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Abstract. Haplotype phasing of individual samples is commonly car-
ried out as a precursor step before genotype imputation to reduce the
runtime complexity of the imputation step and to improve imputation
accuracy. The phasing process is time-consuming and generally exceeds
hours even on server-grade computing systems. Loh et al. recently intro-
duced a fast and effective reference-based haplotype phasing software
named EAGLE2 which scales linearly with the number of reference sam-
ples and variants to phase. We discovered that from the several steps of
the EAGLE2 phasing process, data preparation for the internally used
HapHedge data structure already consumes about half of the total run-
time in general use cases. We addressed this problem by introducing
a new design for reconfigurable architectures that accelerates this part
of the software by a factor of up to 29 on a Xilinx Kintex UltraScale
FPGA, resulting in a total speedup of the complete phasing process of
almost 2 (the theoretical limit according to Amdahl’s Law) when com-
pared to a server-grade computing system with two Intel Xeon CPUs.
As a result, we reduced the EAGLE2 runtime of genome-wide phasing
of 520,000 variants in 2500 samples using the 1000 Genomes Project
reference panel from 68 min to 39 min on our system while maintaining
quality.

Keywords: Haplotype phasing + Genotype imputation +- EAGLE2 -
PBWT - Hardware accelerator + Reconfigurable architecture

1 Introduction

An individual’s diplotype sample consists of two strands of unique nucleotide
content for each chromosome, one inherited from the mother (maternal) and
one inherited from the father (paternal). Single Nucleotide Polymorphism (SNP)
microarrays, known as genome-wide association study (GWAS) SNP arrays, e.g.
the Global Screening Array (GSA) from Illumina [8], allow for the genotyping of
more than 650,000 biallelic SNPs (two observed alleles; counting the reference
as one, and allowing for one alternative allele) across the human genome. Each
pair of alleles of a SNP is experimentally measured and subsequently encoded as
a genotype (thereby ignoring phase information), for example, 0 for homozygous
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reference (reference allele on both strands), 1 for heterozygous (one strand with
reference allele, the other strand with an alternative allele), and 2 for homozygous
alternative (alternative allele on both strands). Haplotype information refers to
the alleles found on a single strand, e.g. 0 for the reference allele and 1 for the
alternative allele. Since the genotoyping process does not separate the maternally
and paternally derived alleles of each SNP, the haplotype phasing problem can
simply be described as to guess for each heterozygous marker of a SNP genotype
on which strand the alternative allele is located (e.g. on the maternal strand),
implying the reference allele to be found on the other strand (e.g. the paternal
strand in this event). Technically, this means to find the best suited pair of
haplotype strings (encoded with 0 and 1) to a given genotype string (encoded
with 0, 1 and 2).

Phase information is important for human genetics research for several rea-
sons, among others, to screen for the occurence of compound heterozygosity,
i.e. the presence of two deleterious variants located at different locations in
the same gene but on different chromosome copies (paternal and maternal) of
an individual. Further, many studies have linked specific haplotypes to drug
response, clinical outcomes in transplantations and to susceptibility or resistance
to disease [11]. Because of the lack of cost-effective experimental approaches for
obtaining phase information, the haplotype phase is commonly estimated using
computational approaches [2]. Haplotype phasing is also a very important pre-
processing step for genotype imputation which relies on pre-phased genotypes.
Genotype imputation has become a standard tool in genome-wide association
studies and describes an approach of predicting (or imputing) the genotypes of
variants that were observed in a reference panel but were not directly genotyped
on a SNP microarray [4]. Imputation servers, such as the Sanger Imputation
Server [16] or the Michigan Imputation server [14], enable users to upload GWAS
SNP array data to these servers to deploy well-equipped high-performance com-
puting clusters in order to carry out phasing and imputation.

Recently, methods have been exploited that reduce the computational
requirements of phasing and imputation [5]. However, Das and colleagues
demand in their article that continued computational improvements in phas-
ing and imputation tools are necessary for imputation to remain practical as
millions of samples are genotyped and reference panels increase in size to tens
of thousands of sequenced genomes. Following this demand, Loh et al. presented
EAGLE2 [9]. According to the article, EAGLE2 is 10% more accurate and up to
20 times faster than the preliminary state-of-the-art tool SHAPEIT?2 [6], due to
its linear complexity in the number of samples, reference samples and variants
to phase. Thus, EAGLE2 became the default phasing method in the Sanger
and the Michigan Imputation Services. (As an alternative SHAPEIT2 and the
similar performing HAPI-UR [17] can be chosen for the phasing step.)

In this paper, we present a method to accelerate EAGLE2 [9] by using recon-
figurable hardware. We discovered that for general use cases target preparation
as the first step in the phasing process already consumes around half of the total
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runtime, due to the large amount of data that has to be processed here. This
step includes the analysis of the reference panel by creating a condensed refer-
ence individually for each target. The condensed reference mainly consists of 1
bit haplotype information for every reference sequence at each heterozygous site
in the target plus 1 bit of consistency information marking a segment between
heterozygous sites inconsistent or not. Furthermore, an identity-by-descent (IBD)
check is performed and the condensed reference information is required in trans-
posed format for efficient usage. We show that these steps are perfectly suited
for a hardware design by implementing this part of EAGLE2 on a Field Pro-
grammable Gate Array (FPGA). We run a performance and quality benchmark
of our implementation using the 1000 Genomes Project (1000G) [12] haplotype
data as reference panel.

To our knowledge, phasing and imputation processes in general have been
rarely addressed with alternative architectures such as FPGAs or GPUs. An at
that time successful approach was made by Chen et al. with Mendel-GPU [3] in
2012 using a GPU-accelerator for imputation, but we have not found adequate
literature describing the utilization of FPGAs to target this problem.

2 Haplotype Phasing with EAGLE2

2.1 EAGLE2 Core Overview

Po-Ru Loh et al. introduced EAGLE2 as a haplotype phasing software that uses
a phased reference panel to determine the phase of the genotypes of a diploid
target sample [9]. The phasing process in EAGLE2 consists of several parts.
We give an overview here with details following in the subsequent sections. The
input data (reference panel and target data) is required in packed and indexed
Variant Call Format (VCF) (.vcf.gz or .bcf), whereby .bcf is the packed
binary format, which is fastest.

The first part after reading the input data is to prepare an adapted reference
for each target. We call this the condensed reference of a target. In the following,
we will focus on this part for FPGA acceleration. It is divided into several steps:

1. Find the k best fitting haplotype sequences from the reference.

2. Reduce the remaining sequences to split sites, i.e. all sites containing a het-
erozygous genotype in the target plus some sites required to split large seg-
ments without any heterozygous sites. This step also preserves the informa-
tion if segments between split sites are consistent with the target, or not.

3. Check for Identity-by-descent (IBD), i.e. parts of a reference sample that are
too similar with the target sample are masked. This keeps the process from
creating a bias on certain samples from the reference.

The second part is to generate a data structure based on a Position-based
Burrows Wheeler Transformation (PBWT) [7] from the resulting condensed ref-
erence. Loh et al. call this a HapHedge, which is based on a graph that allows
quick access to all information from the PBWT plus meta information. For more
information on the HapHedge, we refer to the supplementary material of [9].
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The third and final part of the phasing is to perform a beam search through
possible haplotype sequences fitting the target, following the probability model
introduced in Sect. 2.2. The beam search is also performed in a series of substeps:

1. Fast pre-phasing. The parameters of the beam search are adjusted to create a
fast rough estimation of the phased haplotypes, whereby the most confident
positions are used as constraints for the next step.

2. Fine phasing. The beam search is performed again, but with parameters forc-
ing a better estimation for the cost of runtime. To keep the runtime growth
to a minimum, this step uses the constrained sites from the first step, such
that only uncertain positions are phased again.

3. Reverse fine phasing. The previous step is repeated in reverse order, i.e.
started from the end and forwarded until the beginning. The phase confi-
dences of each heterozygous site are compared and the phase with the higher
probability is chosen.

Previously described steps are repeated for each target. The phased output is
written in VCF format again, whereby the user can choose if the output should
be packed or binary packed.

2.2 Probability Model

To understand why preliminary steps are necessary, we describe the underlying
probability model for the phase estimation first. We focus on the main equations
here, further details can be found in the original article [9].

The core probability of two haplotype paths h™&* and hP?' forming the cur-
rent target genotypes g up to a site m is defined as:

1..m>» 1...m>

P (hmat pat |g1 m) ~ P (gl...m‘hmat hpdt ) (hmat ) (hpdt ) (1)

gNerr

Nerr 18 the number of consistency errors between the pair of haplotype paths to
the genotypes, e.g. if both paths show a common allele at a site (homozygous)
while the genotype should be heterozygous at that site, this counts as an error.
€ is a fixed error probability set to 0.003 per default.

The haplotype path probability is assumed to be:

P (i)~ Z P (hi.2) f (hot1..m) P (vec m|z) (2)

The parameter H indicates the size of a “history”, i.e. how many sites should
be looked back at in order to calculate the actual probability of the current
site m. This is set to 30 for the fast pre-phasing step and set to 100 in the fine
phasing steps. P (rec m|z) is the recombination probability between the two sites
m and x. It is computed as a function dependent on the genetic distance between
the sites, the effective population size and the number of references (see [9] for
details).
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The function f(hg. .,) returns the frequency of the given sequence hy. ., in
all reference sequences from sites x to m. Since this function is called H times for
each site and for each active haplotype path in the beam search at that site, it is
crucial to get this information as fast as possible. The HapHedge data structure
in combination with the PBWT allow to access this information in approximately
constant time (see [9] and [7] for details) while a naive implementation would be
linear in the number of references.

2.3 Beam Search

In order to estimate the phase on a heterozygous target site, EAGLE2 computes
the probability to keep the phase (PXe°P) at such a site m. For this purpose, it
performs a beam search. It starts at the first heterozygous site with a probability
of 0.5 and creates two consistent haplotype paths up to that site. This pair of
haplotype paths is called a diplotype by Loh et al. The process continues over
all heterozygous sites and extends each haplotype path in a diplotype by 0 and
1, i.e. for each diplotype, it creates four new diplotypes with the corresponding
extension. A fixed parameter P for the beam width controls the maximum num-
ber of diplotypes in the beam search, i.e. only the P most probable diplotypes
(according to Eq. 1) are kept in the beam. P is set to 30 in the fast pre-phasing
step and set to 50 during fine phasing. Loh et al. use a forward extension before
doing the final phase call for a site. The beam front is extended over a number
of A heterozygous sites in advance before doing the phase call on the current
site. A is set to 10 in the fast pre-phasing and set to 20 in the fine phasing steps.
The keep phase probability is now easily computed as the sum of the probabili-
ties of those diplotypes that keep their phase at the current heterozygous site in
comparison to the last heterozygous site divided by the sum of all probabilities
from diplotypes that are heterozygous at the current site.

> {P (hma‘E pPat |gl,,_m) | diplotype keeps phase}

1..m>""1..m
S AP (e B g1 | BB # R}

In the final phase call, the phase will be switched if that probability is less than
0.5. Note, that the extension of the diplotype may also be homozygous and thus,
its probability has to be ignored for the current phase call.

EAGLE2 performs further optimizations on the beam search, such as merging
similar diplotypes. We omit explanations here and refer to [9] again.

keep __
Pm, -

3)

2.4 Condensed Reference

Phase calling is only necessary for heterozygous target sites since the maternal
and the paternal haplotype paths carry the same information at homozygous
sites. For this reason a condensed reference is created from the original reference
panel for each target. The condensed reference carries only information of the
reference samples at the target’s heterozygous sites (and some other split sites in
areas of large homozygosity) and combines the information on segments between



486 L. Wienbrandt et al.

101000001000110101601101160011
10110010101000101001110000011
01001001000000001100111101101
110100000111600001100101000011

001001116001101101000160010000
00110111110000001011001110100

reference

.0.10...2.101..1..0..11..0.2. target

06 0 00101 0 0601 0O
061 O 100 00 0 100 0
106 1 00000 0 101 1 condensed
11 1 110 006 0 001 0O reference
©6 1 116 60 0 0600 1
01 O 000 006 1 001 1

Fig. 1. Process of creating a condensed reference from a series of reference sequences.
Heterozygous target sites are highlighted in bold. For homozygous sites inconsistent
haplotypes in the reference are highlighted in dark grey, consistent ones in light grey.
Consequently, consistent and inconsistent segments in the condensed reference are high-
lighted likewise.

two split sites to one bit indicating consistency with the target for each reference
haplotype.

In order to reduce the computational burden from a large reference panel, a
preliminary step of creating a condensed reference is to choose the k best fitting
reference haplotypes from the panel, i.e. the k haplotype sequences with the
lowest number of consistency errors when compared to the actual target. k is a
user-defined parameter that defaults to 10,000. Thus, in the default configura-
tion, this step is only necessary when choosing a large reference panel with more
than 5,000 samples (i.e. 10,000 haplotypes), such as the HRC1.1 panel [13].

The second step is to copy the information from the reference only at split
sites. Since the haplotypes are encoded in sequences of 0 and 1 the size is one bit
per reference and split site. Another bit is used to encode the condensed infor-
mation of the following segment. In particular, 0 encodes a consistent segment
and 1 encodes an inconsistent segment, i.e. at least one consistency error is found
between this haplotype sequence and the target genotypes in this segment. So,
the condensed reference is represented as a bit array with a bit sequence for every
reference where each odd bit represents a heterozygous site of the target and its
reference information, and each even bit (the inconsistency bit) represents the
segment between two heterozygous sites and the information if the segment is
consistent with the target or not. Note, that the frequency lookup f(hy. .,) in
Eq. 2 requires this information for counting sequences in the condensed refer-
ence. Only sequences over consistent segments will be counted. Figure 1 depicts
the process of condensing the reference.

A third step added to the creation of the condensed reference is to check ref-
erence samples for Identity-by-descent (IBD). Regions of a sample are considered
to be in IBD with the target if the region is large enough and the reference sample
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and the target are exactly equal in that region. If an IBD situation is encoun-
tered the program would generate a bias towards this sample. So, the region in
this sample is excluded in the analysis by setting the corresponding inconsis-
tency bits to 1 in the condensed reference. EAGLE2 distinguishes between two
types of IBD. If a region of 10 to 20 split sites is found to be equal to the target
only the region in the reference haplotype with the latest error will be masked.
If the equality spreads over more than 20 split sites, both haplotype sequences
belonging to the reference sample will be masked in that region.

3 Implementation

Due to the large amount of data that has to be processed, our analyses revealed
that in normal use cases the process to create a condensed reference for each
target already consumes around 50% of the runtime. We targeted this part of
the haplotype phasing for acceleration on reconfigurable architectures, in partic-
ular FPGAs. Our computing architecture consists of a server-grade mainboard
hosting two Intel Xeon E5-2667v4 8-core CPUs @ 3.2 GHz and 256 GB of RAM,
and an Alpha Data ADM-PCIE-8K5 FPGA accelerator card equipped with a
recent Xilinx Kintex UltraScale KU115 FPGA with two attached 8 GB SODIMM
memory modules, connected via PCI Express Gen3 x8 allowing high-speed com-
munication with the host. The system runs a Ubuntu 19.04 Linux OS (Kernel
version 5.0).

3.1 Target Preparation on the Host System

Firstly, the host system loads the input data, i.e. the target data and the reference
data into memory. VCF files are stored in a variant major format, i.e. one line
of a file contains all haplotype/genotype information of the included samples for
one variant. Both files are read concurrently variant after variant, and only bi-
allelic sites common in target and reference are kept for the analysis. The data is
implicitly transposed to sample-major as required for the target pre-processing.

Since all targets can be handled independent of each other, EAGLE2 spawns
multiple threads with each thread phasing a single target at a time. The number
of threads running in parallel is defined by a user parameter. In the case of
the FPGA acceleration, we prepared the FPGA design to handle several targets
concurrently as well. Our design is capable of creating the condensed reference for
48 targets in parallel. For each bunch of 48 targets, the genotype data is encoded
in two bits per genotype and aligned in 256 bit words (the PCle transmission
bus width of the FPGA). The host allocates page-locked transmission buffers to
ensure fast data transfers between host and FPGA. The target data is copied into
the buffers and transferred to the FPGA. For initialization of the 48 processing
pipelines, the host determines target specific constants. These are the number of
split sites (mainly heterozygous sites) in each target as well as the pre-computed
size of the condensed reference. Since the size of the reference is too large to
be kept in local FPGA RAM in general, this data is prepared as a compact bit
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array in page-locked memory on the host. The haplotype data is encoded in one
bit per haplotype and each haplotype sequence is again aligned to the FPGA’s
PCle transmission word width of 256 bit. The process of creating the condensed
reference of the current targets starts with streaming the reference data to the
FPGA.

3.2 Creating the Condensed Reference on the FPGA

The central part of the FPGA design contains 48 parallel processing pipelines,
each producing a stream of condensed reference data for each target. One unit
controls the pipeline input. It distributes the raw target data from the host
to the corresponding pipeline which stores it in a local buffer implemented in
the FPGA’s block RAM (BRAM). When the host starts sending the reference
haplotype data, the first haplotype sequence is stored in a local BRAM buffer.
The second sequence is directly streamed together with the first sequence from
the buffer through all pipelines at the same time such that in each clock cycle
a pair of haplotypes (one bit maternal and one bit paternal) is processed in the
pipeline. This pair of haplotypes forms a phased genotype from the reference. It is
directly compared with the corresponding unphased genotype in the target in the
checkIncon unit. The unit produces two streams (one for the maternal reference
and one for the paternal reference) of condensed data, i.e. as long as the target
genotypes are homozygous it only records an inconsistency to the corresponding
reference by a boolean flag. Whenever the target shows a heterozygous site,
checkIncon generates a 2-bit output for each stream consisting of the current
inconsistency flag and the current reference haplotype at that site.

The resulting pair of 2-bit condensed reference data continues to the check-
IBD unit. The unit keeps a buffer for the data of the last 64 split sites in a
simple shift register implemented in logic. This way, we can set up to 64 prelim-
inary sites to inconsistent in one clock cycle if an IBD situation occurs (which
would add a certain bias towards the current sample, see Sect. 2.4). The actually
applied numbers depend on the type of IBD and can be set by the host via a
runtime constant. For detection of an IBD situation the unit simply counts the
number of past pairwise (maternal and paternal) consistent sites, and it keeps a
flag that marks the sequence where the last inconsistency occurred. After at least
10 consistent sites (first IBD type) the unit marks the sequence with the last
error as inconsistent along these sites. If the number of consistent sites extends
to 20 (second IBD type) the unit marks both sequences along these sites as
inconsistent. This process continues until the first inconsistent site is reported
from the checkIncon unit.

All pipeline outputs are connected via a simple shared bus system with a
512-bit word width transferring the condensed data directly to the first DRAM
module. In order to convert the data stored in sample-major format to variant-
major, as required by the phasing process on the host system (see Sect.3.3),
we designed a data transmission unit that transposes blocks of 512 x 512 bit
data. It is implemented as a shift register that is able to shift data horizon-
tally and vertically. The data is organized in a mesh of 512 x 512 cells that are
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Fig. 2. Example of data transposition. The transposition unit represents a horizontal
and vertical shift register. The condensed reference in the first DRAM module is trans-
posed block-wise and stored in the second DRAM module. ., refers to the reference
allele of haplotype n at call site m, i, refers to the inconsistency bit from haplotype
n for the segment between call sites m — 1 and m.

each connected with its horizontal and vertical neighbors. So, 512 sample-major
RAM words from 512 subsequent samples shifted horizontally into the mesh
can be read out vertically in variant-major format afterwards, such that each
word contains the information of 512 samples for one site. In particular, since
reference information and inconsistency information is stored in alternating bits
for each sample, the transposed output contains alternating words for reference
and inconsistency information for subsequent segments and sites. The output is
stored in the second DRAM module from where it can directly be fetched from
the host (via an output buffer).

The transposition unit also controls the way the condensed reference is
distributed in blocks, i.e. the source addresses in the first DRAM module of
the 512 words to be shifted into the unit. And it calculates the destination
addresses in the second DRAM module of the output words, such that subse-
quent words belong to the same variant and the host can directly read variant-
major sequences containing all information on the samples for one variant in one
sequence. See Fig. 2 for an example. The complete FPGA design is illustrated in
Fig. 3.

3.3 Final Target Processing on the Host System

For target phasing we adapted the procedure of EAGLE2 described in Sect. 2.
However, it is worth to mention that in the original EAGLE2 software the con-
densed reference information is kept in sample-major format. Thus, for creating
the HapHedge data structure the information is read “vertically”, i.e. the current
site information is picked from each corresponding sample words by bit-masking.
We omitted this time-consuming implicit transposition by directly providing
transposed data from the FPGA. The rest of the process is implemented as
explained in the supplementary material of the original article [9].
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Fig. 3. FPGA design for creating the condensed reference. Several targets are handled
concurrently in separate pipelines. The streamed reference data is continuously com-
pared to the targets and the condensed information including IBD check is extracted.
The raw sample-major condensed data is temporarily stored in the first local DRAM
module before it is transposed to variant-major. The transposition output is stored
in the second local DRAM module before it is transferred to the host, where it can
directly be used for the phasing process.

4 Performance Evaluation

We performed a quality check and a runtime evaluation on our architecture
from Sect. 3 as described in the following. In all tests we used the binary packed
variant call format (.bcf) for input and output data, and ran the benchmark
without an additional system load.

4.1 Phasing Quality

We measure phasing quality by calculating the mean switch error rate, i.e. we
phase a number of targets with already known phase and compare the output
to the original afterwards by counting switch errors, i.e. the number of phase
switches different to the original. We chose the publicly available 1000 Genomes
reference panel [12], containing more than 31 million phased markers from 2504
unrelated diploid samples of different anchestry. To create a real-world oriented
test data set, we created chromosome-wise subsets with all samples from the
panel but reduced the markers to those that can also be found on the Global
Screening Array (GSA) [8], resulting in about 520,000 quality-controlled markers
in total. We used the software beftools [15] for creating the test data.
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Fig. 4. Runtimes (in s) of single-threaded (left) and multi-threaded (32 threads, right)
EAGLE2 and FPGA-accelerated runs. The graphs seperate total and phasing-only
runtimes for each run.

Firstly, we phased the test data against the original 1000 Genomes Project
reference panel using the EAGLE2 software in its currently latest build, version
2.4.1 [10]. Note, that although the reference and the target data contain the
same samples, we did not create a bias towards copying the phase information
from the original sample because the IBD check (see Sect.2.1) ensures that for
each targeted sample the same sample in the reference is masked out. So, each
target sample was phased using only the phase information of all other samples.
We ran the phasing fully parallelized with 32 threads (--numThreads 32) and
with a single thread (--numThreads 1). The EAGLE2 software set the number
of phasing iterations automatically to 1, other parameters were left as default.
The EAGLE2 software reports its total runtime in its output log divided into
reading, phasing and writing time. For evaluation, we used the total runtime
and the phasing runtime.

Secondly, we phased the test data against the 1000 Genomes Project reference
panel again using our FPGA-accelerated version of EAGLE2. As before, we
performed the phasing twice, once fully parallelized with 32 threads and once
with only a single phasing thread. We reported the runtimes distributed by
phasing and IO in the tool using the C standard library. As for the EAGLE2
run, we ran a single phasing iteration.

Finally, we counted the switch errors in the output data sets by comparing
them to the original reference. As a result, we counted an average of 4491.5
genome-wide switch errors per sample for the EAGLE2 output. Our FPGA
acceleration created 4528.8 switch errors on average, which is slightly larger. Tak-
ing the 520,789 variants into account, we computed mean switch error rates of
0.00862 and 0.0087 respectively. Concluded, our FPGA acceleration of EAGLE2
phasing maintains the mean switch error rate with a negligible difference.
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4.2 Phasing Runtime

In the previous section (Sect. 4.1, we recorded the phasing and total runtimes for
each chromosome-wise subset for single- and multi-threaded (32 threads) orig-
inal EAGLE2 and FPGA-accelerated runs. The total runtimes of the complete
genome-wide input dataset with 520,789 variants from 2504 samples was 17h
and 53 min for the original EAGLE2 single-threaded run (17h44 min phasing
only). The single-threaded FPGA-accelerated run was measured with 9h and
37min (9h 31 min phasing only). This leads to a total speedup of 1.86.

The speedup for the multi-threaded run is similar. With 32 phasing threads
on our 2x Intel Xeon computing system the total runtime of the original EAGLE2
run was measured with 1h and 8 min (1 h 1 min phasing only) and 39 min (32 min
phasing only) for the FPGA-accelerated run. This time, the difference between
total and phasing only runtimes has an impact on the calculated speedup, which
dropped to 1.73 due to I0. Without 10 it results to 1.88.

As we described in Sect.3, the FPGA acceleration targets only 50% of
the total phasing process. Thus, according to Amdahl’s Law [1], we have not
expected a speedup exceeding 2 for the phasing. In order to quantify the speedup
for the part which was accelerated by the FPGA alone, we introduced a time
measure in our single-threaded run of that part which was not accelerated
(tnotace)- We assumed this part to be nearly the same as in the original EAGLE2
run. So we calculated our speedup of the FPGA part by putting the differences
to the complete phasing only times from the original run (tphgacre) and the
FPGA accelerated run (tpprpga) into relation as described in Eq. 4. The result-
ing speedup factor of the FPGA-only part for the complete data set is 19.99
whereby we observed a speedup of 29.02 for chromosome 21.

t —t
SpeeduprGA _ tPhEAGLE notacc (4)
PhFPGA — lnotacc

Additionally, the introduced time measure of the not accelerated part allowed
us to exactly identify the ratio of this part to the complete phasing, and in reverse
conclusion, the ratio of the part accelerated by the FPGA. For the complete data
set we calculated this ratio to be 48.8%, and thus, according to Amdahl’s Law,
the theoretical maximum speedup of the phasing part to be 1/(1—0.488) = 1.95,
which we have almost reached.

Figure 4 shows the runtimes of the single- and multi-threaded EAGLE2 runs
as well as for the single- and multi-threaded FPGA-accelerated runs plotted over
the number of phased variants from each input subset. The graphs show a nearly
linear behaviour as expected. Tables1 and 2 show the runtimes and speedups
for selected chromosome-wise subsets of our input data including the worst and
best runs.
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Table 1. Wall-clock runtimes (in s) and speedup of FPGA-accelerated EAGLE2 phas-
ing using a single thread only. tnotacc iS the time for the phasing part which was not
accelerated by the FPGA. Speedup is shown for the total runtime and for the part
accelerated by the FPGA according to Eq. 4. Total runtimes include phasing and data
I0. The table shows selected chromosome-wise subsets, Y is the sum of all 22 subsets.

Dataset EAGLE2 FPGA accel. % accelerated | Speedup

chr # variants | Total Phasing | Total Phasing | tnotacc by FPGA Total | FPGA
chrl 43344 5376.24 5337.55 2893.89 2863.74 2729.07 | 48.9 1.86 19.37
chr2 42210 5093.09 5052.83 2712.61 2680.65 2551.46 | 49.5 1.88 19.36
chr6 36892 4237.13 4203.38 2225.90 2200.34 2080.43 | 50.5 1.90 17.70
chr10 27360 3362.27 3335.68 1844.03 1823.93 1739.58 | 47.8 1.82 18.92
chr13 17819 2323.75 2303.55 1227.39 1212.45 1159.92 | 49.6 1.89 21.77
chrl7 16612 2119.15 2101.84 1107.58 1094.92 1049.73 | 50.1 1.91 23.28
chr21 7107 977.28 966.60 506.71 499.26 482.58 | 50.1 1.93 29.02
chr22 8262 1062.41 1051.59 555.09 546.32 527.11 | 49.9 1.91 27.30
> 520789 64366.04 | 63832.30 | 34636.55 | 34231.12 | 32672.01 | 48.8 1.86 19.99

Table 2. Wall-clock runtimes (in s) and speedup of FPGA-accelerated EAGLE2 phas-
ing using 32 threads on a system with two Intel Xeon E5-2667v4 and Xilinx Kintex
UltraScale KU115 FPGA. Speedup is shown for the total runtime and for the phas-
ing part only. Total runtimes include phasing and data IO. The table shows selected
chromosome-wise subsets, > is the sum of all 22 subsets.

Dataset EAGLE2 FPGA accel. Speedup
chr # variants | Total | Phasing | Total | Phasing | Total | Phasing
chrl | 43344 338.71| 306.30 | 189.41| 158.70 |1.79 | 1.93
chr2 | 42210 326.69 | 292.64 | 183.05| 150.70 | 1.78 |1.94
chr6 | 36892 267.58 | 239.95 | 151.93| 125.65 |1.76 | 1.91
chrl0| 27360 213.93| 191.44 | 123.52| 102.48 | 1.73 | 1.87
chr13| 17819 146.11 | 128.47 85.46| 69.65 1.71 |1.84
chrl7 | 16612 133.18 | 118.17 7727 63.46 | 1.72 |1.86
chr21 7107 64.54| 54.71 39.03| 30.16 |1.65 |1.81
chr22| 8262 70.05| 60.02 41.78| 33.07 |1.68 |1.81
> 520789 4093.11 | 3635.05 | 2360.24 | 1935.15 | 1.73 | 1.88

5 Conclusions and Future Work

With around 50% of the total runtime, data preparation for reference-based
phasing with EAGLE2 [9] is the most time consuming part of the software.
In this paper, we showed how to accelerate this part by a factor of up to 29
with the help of reconfigurable hardware, leading to a total speedup of almost
2 for the complete process, which is the theoretical maximum according to
Amdahl’s Law [1]. While preserving the switch error rate of the original software,
we reduced genome-wide phasing of 520,000 standard variant markers in 2500
samples from more than 68 min to 39 min on a server-grade computing system.
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The single-threaded runtime was reduced in the same manner from more than
18h to 9.5h. We used the commonly used and publicly available 1000 Genomes
Project [12] phased haplotypes as reference panel.

We are already examining the possibilities of harnessing GPU hardware for
supporting the final phasing step by creating the PBWT data structure, which is
the second most time consuming step in the phasing process. Furthermore, since
phasing is generally only used as preliminary process for genotype imputation,
introducing hardware support for corresponding software, such as PBWT [7] or
minimac4 [5], as they are used in the Sanger or Michigan Imputation Services [14,
16], is our next goal.
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