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Abstract. The paper aims to present an efficient numerical scheme to
quantify the uncertainty in the solution of stochastic fractional integro-
differential equations. The numerical scheme presented here is based on
Legendre wavelets combined with block pulse functions using their deter-
ministic and stochastic operational matrix of integration. The opera-
tional matrices are utilized to convert the stochastic fractional integro-
differential equation to a linear system of algebraic equation. Finally, the
accuracy and efficiency of the proposed scheme are investigated through
numerical experiments.
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1 Introduction

A stochastic fractional integro-differential equation (SFIDE), where order of
derivative is non integer, is a generalization of the fractional Folkker-Plank equa-
tion which describes the random walk of a particle [2]. This model has the fol-
lowing form

Dαu(t) = f(t) +
∫ t

0

u(s)k1(s, t)ds +
∫ t

0

u(s)k2(s, t)dW (s), t ∈ [0, T ),

u(0) = u0,

(1)

where Dα, 0 < α < 1, denotes the Caputo fractional derivative, W (s), s ∈ [0, T )
is the standard Wiener process and the integral with respect to it is the Itô
integral. Presence of the Itô integral in Equation (1) causes randomness in the
solution and hence it becomes non deterministic. In this paper, we develop a
novel approach to quantify this uncertain behavior in the numerical solution.

In recent decade, the need to obtain the numerical solution of SFIDE has
increased significantly. However, in literature, only a handful of papers are
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available that actually discuss about the numerical solution of SFIDE. In [8],
Maleknejad et al. provided an operational matrix method based on block pulse
functions to solve stochastic Volterra integral equations. In [12], Taheri et al. for-
mulated the spectral collocation method based on shifted Legendre polynomials
to solve SFIDE. In [10], Mirzaee and Samadyar constructed an efficient scheme
to solve SFIDE based on Bernstein polynomials. In [11], Mirzaee and Samadyar
provide a meshless discrete collocation method based on radial basis functions
to solve SFIDE.

In this paper, a new scheme is derived based on Legendre wavelet collo-
cation method and block pulse function involving the operational matrix for
solving SFIDE (1). In Sect. 2, we give basic definition of fractional calculus and
construction of Legendre wavelet based on Multi-resolution analysis. Then in
Sect. 3, operational matrix of fractional order integration and integration oper-
ational matrix are derived. The proposed scheme for the SFIDE is discussed
in Sect. 4, while Sect. 5 provides numerical experiments performed to showcase
the effectiveness of the approach. In Sect. 6, we present various applications of
SFIDE. Finally, Sect. 7 gives the brief conclusion.

2 Preliminaries

In this section, we discuss the mathematical preliminaries of fractional calculus
and construction of wavelet which are required for subsequent development.

Definition 1. [5] The left Riemann-Liouville fractional integral of order α ≥ 0
of a function f(t), t ∈ (a, b) is defined as follows

aIα
t f(t) =

1
Γ (α)

∫ t

a

(t − s)α−1f(s)ds,

aI0t f(t) = f(t).
(2)

Similar to integer order integration, the left Riemann-Liouville fractional integral
operator is a linear operator

aIα
t (λf(t) + μg(t)) = λaIα

t f(t) + μaIα
t g(t),

where λ and μ are constants.

Definition 2. [5] The left Caputo derivative with order α > 0 of the given
function f(t), t ∈ (a, b) is defined as

Dα
a,tf(t) =

1
Γ (m − α)

∫ t

a

(t − s)m−α−1f (m)(s)ds, (3)

where m is a positive integer satisfying m − 1 < α ≤ m.
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2.1 Multi-resolution Analysis (MRA)

An MRA is an increasing family of closed subspace V j ⊂ L2(R) which satisfies
the following axioms [9] :

1. V j ⊂ V j+1

2. ∪j∈ZV j = L2(R)
3. {φ(x − k) : k ∈ Z} is an orthonormal basis of V 0

4. f(·) ∈ V j if and only if f(2(·)) ∈ V j+1 for all j ∈ Z.

For given nested sequence subspace V j , define the space W j as the orthogonal
complement of V j in V j+1, i.e., V j ⊥ W j and

V j+1 = V j ⊕ W j , (4)

applying recursively, we get

V j = V j0 ⊕
j−1⊕
k=j0

W k, j > j0. (5)

Now, based on the above analysis, to construct a wavelet define a space V J
M of

piecewise polynomial functions as follows :

V J
M := {φ : the restriction of φ to the interval [2−J+1(k − 1), 2−J+1k)

is a polynomial of degree less than M for k = 1, 2, · · · , 2(J−1),

and φ vanishes elsewhere}.

(6)

The space V J
M has dimension 2(J−1)M and

V 1
M ⊂ V 2

M ⊂ · · · V J
M ⊂ · · · ⊂ L2([0, 1)).

Next, consider the 2(J−1)M -dimensional space W J
M which is an orthogonal com-

plement of V J
M in V J+1

M , i.e.,

V J+1
M = V J

M ⊕ W J+1
M .

Inductively, one can obtain

V J
M = V 1

M ⊕
J−1⊕
j=1

W j
M . (7)

Unlike Haar, the element of the space W J
M do not have a general form. To

construct the elements of W J
M one can refer [1].

Further, if

V J
M = span{φJ

k,m, m = 0, 1, · · · ,M − 1, k = 1, 2, · · · , 2(J−1)},
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then we define the projection operator PV J
M

: L2[0, 1] → V J
M as

PV J
M

(f(x)) :=
2J−1∑
k=1

M−1∑
m=0

cJ
k,mφJ

k,m(x), (8)

where cJ
k,m =

∫ k

2(J−1)
(k−1)

2(J−1)

f(x)φJ
k,m(x)dx. Set

W J
M = span{ψJ

k,m(x), m = 0, 1, · · · ,M − 1, k = 1, 2, · · · , 2(J−1)},

where ψJ
k,m(x) = 2

(J−1)
2 ψm(2(J−1)x−k +1). The support of ψJ

k,m is [ k−1
2J−1 , k

2J−1 )
and ψm(x) satisfies the following property (vanishing moment property)

∫ 1

0

xiψm(x)dx = 0, i = 0, 1, · · · ,M − 1. (9)

Now, using V J
M , we introduced the subspace V J,2

M of L2([0, ) × [0, 1)) defined by

V J,2
M := {φ | φ = φ1φ2 where φ1, φ2 ∈ V J

M}.

Moreover,

V J,2
M = span{φJ

k,m,k′,m′ = φJ
k,mφJ

k′,m′ : k, k′ = 1, · · · , 2J−1 and m, m′ = 0, · · · , M − 1}.

Then, define the projection operator PV J,2
M

: L2([0, 1] × [0, 1]) → V J,2
M as

PV J,2
M

f(s, t) =
2J−1∑
k=1

M−1∑
m=0

2J−1∑
k′=1

M−1∑
m′=0

cJ
k,m,k′,m′φJ

k,m,k′,m′(s, t), (10)

where cJ
k,m,k′,m′ =

∫ k

2J−1
(k−1)

2(J−1)

∫ k′
2J−1
(k′−1)

2(J−1)

f(s, t)φJ
k,m,k′,m′(s, t)dsdt.

Next, introduce the space W J,2
M which is defined by

W J,2
M = {ψ | ψ = ψ1ψ2 where ψ1, ψ2 ∈ W J

M},

and

W J,2
M = span{ψJ

k,m,k′,m′ = ψJ
k,mψJ

k′,m′ : k, k′ = 1, · · · , 2J−1 and m, m′ = 0, · · · , M − 1},

where

ψJ
k,m,k′,m′(s, t) = 2J−1ψm,m′(2J−1s − k + 1, 2J−1t − k′ + 1)

:= 2J−1ψm(2J−1s − k + 1)ψm′(2J−1t − k′ + 1)

and ψm,m′(s, t) satisfies the following property
∫ 1

0

∫ 1

0

sitjψm,m′(s, t)dsdt = 0, i, j = 0, · · · ,M − 1. (11)
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The subspace W J,2
M is orthogonal complement of V J,2

M in V J+1,2
M . Therefore, one

can write
V J+1,2

M = V J,2
M ⊕ W J,2

M ,

and hence

V J,2
M = V 1,2

M ⊕
J−1⊕
j=1

W j−1,2
M . (12)

Now, if we choose φJ
k,m as in [13], i.e., for m = 0, 1, 2, · · · ,M −1, and k̂ = 2k −1

with k = 1, 2, · · · , 2(J−1)

φJ
k,m(t) =

{√
m + 1

22J/2Pm(2J t − k̂) for k̂−1
2J

≤ t < k̂+1
2J

0 otherwise,
(13)

where Pm(t) is a Legendre polynomials of order m are defined in the interval
[−1, 1] and given by the following recurrence formulas

P0(t) = 1, P1(t) = t,

Pm+1(t) =
(2m + 1

m + 1

)
tPm(t) −

( m

m + 1

)
Pm−1(t), m = 1, 2, 3, · · · .

The wavelet constructed above using Legendre polynomials are called as Legen-
dre wavelet [7].

2.2 Function Approximation

A function f(t) defined over L2[0, 1) can be expanded with Legendre scaling
functions φJ

k,m(t) as

f(t) =
2J−1∑
k=1

∞∑
m=0

cJ
k,mφJ

k,m(t), (14)

where cJ
k,m =

∫ 1

0
f(t)φJ

k,m(t)dt and J → ∞. If the infinite series in (14) is
truncated, then (14) can be written as

f(t) ≈ PV J
M

(f(t)) =
2J−1∑
k=1

M−1∑
m=0

cJ
k,mφJ

k,m(t) = CT Φ(t), (15)

where C and Φ(t) are 2J−1M × 1 matrices given by

C =[cJ
1,0, c

J
1,1, · · · , cJ

1,M−1, c
J
2,0, · · · , cJ

2,M−1, · · · , cJ
2J−1,0, · · · , cJ

2J−1,M−1]
T ,

Φ2J−1M (t) =[φJ
1,0(t), φ

J
1,1(t), · · · , φJ

1,M−1(t), · · · , φJ
2J−1,M−1(t)]

T

=[φJ
1 (t), . . . , φJ

2J−1M (t)]T .
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In similar way, a bivariate function f(s, t) ∈ L2[[0, 1) × [0, 1)] can be expanded
with Legendre wavelets as

f(s, t) ≈
2J−1M∑

i=1

2J−1M∑
j=1

φJ
i (s)fijφ

J
j (t) = ΦT (s)FΦ(t), (16)

where

fij =
∫ 1

0

∫ 1

0

f(s, t)φJ
i (s)φJ

j (t)dsdt.

3 Legendre Wavelet Matrix and Block Pulse Operational
Matrix

Let the collocation points be

ti =
2i − 1
2JM

, i = 1, 2, . . . , 2J−1M.

We denote the Legendre wavelet matrix as φ2J−1M×2J−1M and define it as the
combination of φJ

k,m(ti) at the collocation points (ti) as

φ2J−1M×2J−1M =

⎛
⎜⎜⎜⎝

φJ
1,0(t1) φJ

1,1(t2) . . . φJ
2J−1,M−1(t2J−1M )

φJ
1,0(t1) φJ

1,1(t2) . . . φJ
2J−1,M−1(t2J−1M )

...
...

. . .
...

φJ
1,0(t1) φJ

1,1(t2) . . . φJ
2J−1,M−1(t2J−1M )

⎞
⎟⎟⎟⎠ .

3.1 Legendre Wavelet Operational Matrix of Fractional Order
Integration

If f(t) is expanded as in Eq. (14), then the Riemann-Liouville fractional order
integration is given by

0I
α
t f(t) ≈ 1

Γ (α)

∫ t

0

(t − τ)α−1CT Φ(τ)dτ = CT (0Iα
t Φ2J−1M (t)).

The 2J−1M−set of block pulse functions (BPFs) are also defined as

bi(t) =

{
1 (i−1)

2J−1M
≤ t < i

2J−1M

0 otherwise,
(17)

where i = 1, 2, . . . , 2J−1M . The function bi(t) has the following disjoint and
orthogonal properties

– bi(t)bj(t) = δijbi(t),
–

∫ 1

0
bi(t)bj(t) = δij

2J−1M
,
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where δij is the Kronecker delta. The Legendre wavelet can be expanded into
2J−1M - term block pulse function as

Φ2J−1M (t) = φ2J−1M×2J−1Mb2J−1M (t), (18)

where b2J−1M (t) = [b1(t), . . . , b2J−1M (t)]T . The block pulse operational matrix
of fractional-order integration Gα is given in [6] as follows

0I
α
t b2J−1M (t) ≈ Gαb2J−1M (t), (19)

where

Gα =
1

(2J−1M)α

1
Γ (α + 2)

⎛
⎜⎜⎜⎜⎜⎝

1 ξ1 ξ2 ξ3 · · · ξ2J−1M−1

0 1 ξ1 ξ2 · · · ξ2J−1M−2

0 0 1 ξ1 · · · ξ2J−1M−3
...

...
...

...
. . .

...
0 0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠

,

with ξi = (i + 1)α+1 − 2iα+1 + (i − 1)α+1.
Let

0I
α
t Φ2J−1M (t) = Pα

2J−1M×2J−1MΦ2J−1M (t), (20)

where the matrix Pα
2J−1M×2J−1M is called the Legendre wavelet operational

matrix of fractional order integration. Using Eqs. (18) and (19) in (20), we get

Pα
2J−1M×2J−1M ≈ (φ2J−1M×2J−1M )Gα(φ2J−1M×2J−1M )−1.

3.2 Deterministic Integration Operational Matrix

Let m = 2J−1M and compute
∫ t

0
bi(s)ds as follows

∫ t

0

bi(s)ds =

⎧⎪⎨
⎪⎩

0 0 ≤ t < i−1
m

t − i−1
m

i−1
m ≤ t < i

m
1
m

i
m ≤ t < 1.

(21)

We approximate t− i−1
m , for i−1

m ≤ t < i
m , by 1

2m and express
∫ t

0
bi(s)ds in terms

of BPFs as follows∫ t

0

bi(s)ds ≈ (
0, . . . , 0,

1
2m

,
1
m

, . . . ,
1
m

)
bm(t), (22)

where 1
2m is the ith component of vector. Therefore

∫ t

0

bm(s)ds ≈ Pbm(t), (23)

where the operational matrix of integration is given by

P =
1

2m

⎛
⎜⎜⎜⎜⎜⎝

1 2 2 · · · 2
0 1 2 · · · 2
0 0 1 · · · 2
...

...
...

. . .
...

0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠

m×m
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3.3 Stochastic Integration Operational Matrix

The Itô integral of each single BPFs bi(t) can be computed as follows

∫ t

0

bi(s)dW (s) =

⎧⎪⎨
⎪⎩

0 0 ≤ t < i−1
m

W (t) − W ( i−1
m ) i−1

m ≤ t < i
m

W ( i
m ) − W ( i−1

m ) i
m ≤ t < 1.

(24)

We can approximate W (t) − W ( i−1
m ), for i−1

m ≤ t < i
m , by W ( i−0.5

m ) − W ( i−1
m )

and express
∫ t

0
bi(s)dW (s), in terms of BPFs as follows

∫ t

0

bi(s)dW (s) ≈
(

0, . . . , 0,W (
i − 0.5

m
) − W (

i − 1
m

),W (
i

m
) − W (

i − 1
m

),

. . . , W (
i

m
) − W (

i − 1
m

)
)

bm(t),
(25)

where W ( i−0.5
m ) − W ( i−1

m ) is the ith component of vector. Therefore, we obtain
the following expression (for details, see [8])

∫ t

0

bm(s)dW (s) ≈ Psbm(t), (26)

where stochastic operational matrix of integration is given by

Ps =

⎛
⎜⎜⎜⎜⎜⎜⎝

W ( 1
2m

) W ( 1
m
) W ( 1

m
) · · · W ( 1

m
)

0 W ( 3
2m

)− W ( 1
m
) W ( 2

m
)− W ( 1

m
) · · · W ( 2

m
)− W ( 1

m
)

0 0 W ( 5
2m

)− W ( 2
m
) · · · W ( 3

m
)− W ( 2

m
)

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 0 · · · W ( 2m−1
2m

)− W (m−1
m

)

⎞
⎟⎟⎟⎟⎟⎟⎠

m×m

4 Description of Numerical Method

Here we present the wavelet collocation method based on the Legendre wavelets
for solving SFIDE (1). We use the relation between the fractional derivative and
integral to obtain the solution u(t) derived as follows

– Let Dαu(t) ≈ CT Φ(t), this implies that

u(t) ≈ CT
0I

αΦ(t) + u0. (27)

– Let k1(s, t) ∈ L2([0, 1) × [0, 1)). It can be expanded with respect to Legendre
wavelet as

k1(s, t) ≈ ΦT (s)K1Φ(t) = ΦT (t)KT
1 Φ(s), (28)
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where K1 = (k1)ij , i = 1, 2, . . . ,m, j = 1, 2, . . . ,m is the m × m Legendre
wavelets coefficient matrix with

(k1)ij =
∫ 1

0

∫ 1

0

k1(s, t)φi(s)φj(t)dsdt.

Similarly
k2(s, t) ≈ ΦT (s)K2Φ(t) = ΦT (t)KT

2 Φ(s), (29)

where K2 = (k2)ij , i = 1, 2, . . . ,m, j = 1, 2, . . . ,m is the m × m Legendre
wavelets coefficient matrix with

(k2)ij =
∫ 1

0

∫ 1

0

k2(s, t)φi(s)φj(t)dsdt.

Substituting the above approximation in (1), we get

CT Φ(t) = f(t) +

∫ t

0
CT (0IαΦ(s))ΦT (s)K1Φ(t)ds + u0

∫ t

0
ΦT (s)K1Φ(t)ds

+

∫ t

0
CT (0IαΦ(s))ΦT (s)K2Φ(t)dW (s) + u0

∫ t

0
ΦT (s)K2Φ(t)dW (s)

= f(t) + CT P α
( ∫ t

0
Φ(s)ΦT (s)ds

)
K1Φ(t) + u0

( ∫ t

0
ΦT (s)ds

)
K1Φ(t)

+ CT P α
( ∫ t

0
Φ(s)ΦT (s)dW (s)

)
K2Φ(t) + u0

( ∫ t

0
ΦT (s)dW (s)

)
K2Φ(t)

= f(t) + CT P αφ
( ∫ t

0
b(s)bT (s)ds

)
φT K1Φ(t) + u0

( ∫ t

0
bT (s)ds

)
φT K1Φ(t)

+ CT P αφ
( ∫ t

0
b(s)bT (s)dW (s)

)
φT K2Φ(t) + u0

( ∫ t

0
bT (s)dW (s)

)
φT K2Φ(t).

Let Pαφ = Q1, φT K1 = Q2, φT K2 = Q3, Qi
2 be the ith row of constant matrix

Q2, Qi
3 be the ith row of constant matrix Q3, Ri be the ith row of the integration

operational matrix P and Ri
s be the ith row of the stochastic operational matrix

Ps. We have

( ∫ t

0

b(s)bT (s)ds
)
Q2Φ(t) =

⎛
⎜⎝

R1b(t)Q1
2

...
Rmb(t)Qm

2

⎞
⎟⎠ Φ(t) := B1Φ(t).

Also

( ∫ t

0

b(s)bT (s)dW (s)
)
Q3Φ(t) =

⎛
⎜⎝

R1
sb(t)Q1

3
...

Rm
s b(t)Qm

3

⎞
⎟⎠ Φ(t) := B2Φ(t).

Then

CT (I − Q1B1 − Q1B2)Φ(t) ≈ f(t) + u0(bT (t)PT Q2 + bT (t)PT
s Q3)Φ(t) (30)
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So, by setting

A =

⎛
⎜⎝

ΦT (t1)(I − Q1B1 − Q1B2)T

...
ΦT (tm)(I − Q1B1 − Q1B2)T

⎞
⎟⎠

and

F =

⎛
⎜⎝

f(t1) + u0(bT (t1)PT Q2 + bT (t1)PT
s Q3)Φ(t1)

...
f(tm) + u0(bT (tm)PT Q2 + bT (tm)PT

s Q3)Φ(tm)

⎞
⎟⎠ ,

where ti are the collocation points. We have

AC = F, (31)

which is a linear system of equations that gives the Legendre wavelets coefficient.

5 Numerical Experiments

To illustrate the proposed method discussed in Sect. 4, we consider the following
examples.

Example 51. Consider the SFIDE (1) with f(t) = t2

2 + Γ (2)
Γ (2−α) t

1−α, k1(s, t) =
1, k2(s, t) = 0, and u0 = 0. For α = 0, u(t) = −(2 + t) + 2et is exact solution of
(1).

Example 52. Consider the SFIDE (1) with f(t) = − t5et

5 + 6t2.25

Γ (3.25) , k1(s, t) =
ets, k2(s, t) = 0, and u0 = 0. For α = 0.75, u(t) = t3 is exact solution of (1).

Example 53. Consider the SFIDE (1) with f(t) = 0, k1(s, t) = s2, k2(s, t) =
s3, and u0 = 1. For α = 0, u(t) = e

t3
3 +

∫ t
0 s3dW (s) is exact solution of (1).

Let unum(ti, l) denotes the approximate solution of lth simulation at ti and
uexact(ti, l) denotes the exact solution of lth simulation at ti. The efficiency of
the proposed method, for Examples 51, 52 and 53 are highlighted in Tables 1, 2
and 3, respectively, which showcase the values of maximum absolute error and
root mean square (RMS) error that are defined as

E‖e‖∞ =
1
N

N∑
l=1

max
1≤i≤m

|uexact(ti, l) − unum(ti, l)|, (32)

E‖e‖2,m =
1
N

N∑
l=1

√√√√ 1
m

m∑
i=1

|uexact(ti, l) − unum(ti, l)|2 (33)

respectively, where N is total number of simulation and E is mathematical expec-
tation. For deterministic function E‖.‖∞ = ‖.‖∞ and E‖.‖2,m = ‖.‖2,m. Table 1
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shows the maximum absolute errors obtained for Example 51 via the proposed
method discussed in Sect. 4 for α = 0 and different values of J, M and m. Table 2
shows the comparison of our method with Gaussian radial basis function (GA
RBF) and thin plate splines radial basis function (TBS RBF) in terms of the
absolute maximum error and RMS-error obtained for Example 52 with α = 0.75
and different values of m. These methods (GA RBF and TBS RBF [11]) need
smaller value of shape parameter for higher accuracy which increases the condi-
tion number of coefficient matrix and as a result the methods become unstable.
However, the method proposed in Sect. 4 has no such behavior. Finally, Table 3
shows the calculation of the mean and standard deviation which are denoted by
E‖e‖∞ and Se, respectively, of the maximum absolute error for Example 53 with
α = 0 and different number of simulation trajectories (N). For different values
of N , the upper and lower limit of 95% confidence interval (C.I.) are also listed
in Table 3. In Fig. 1, we plot the mean approximate solution and mean exact
solution of Example 53 along with 95% confidence interval region for α = 0 and
m = 32 with different values of N .

Table 1. Maximum absolute error in u(t) corresponding to α = 0 with different value
of J and M .

J 2 2 2 3 3 3 4 4 4

M 2 3 4 2 3 4 2 3 4

m = 2J−1M 4 6 8 8 12 16 16 24 32

‖e‖∞ 0.0412 0.0194 0.0113 0.0113 0.0052 0.0030 0.0030 0.0013 0.0008

Table 2. Results of Example 52 for different values of m and α = 0.75

m GA RBF [11] TBS RBF [11] Present method

‖e‖∞ ‖e‖2,m ‖e‖∞ ‖e‖2,m J M ‖e‖∞ ‖e‖2,m

4 – – – – 2 2 4.39e−2 2.53e−2

10 8.60e−2 7.62e−2 3.70e−2 4.63e−2 2 5 8.30e−3 4.10e−3

20 4.11e−3 7.30e−3 5.60e−3 4.89e−3 3 5 2.20e−3 1.0e−3

32 – – – – 5 2 9.0052e−4 4.0463e−4

40 3.5988e−4 8.6523e−3 4.3341e−4 2.3569e−4 4 5 3.7848e−4 1.5841e−4

6 Applications

In this section, we present some special cases of the proposed model and their
applications in real life examples. SFIDE (1) have many practical applications
in scientific field such as physics, finance and biology etc. When α = 0, f(t) = 0,
k1(s, t) = μ and k2(s, t) = σ, the proposed model reduces in the following form

u(t) = u0 +
∫ t

0

μu(s)ds +
∫ t

0

σu(s)dW (s), (34)
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(b) N = 200
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Fig. 1. The trajectory of the approximate solution and exact solution of Example 53
along with 95% confidence interval (C.I) for M = 2, J = 5, m = 32 and α = 0.

Table 3. Mean, Standard deviation and mean confidence interval for maximum abso-
lute error in Example (53) with m = 32, J = 5, M = 2 and α = 0.

N E‖e‖∞ Se 95% confidence interval for χe

Lower Upper

30 0.2905 0.2246 0.2101 0.3709

100 0.2836 0.2074 0.2429 0.3243

200 0.2712 0.1898 0.2449 0.2975

500 0.2658 0.1687 0.2510 0.2806
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or,
du(t) = μu(t) + σu(t)dW (t). (35)

The above stochastic differential equation is called geometric Brownian motion
model which is used for modeling the stock prices in the finance [3]. Also in
physics, (35) is the Langevin equation with multiplicative noise [4]. The Langevin
equation is very important tool in physics for describing many physical pro-
cess. Suppose u(t) is any physical process described by the (35) then we always
get probability distribution p(u, t|u0) corresponding to (35) which satisfies the
Fokker-Plank equation.

7 Conclusion

In this paper, we develop a wavelet collocation method based on the Legendre
wavelets to solve SFIDE (1). For this purpose, we compute the deterministic
and stochastic operational matrices based on block pulse function. The SFIDE
(1) is then converted to a system of linear equations by employing the collo-
cation method and making use of operational matrices. The solution of SFIDE
is obtained using our proposed method. In Sect. 5, we solve several examples
to indicate the accuracy and efficiency of the proposed method as discussed in
Sect. 4.
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