, and we compare it to
the state-of-the-art of JPEG algorithms. Our algorithm utilizes hyper-
graph grammar model, partitioning the bitmap into a set of adaptively
selected rectangles. Each rectangle approximates a bitmap using MCUs
with the size selected according to the entire rectangular element. The
hypergraph grammar model allows to describe the whole compression
algorithm by a set of five productions. They are executed during the
compression stage, and they partition the actual rectangles into smaller
ones, until the required compression rate is obtained. We show that our
method allows to compress bitmaps with large uniform areas in a better
way than traditional JPEG algorithms do.

Keywords: Hypergraph grammar · Bitmap compression · Adaptive
projection-based interpolation

1 Introduction

Although baseline JPEG is still the most commonly used compression algorithm,
a number of algorithms have emerged as an evolution to JPEG. The most preva-
lent one is JPEG2000 standard (ITU-T T.800 — ISO/IEC 15444-1), which intro-
duces usage of the Discreet Wavelet Transform in place of the Discreet Cosine
Transform used in traditional JPEG, as well as usage of a more sophisticated
entropy encoding scheme [1]. The standard also introduces an interesting feature,
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which gives a potential boost in compression ratio or quality on some images -
Region of Interest (ROI) coding [2]. Region of Interest is a predetermined por-
tion of the image of an arbitrary shape, that is coded before the rest of the
image. ROI part of the image and the background can also be compressed with
different qualities, which makes JPEG2000 possess some traits of adaptivity. The
gain in compression performance of JPEG2000 in comparison to JPEG is mainly
denoted by the lack of DCT-specific block artifacts of the compressed images, as
well as generally better-quality images for compression ratios exceeding 20:1 [3].

Another standard meant as an evolution to baseline JPEG, originally devel-
oped by Microsoft as HD Photo, eventually got published as (ITU-T T.832 —
ISO/IEC 29199-2), commonly referred to as JPEG XR. The new standard sup-
ports higher compression ratios than baseline JPEG for encoding an image with
equivalent quality by introducing lossless color space transformation and integer
transform employing a lifting scheme in place of JPEG’s slightly lossy RGB to
YCbCr linear transformation and the DCT, respectively. It also introduces a dif-
ferent organization of the blocks and another level of frequency transformation
[4]. As the experiments carried out by the JPEG committee have shown, the com-
pression performance of JPEG XR was typically very close to the performance
of JPEG 2000, with the latter slightly outperforming JPEG XR. However, the
difference was generally marginal in the scope of bit rates meaningful for digital
photography [5].

Recent work performed by the JPEG committee and its subsidiaries, as well
as other contributors, resulted in a series of JPEG related standards/extensions.
One of them is JPEG XT (ISO/IEC 18477), a standard that specifies a number
of backwards compatible extensions to the legacy JPEG standard. It addresses
several plain points, that have stuck to JPEG over the years, such as support
for compression of images with higher bit depths (9 to 16 bits-per-pixel), high
dynamic range imaging and floating point coding, lossless compression and alpha
channels coding [6]. Another recently presented standard is JPEG XS (ISO/IEC
21122). Unlike former standards, the focus JPEG XS was to provide a robust,
cost-efficient codec for video-over-IP solutions, suitable for parallel architectures
and ensuring a minimal end-to-end compression latency as well as minimal incre-
mental quality degradation on re-compression [7]. As objectives of developing
JPEG XT and JPEG XS standards were somewhat different than their e.g. that
of JPEG2000, they rather introduce sets of features useful for some particular
applications - such as HDR photography or video streaming, than contributing
any particular gain in compression performance or visual fidelity.

In this paper we employ the adaptive algorithm for image compression. We
use the hypergraph grammar-based approach to model the adaptive algorithm.
The hypergraph grammar was originally created by A. Habel and H. Kreowski
[8,9]. They were used to model adaptive finite element method computations
[10,11], multi-frontal solver algorithm [12–14]. They define the hypergraph data
structure and the abstraction of graph grammar productions. The process of
adaptive compression of a bitmap can be expressed by a sequence of graph
grammar productions. In our model we define five graph grammar productions
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to describe the adaptive algorithm. We compare our approach with the JPEG
standards described above. Alternative graph grammars include the CP-graph
grammar, also used for modeling adaptive finite element method [15–19], but
for the CP-graph grammar generates hierarchical structures with the history of
refinements, while for the bitmap compression application the flat graph seems
to be more applicable.

2 Hypergraph and Hypergraph Grammar

In this section the main definitions connected with hypergraphs and hypergraph
grammar are presented.

A hypergraph is a special kind of graph consisting of nodes and so called
hyperedges joining the nodes. One hyperedge can join two or more nodes. The
nodes as well as hyperedges can be labeled with the use of a fixed alphabet.
Additionally, the sets of attributes can be assigned to nodes and hyperedges.
Figure 1 presents an exemplary hypergraph consisting of five nodes labeled by
v, two hyperedges labeled by I and one hyperedge labeled by F1. The hyperedges
labeled by I have attribute break. One hyperedge has attribute break equal to
1 and the second one has the attribute break equal to 0.

Fig. 1. An exemplary hypergraph with six nodes denoted by v, two hyperedges denoted
by I and one hyperedge denoted by F1.

Definition 1. An undirected attributed labelled hypergraph over label alphabet
C and attribute set A is defined as a system G = (V,E, t, l, at), where:

– V is a finite set of nodes,
– E is a finite set of hyperedges,
– t : E → V ∗ is a mapping assigning sequences of target nodes to hyperedges,
– l : V ∪ E → C is a node and hyperedge labelling function,
– at : V ∪ E → 2A is a node and hyperedge attributing function.

Hypergraph G is a subhypergraph of hypergraph g if its sets of nodes and
edges are subsets of sets of nodes and edges of the hypergraph g, respectively
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and the corresponding nodes and edges of both graphs have the same labels and
attributes.

Definition 2. Let G = (VG, EG, tG, lG, atG) and g = (Vg, Eg, tg, lg, atg) be two
hypergraphs. G is a subhypergraph of g if:

1. VG ⊂ Vg, EG ⊂ Eg,
2. ∀e ∈ EG tG(e) = tg(e),
3. ∀e ∈ EG lG(e) = lg(e),∀v ∈ VG lG(v) = lg(v),
4. ∀e ∈ EG atG(e) = atg(e),∀v ∈ VG atG(v) = atg(v).

In order to derive complex hypergraphs from the simpler ones the so-called
graph grammar productions can be used. This approach allows to replace subhy-
pergraph of the hypergraph by new hypergraph. The operation of replacing the
subhypergraph of the hypergraph by another hypergraph is allowed only under
the assumption, that for each new hypergraph so called sequence of its external
nodes is specified and that both hypergraphs have the same number of external
nodes (the same so-called type of a graph). These nodes correspond to target
nodes of a replaced hypergraph.

Definition 3. A hypergraph of type k is a system H = (G, ext), where:

– G = (V,E, t, l, at) is a hypergraph over C and A,
– ext is a sequence of nodes from the node set V , called external nodes, with

|ext| = k.

Figure 1 presents an exemplary hypergraph of type 6 with denoted external
nodes.

Definition 4. A hypergraph production is a pair p = (L,R), where both L and
R are hypergraphs of the same type. Applying a production p = (L,R) to a
hypergraph H means to replace a subhypergraph h of H isomorphic with L by a
hypergraph R and replacing external nodes from graph h with the corresponding
external nodes of R.

Figure 6 presents an exemplary hypergraph production. Figure 2 presents an
exemplary starting graph and Fig. 4 presents this graph after application of the
production from Fig. 3.

Fig. 2. An exemplary starting hypergraph.
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Fig. 3. An exemplary hypergraph production.

Fig. 4. The graph from Fig. 2 after application of the production from Fig. 3

The application of a production p = (L,R) to a hypergraph H consists of
replacing a subhypergraph of H isomorphic with L by a hypergraph isomor-
phic with R and replacing nodes of the removed subhypergraph isomorphic with
external nodes of L by the corresponding external nodes of R.

Definition 5. Let P be a fixed set of hypergraph productions. Let G and G′ be
two hypergraphs.

We say that hypergraph H is directly derived from a hypergraph G (G ⇒ H)
if there exists p = (L,R) ∈ P such that:

– There exists h - a subhypergraph of G isomorphic with L,
– Let exth be a sequence of nodes of h consisting of nodes isomorphic with

nodes of the sequence of external nodes of L (extL). The replacement of h =
(Vh, Eh, th, lh, ath) in G = (VG, EG, tG, lG, atG) by R = (VR, ER, tR, lR, atR)
generates the the hypergraph G′ = (V ′

G, E
′
G, t

′
G, l

′
G, at

′
G), where:

• V ′
G = VH − Vh ∪ VR,

• E′
G = EH − Eh ∪ ER,

• ∀e ∈ ER t′G(e) = tR(e),
• ∀e ∈ EG − Eh with tG(e) = t1, ..., tn, t

′
G(e) = t′1, .., t

′
n, where each t′i = ti if

ti does not belong to the sequence exth or t′i = vj (vj is an j-th element of
the sequence extR) if ti is an j-th element of the sequence exth,

• ∀e ∈ EG − Eh l′G(e) = lG(e), at′G(e) = atG(e), ∀e ∈ ER l′G(e) = lR(e),
at′G(e) = atR(e),
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• ∀v ∈ VG − Vh l′G(v) = lG(v), at′G(v) = atG(v), ∀v ∈ VR l′G(v) = lR(v),
at′G(v) = atR(v).

– H is isomorphic with the hypergraph G′.

Definition 6. A hypergraph grammar is a quadruple G = (V,E, P,X), where:

– V is a finite set of labelled nodes,
– E is a finite set of labelled hyperedges,
– P is a finite set of hypergraph productions of the form p = (L,R), where
L and R are hypergraphs of the same type composed of nodes of V and
hyperedges of E,

– X is an initial hypergraph called axiom of G.

3 Hypergraph Grammar for Bitmap Compression

In the section the hypergraph grammar productions modelling the bitmap com-
pression based on projection based interpolation algorithm is presented. The
finite element mesh is represented by hypergraph. The changes in the structure
of the mesh are modeled by corresponding graph grammar productions.
A hypergraph modeling a mesh with rectangular elements is defined with the
following sets of graph node and edge labels C:

C = {C1 ∪ C2 ∪ C3} (1)

where

– C1 = {v} is a singleton containing the node label which denotes a node of
finite element,

– C2 = {F1, F2, B} is a set of edge labels which denote edges of finite elements,
– C3 = {I} is a singleton containing the edge label which denotes interior of

finite element.

The following attributing functions are defined to attribute nodes and edges
of the hypergraphs modeling the mesh.

– geom : V × C1 → R × R is a function attributing nodes, which assigns the
coordinates x, y to each node of the element,

– break : E × C3 → {0, 1} is a function attributing interiors, which assigns the
value denoting if the adaptation should be performed, where 1 means that
element should be broken, 0 means that element should not be broken.

The graph grammar for bitmap compression (G1) is defined as a set of hyper-
graph grammar productions: production (P1) for generation of the first element
of the mesh, productions (P2), (P2’), (P2”), (P2”’) breaking the interior of
the element, production (P3) for breaking of the boundary edge, production
(P4) for breaking shared edge, productions (P5), (P5’), (P5”), (P5”’) for
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making the decision about the adaptation, and the starting graph consisting of
one node labeled by S. Figure 5 presents production (P1) for generation of the
first element. Productions (P2), (P2’), (P2”) and (P2”’) from Fig. 6 allow
for breaking the interior of the element for the case of all adjacent edges having
the same “level of adaptation” as the interior (production (P2)), three adja-
cent edges having the same “level of adaptation” as the interior ((P2’)), two
adjacent edges having the same “level of adaptation” as the interior (production
(P2”)) and finally only one adjacent edge having the same “level of adapta-
tion” as the interior (production (P2”’)). Our model distinguishes the edges
of element being in the boundary of the mesh (hyperdees with label B), and
shared edges of elements (labeled by F1 and F2). Thus we have two separate
productions for breaking edges: production (P3) for breaking boundary edges
and production (P4) for breaking shared edges (see Fig. 7, 8). The similar pro-
ductions to productions from Fig. 7, 8 are defined for hyperedges labeled by F2
instead of F1 and F1 instead of F2. The last set of productions, presented in
Fig. 9, allows for making decision about the adaptation. Figure 10 presents an
exemplary derivation in our graph grammar.

Fig. 5. Production P1 for generation of the first element

4 Results

In order to examine the validity of the idea of the presented hypergraph
grammar-based Adaptive JPEG algorithm, we compare the compression ratio
with the standard JPEG algorithm on three exemplary bitmaps, presented in
Fig. 11. Compressed bitmaps with only luminance component’s MCUs outlined
in the images are presented in Fig. 12.

The Table 2 presents the compression ratio for different luminance and
chrominance parameter values.
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The main observation from looking at the Table 2 is that the algorithm
(without taking into account visual quality) indeed gives higher compression
ratios than baseline JPEG, with higher compression obtained from running the
algorithm with larger quality parameter values. This is hardly a surprise, as
theoretically the algorithm could give the same compression ratio as baseline

Fig. 6. Productions P2, P2’, P2” and P2”’ for breaking the interior of the element.

Fig. 7. Production P3 for breaking the boundary edge
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Fig. 8. Production P4 for breaking common edge

Fig. 9. Productions P5, P5’, P5” and P5”’ for making virtual adaptation

Fig. 10. Exemplary derivation

JPEG in a worst-case scenario, but usually the non-zero quality parameter values
leave some room for error and allow some larger areas to stay undivided, resulting
in greater compression.
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Another observation from examining the graphs more carefully, is that the
compression ratios for different test images are quite sparse: depending on the
image, for a satisfactory quality, the compression ratios came down to as little
as 0.69% (field image for parameter values 15×30) or to only as much as 8.5%
(moon image for parameter values 6×60). This shows, that the algorithm clearly
works better for certain kind of images than for others. This kind of images are
very large images with large relatively uniform areas.

In order to examine the validity of the idea of the presented hypergraph
grammar-based Adaptive JPEG algorithm, an effort to compare the performance
with the standard JPEG and newer, JPEG successor standards was made: JPEG
2000 and JPEG XR. However, such comparison is not trivial, as the algorithms
use different types of parameters to specify the level of compression, directly
reflected in the resulting image quality. The parameter types used in JPEG2000
and JPEG XR do not necessarily coincide with the quality parameter type used
in JPEG, that is 1–100 scaled quality parameter used to modify the quantization
tables. Therefore, some assumptions were made when choosing the parameter
values for JPEG2000 and JPEG XR. The JPEG2000 images were generated
using the OpenJPEG library, which accepts a quality parameter denoting a tar-
get PSNR value in dB. As it was not possible to use the same type of parameter
as JPEG accepts, the JPEG2000 images were compressed using PSNR value
parameter equal to the PSNR of the corresponding baseline JPEG image. The
JPEG XR images were generated using the jxrlib library, which, as a quality
parameter, accepts a value ranging between 0.0 and 1.0. In this case, the images
were compressed using the parameter value 0.8, to be as consistent with the
JPEG compressed test images as possible. The actual impact of the respec-
tive parameter values however might differ considerably from JPEG in terms of
resulting image quality to file size ratio. The presented Adaptive JPEG seems to
work particularly well with large, relatively uniform images - as evident in the
case of the field image (Table 1).

Table 1. Comparison of compression ratios for different luminance and chrominance
parameters for JPEG and Adaptive JPEG.

Bitmap JPEG 2×4 5×5 5×10 10×20 15×15 15×30 20×40 25×50 30×30 60×60

Field 3.19% 2.58% 2.26% 2.16 % 1.17% 0.72% 0.69% 0.46% 0.34% 0.28% 0.13%

Lake 5.68% 5.06% 4.53% 3.92% 3.35% 2.70% 2.62% 1.93% 1.55% 1.29% 0.54%

Moon 11.83% 11.24% 11.24% 11.24% 11.24 % 11.24% 11.24% 11.24% 11.24% 11.16% 8.50%
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Fig. 11. Bitmap compressions. JPEG compresson on the left, adaptive JPEG on the
right with error tolerance parameter values - 15/30.
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Fig. 12. Compressed bitmaps with only luminance component’s MCUs outlined.
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Table 2. Comparison of compression ratios for different image standards.

Bitmap ADAPTIVE JPEG JPEG-XR JPEG2000 JPEG

Field 0.72% 3.33% 2.60% 2.29%

Lake 2.70% 6.37% 1.47% 5.68%

Moon 11.24% 16.23% 5.94% 11.83%

5 Conclusions

There seems to be a class of images for which the algorithm presented in this
paper achieves higher compression ratios than baseline JPEG, while retaining
subjective image quality. Even though this class of images is not clearly defined,
some common characteristics can be extracted: large size of the image - images
with higher resolution seem to gain more from the adaptive extension intro-
duced by the algorithm, and areas of low frequency - images containing areas
that are relatively uniform seem to tolerate larger MCU sizes better, resulting
in higher compression ratios. The maximum values of luminance and chromi-
nance quality parameters, consumed by the algorithm, for which the images
seemed to retain subjective image quality, were found to be around 15/15 (lumi-
nance/chrominance). In some cases, the image quality was still retained for the
parameter values of 15/30, proving the less impactful nature of the chromi-
nance component. Future work may include implementing the adaptive algo-
rithm based on an existing improvement over JPEG, e.g. JPEG2000. Both
JPEG2000 and JPEG XR, although very different, operate much the same in
regard to MCU size, which is globally fixed. If not an implementation, a thor-
ough performance comparison between the presented Adaptive JPEG algorithm
and other lossy compression algorithms ought to be conducted, as only JPEG
was exhaustively addressed in this work. Finally, we only address the problem
of compression, completely leaving out the issue of decompression. Decompres-
sion of an image compressed in such non-deterministic way is a very complex
problem, deserving a separate research.
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