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Abstract. Federated Learning is an emerging distributed machine
learning technique which does not require the transmission of data to
a central server to build a global model. Instead, individual devices
build their own models, and the model parameters are transmitted. The
server constructs a global model using these parameters, which is then re-
transmitted back to the devices. The major bottleneck of this approach
is the communication overhead as all the devices need to transmit their
model parameters at regular intervals. Here we present an interesting
and novel alternative to federated learning known as Fusion Learning,
where the distribution parameters of the client’s data along with its local
model parameters are sent to the server. The server regenerates the data
from these distribution parameters and fuses all the data from multi-
ple devices. This combined dataset is now used to build a global model
that is transmitted back to the individual devices. Our experiments show
that the accuracy achieved through this approach is in par with both a
federated setup and a centralized framework needing only one round of
communication to the central server.
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1 Introduction

Smartphones and smart devices have become the norm in society. They are now
an integral part of many people [11]. With more advancements in technology,
they are all the more powerful. These devices have enhanced the user experience
by collecting massive amounts of data through various sensors and are provid-
ing meaningful feedback to the user. With this increase in the computational
power of devices and concerns over privacy, while transmitting data to servers,
researchers have focused on storing data locally and perform network computa-
tions on the edge. Several works such as [6,11] were published where machine
learning models are trained centrally and then pushed to the local devices. This
approach led to personalizing models for users. With an increase in the compu-
tational capabilities of the devices, it is now possible to make use of this compu-
tational power within a distributed network. With this possibility, it had created
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a new research direction coined as Federated Learning (FL) [16], where models
are trained directly on mobile devices. The local models are then aggregated on
a central location, which is passed back to the clients. One fundamental exam-
ple is that of a next word predictor on mobile devices where each mobile device
computes a model locally instead of transmitting the raw data to the server.
These models are aggregated at a central server to generate a global model.
The global model after each communication round is transmitted back to all the
devices in the network. The communication between client and server continues
until a required convergence is achieved. In this paper, we try to address one of
the main challenges in Federated Learning i.e. communication overheads. Trans-
mission overhead is a crucial blockade in a typical federated learning scenario,
where model parameters need to be exchanged at regular intervals. Federated
networks are potentially made up of large number of devices to the tune of mil-
lions and communications at that scale can potentially make the network slower
[8]. Therefore, in order to make federated learning work in such a scenario, it
is important to come up with innovative methods that are communication effi-
cient. Two major contributions that have been made in this area were to: (i)
reduce the total number of contact rounds, (ii) minimizing the size of exchanged
messages in each round [16]. The composition of a federated network is highly
varied because the computational power, network connectivity, memory capac-
ities, and power usage varies with each device type. Due to these limitations,
only a fraction of devices actively participate in the exchange of data. An active
system may also drop out during an exchange due to either a network issue
or a possible power outage. These system-level features significantly intensify
problems such as prevention and acceptance of failure. Consequently, federated
learning methods built and evaluated must: (i) expect a low level of involvement
in the federated process; (ii) open to variability in hardware; and (iii) resilient
to underlying network equipment.

Client nodes also produce and collect data non-identically across the network,
e.g., in the context of the next word prediction, users make different use of the
language on a mobile phone. Also, the amount of data collected across devices can
vary considerably, and the possibility of finding a fundamental design capturing
the relationship between devices and their related distributions is unlikely. In
distributed optimization, the data generation approach challenges independent
and IDD principles commonly used and can add to the uncertainty of modeling,
analysis, and evaluation. Alternate learning techniques such as transfer learning
and multi-task learning frameworks [21] have been proposed to counter these
issues in federated learning.

Our contribution in this paper is a novel learning technique termed Fusion
Learning in which each device computes its data distribution parameters along
with its model parameters. These data distribution parameters are specific to
each feature of the dataset. If a dataset has ten features, each feature might follow
a different distribution. We find out the distributions of individual features, and
these distribution parameters are transmitted to the server. These are sent only
once, thereby requiring only one communication round. The server generates



426 A. Kasturi et al.

artificial data using the distribution parameters received from the client, creating
a corpus of data for each client. The individual datasets are then combined to
form a larger dataset. The server now computes a global model on this cumulative
data, and the final global model is passed back to all the clients.

2 Related Work

Federated Learning difficulties at first glance mimic traditional problems in
areas like confidentiality, robust machine learning, and distributed optimization.
Throughout machine learning, optimization, and signal processing communities,
for example, several approaches were proposed to tackle costly communication.
Nevertheless, the size of federation networks, in terms of complexities of the
system and statistical heterogeneity, is usually much larger and are not fully
covered by these approaches.

The prevalent methodology for distributed machine learning in data cen-
ter environments has been mini-batch optimization, which involves expanding
conventional stochastic methods for processing multiple data points [3,20]. Nev-
ertheless, in practice, there was little versatility to respond to the trade-offs
between communication and computation that maximizes distributed data pro-
cessing [22]. Also, a large number of probable approaches have been proposed
to reduce the transmission costs in distributed settings through simultaneous
application of a variety of local updates to each computer at each communica-
tion round, becoming considerably more versatile. Distributed primal-dual local
updating methods have become a popular way to solve such convex optimization
problems [12,24]. These approaches utilize a dual-format to efficiently divide the
parent goal into smaller problems. These can now be solved in parallel during
every round of communication. There have also been several distributed local
primal updating methods that add the benefit of applying to non-convex pur-
poses [19]. Such techniques improve performance significantly and have shown
that they reach higher order-of-magnitude speeds in real-world data center envi-
ronments over conventional mini-batch approaches like ADMM [1]. Optimization
approaches for adaptive local notifications and weak customer engagement are de
facto resolvers in federated settings [16,21]. Federated Averaging (FedAvg) [16],
which averages stochastic gradient descent(SGD) components from local devices,
is the most common method used for federated learning. FedAvg has proved to
operate extremely well empirically and specifically for non-convex issues. How-
ever, it does not have any guarantees of convergence and can differ in realistic
settings when heterogeneous data is used [13]. While local updating methods can
decrease the total number of contact rounds, models such as sparse sampling,
subsampling, and quantization can significantly minimize the size of message
transmissions during each exchange. These approaches have been widely studied
in [25].

Decentralized training was shown to be quicker than centralized training
in data center settings while running on high or low bandwidth networks. [7]
explains in great detail on both pros and cons of such an approach. These
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algorithms can also lessen the connectivity costs of the central server in the
federated setup. They examined heterogeneous data with local update schemes
as decentralized learning. Either these approaches are limited to linear models,
or they require all devices to be part of the exercise. Eventually, hierarchical
models developed in [14,15] were also suggested to decrease the load on the
central server by using edge servers. Only a small subset of devices in feder-
ated networks usually take part in every training round. Nishio and Yonetani,
for example in [17], are exploring new sampling rules for devices based on sys-
tem resources with a view to aggregate a maximum number of device updates
within a predefined time window. Likewise, in creating the motivation mecha-
nisms to enable high-qualified devices to engage in the learning process, Kang
et al. [9] take into account seven overhead systems for each computer. Such
techniques, however, presume a static machine model of network characteris-
tics; how to expand those strategies to manage device-specific fluctuations in
real time remains open. However, while these approaches mainly concentrate on
system variability for active sampling, we note that a collection of limited but
reasonably representative devices based on the underlying statistical structure
should also be taken actively for sampling. Information that is not distributed
identically across devices emerge when training federated models, both in terms
of data modeling and the study of the integration of related training procedures.

MOCHA [21], a federated setting optimization framework, can personalize
each device by learning separate models but linked to each device while using
multi functional learning to leverage shared representation. The size is limited to
large networks and convex targets. [2] forms the network of stars as a Bayesian
network and offers a variance while learning. Generalizing to large networks is
expensive using this approach even though it can handle non-convex models.
Khodak et al. [10] have tested the use of multi-task information to meta-learn a
task-by-task learning rating (where each task corresponds to one device). Eich-
ner et al. [5] are exploring a pluralistic approach to resolve cyclical trends in
data samples during the federated training process (adaptively selecting a global
model and device-specific models). Despite these recent developments, the major
challenges remain in building robust, scalable, and automated methods of het-
erogeneous modeling in federated environments.

3 Fusion Learning Algorithm

We introduce our proposed one-shot Federated Learning Algorithm called Fusion
Learning in this section, which has three modules: (1) finding the distribution
of each feature in the dataset on the local device. Locally training the model
with the available data. (2) aggregating both the distribution parameters and
the model parameters at a central server. Generating artificial data points from
the distribution. (3) building a global model from the generated points and
transmitting the new global model parameters back to the clients. These steps
have been depicted pictorially in Fig. 1.
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Fig. 1. Architectural diagram of a Fusion Learning system.

3.1 Distribution of Individual Features at Client

It is important to have our data being reflected accurately in the distribution.
Different distributions are usually evaluated against data to determine which one
matches the data best. The parameters of different distributions are calculated
using statistical techniques. Distribution is generally defined by four parameters:
location, scale, shape, and threshold. Fitting for distribution involves estimating
these parameters, which define different distributions. A distribution’s location
parameter specifies where the distribution lies along the x-axis (the horizontal
axis). Scale parameter determines how much spread there is within the distri-
bution. Shape parameter lets the distribution take different shapes. Threshold
parameter defines the distribution’s minimum value along the x-axis. The param-
eters for distribution can be calculated using a variety of statistical techniques.
One such technique being the Maximum likelihood estimator where negative log-
likelihood is minimized. Upon completion of this calculation, we use the goodness
of fit techniques to help us determine which distribution best fits our data. The
next step is to find out to which distribution our data fits into. We have used
the stats library from SciPy [23] to fit the data into various distributions.

To determine which distribution fits the data best, we use the p-values gener-
ated using Kolmogorov-Smirnov test. The distribution with the greatest p value
is considered to be the right fit for that data. Using these steps, we find out
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Table 1. Different types of distributions used to verify the distribution of individual
feature set

norm pareto genextreme gamma uniform

exponweib lognorm expon logistic vonmises

weibull max beta cauchy lomax wald

weibull min chi cosine maxwell wrapcauchy

hi2 pearson3 powerlaw rdist erlang

all the distributions for every feature. Each feature for every dataset is tested
against the 25 most commonly used distributions. These distributions have been
listed in Table 1.

Once we find the distribution parameters, we build a machine learning model
from the available data. On the contrary to the Federated Averaging model,
where each client updates the server with its gradient after every epoch, we
transmit the parameters only once when the complete training of the local model
is completed.

3.2 Generating Data at Server

The server, instead of aggregating gradients from all the clients, it first generates
data from the distributions it receives from them. For each client, based on
the distribution parameters of each feature, we randomly generate data points,
thereby creating a repository of sample training points. The predicted values
for these features are generated using the weights that are also transmitted by
the client resulting in an artificially generated dataset that follows a similar
distribution as that present on the client node. These steps are presented in
Algorithm 1.

3.3 Model Building at Server

Once the data from all the clients is combined, we run a multi-layer percep-
tron model on this dataset. Multi-layer perceptrons (MLP) [18] is a widely used
feedforward ANN with a minimum of three layers: input, hidden, and an out-
put layer. All nodes in each layer are connected with those in the other layer
without loops. Each node uses an activation function for non-linear projections
and extraction features on previous layer outputs. The gradients or the model
parameters that are derived from this model are passed back to the client.

This approach significantly reduces the communication cost as we need only
one round of communication to transfer the model and distribution parameters
of the client and then receive back the updated global parameters.
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Algorithm 1. Fusion Learning
1: Client Update:
2: for i ∈ {1 to F }∀ features do
3: a. calculate the p value of each distribution using K-S test
4: b. find the maximum value from the above list to indicate its feature
5: c. store the distribution parameters for that feature
6: end for
7: for e ∈ {1 to E }∀ epochs do
8: for x ∈ {1 to X }∀ inputs do
9: Update weights given by:

10:
θk = θk − ηδLk(θk, b)

where θ = weightvector, η = learningrate, Lk = Loss

11: end for
12: end for
13: store the final weights
14: send distribution parameters and model parameters to server

1: Server Update:
2: for i ∈ {1 to C }∀ clients do
3: a. generate points for each distribution feature
4: b. find predicted value for these points using model parameters
5: end for

6: Ds =
C⋃

i=1

Di //merge data points from all clients

7: build a neural network model on the above dataset
8: transmit back the new global model parameters to the clients

4 Experimental Results

In this section, we present our experimental results obtained using fusion learn-
ing. The accuracies obtained through our approach have been compared against
both a federated setup and a centralized learning system. A centralized learning
system is where all the clients transmit their data to a central server. The server
then builds a global model from this data, and the global model parameters are
sent back to the clients. A significant issue with such an approach is the amount
of data that needs to be transmitted across the network. The data increases with

Table 2. Dataset description

Dataset Instances Features

Credit Card 30000 24

Breast Cancer 569 9

Gender Voice 3169 20

Audit Data 777 18
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an increase in the number of clients, and the other being the privacy concerns
associated with the transmission of sensitive data over the network. The exper-
iments are performed on four different datasets, namely Credit Card, Breast
Cancer, Gender Voice, and Audit Data sets. These datasets have been retrieved
from the commonly used UCI Repository [4].

The parameters of these datasets, which include the number of features and
the number of data points, are depicted in Table 2. The initial results show
that the accuracies obtained through fusion learning are almost similar to those
achieved with federated and centralized frameworks.

(a) Credit Card Data. (b) Breast Cancer Data.

(c) Gender Voice Data. (d) Audit Data.

Fig. 2. Distribution of each feature for Credit Card, Breast Cancer, Gender Voice and
Audit datasets

4.1 Feature Distributions

Every dataset is made up of a number of features, and since each feature might
follow a different distribution, the first step of the algorithm is to find out these
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distributions. The steps to obtain these distributions are explained in the previ-
ous section. The distributions for each of the four datasets can be seen in Fig. 2.
We can observe that the features of the credit card dataset map to only three
distributions, whereas breast cancer, gender voice, and audit data map to six,
ten, and thirteen features. The precision of distribution detection can be fur-
ther improved by considering more distributions during the initial phase of the
algorithm.

4.2 Local and Global Models

Our experiments to build a local model include a simple multi-layer perceptron
which has two hidden layers. Each hidden layer uses ReLu as the activation
and has 100 hidden nodes. Sparse categorical cross-entropy is used as the loss
function, and the Adam optimizer is used for stochastic gradient descent with
a batch size of 32. The number of parameters varies with each dataset. With
respect to the dataset, there are two ways in which it can be partitioned: IID,
where data is randomly shuffled and distributed amongst ten clients, and the
other being Non-IID, where data is divided based on the labeled class. Each
labeled data is distributed to a different client. The experimental results that
have been presented are based on IID data. Each dataset that is used is split
into training and testing in an 80:20 ratio. For all the three frameworks, we have
considered the number of clients to be ten and the number of epochs to be 100.
Once the local model is built, and distributions are transmitted to the server, the
server regenerates the points from these distributions. We generate 1000 points
from each client, creating a cumulative of 10,000 data points at the server. The
same multi-layer perceptron is used to build the global model at the server.

4.3 Training and Testing Accuracies

It is important to note that the training accuracy of the fusion learning approach
is the testing accuracy because the model is not trained on the original data,
but instead, it is trained on the data generated from the distribution of features
of each client.

The training accuracies of all three frameworks have been illustrated in Fig. 3
and summarized in Table 3. We can see from this table that the training accu-
racies of fusion learning framework fall slightly below those obtained from both
federated and a centralized setup. This is because the quality of the data gen-
erated is not on par with the original data. We can also notice that there is a
subtle difference in accuracies of Credit Card, Breast Cancer, and Audit Data
sets between Federated and Fusion Learning algorithms, whereas the accuracy
of the Gender Voice dataset, is slightly lesser. The accuracies of such datasets
can be increased by adding more distributions because determining the right dis-
tribution plays an important role in generating artificial data. Also, more data
at the client node helps in determining the corresponding feature distribution
parameters with more confidence, which results in an increase in the quality of
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(a) Credit Card Data. (b) Breast Cancer Data.

(c) Gender Voice Data. (d) Audit Data.

Fig. 3. Comparison of training accuracies between Centralized Learning, Federated
Learning and Fusion Learning algorithms

Table 3. Comparison of training accuracies (in %) between Central Learning, Feder-
ated Learning and Fusion Learning

Dataset Central Learning Federated Learning Fusion Learning

Credit Card 81.11 81.60 81.09

Breast Cancer 97.08 96.35 95.62

Gender Voice 96.84 97.31 94.32

Audit Data 98.06 98.71 97.42

the generated data. As can be seen from Fig. 4, we have also compared the accu-
racies on each client node obtained using the local model and the global model
built using the fusion learning framework. We see that in all the datasets, for all
clients, the global model either outperforms the local model or achieves similar
accuracies, which is also the case for a federated setup.
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(a) Credit Card Data. (b) Breast Cancer Data.

(c) Gender Voice Data. (d) Audit Data.

Fig. 4. Comparison of testing accuracies of initial local model vs final global model at
each client

4.4 Communication Efficiency

The main aim of this work is to reduce the number of communication rounds in
a federated setup. A federated approach typically takes ‘E’ rounds to converge
to a global model where ‘E’ is the number of epochs. In our case, the number of
rounds is just one as we send both the model parameters and the distribution
parameters at one shot. The server sends back the global parameters to the
clients once it is built. This is summarized in Table 4.

Table 4. Network usage of Federated Learning and Fusion Learning for E epochs for
a single client

Approach Network calls Data exchanged

Federated Learning 2 * E Model parameters

Fusion Learning 2 Model params + feature distr parameters
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5 Conclusions and Future Work

We have presented a new approach for distributed learning termed as Fusion
Learning, which is able to achieve similar accuracies as compared to a Federated
setup using only one communication round. This approach throws up a new
direction for research in distributed learning and has its own set of challenges
that needs to be addressed in greater detail. An important next step is to examine
the proposed solution on broader datasets, which truly captures the massively
distributed complexity of real-world issues. Another important direction would
be to apply this technique to image datasets. Experimenting with this approach
with different machine learning models on the server is an interesting direction
for future work.
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