
Chapter 4
Functions and Branching

This chapter introduces two fundamental programming concepts: functions
and branching. We are used to functions from mathematics, where we typi-
cally define a function f(x) as some mathematical expression of x, and then
we can then evaluate the function for different values of x, plot the curve
y = f(x), solve equations of the kind f(x) = 0, and so on. A similar function
concept exists in programming, where a function is a piece of code that takes
one or more variables as input, carries out some operations using these vari-
ables, and produces output in return. The function concept in programming
is more general than in mathematics, and is not restricted to numbers or
mathematical expressions, but the general idea is exactly the same.

Branching, or if-tests, is another fundamental concept that exists in all
common programming languages. The idea is that decisions are made in
the code based on the value of some Boolean expression or variable. If the
expression evaluates to true, one set of operations is performed, and if the
expression is false, a different set of operations is. Such tests are essential for
controlling the flow of a computer program.

4.1 Programming with Functions

We have already used a number of Python functions in the previous chapters.
The mathematical functions from the math module are essentially the same
as we are used to from mathematics or from pushing buttons on a calculator:

from math import *
y = sin(x)*log(x)

Additionally, we used a few non-mathematical functions, such as len and
range

n = len(somelist)
for i in range(5, n, 2):
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(...)

and we also used functions that were bound to specific objects, and accessed
with the dot syntax, for instance, append to add elements to a list:

C = [5, 10, 40, 45]
C.append(50)

This last type of function is quite special, since it is bound to an object, and
operates directly on that object (C.append changes C). These bound func-
tions are also referred to as methods, and will be considered in more detail
in Chapter 8. In the present chapter we will primarily consider regular, un-
bound, functions. In Python, such functions provide easy access to already
existing program code written by others (e.g., sin(x)). There is plenty of
such code in Python, and nearly all programs involve importing one or more
modules and using pre-defined functions from them. One advantage of func-
tions is that we can use them without knowing anything about how they are
implemented. All we need to know is what goes in and what comes out, and
the function can thus be used as a black box.

Functions also provide a way of reusing code we have written ourselves,
either in previous projects or as part of the current code, and this is the
main focus of this chapter. Functions let us delegate responsibilities and split
a program into smaller tasks, which is essential for solving all problems of
some complexity. As we shall see later in this chapter, splitting a program into
smaller functions is also convenient for testing and verifying that a program
works as it should. We can write small pieces of code that test individual
functions and ensure that they work correctly before putting the functions
together into a complete program. If such tests are done properly, we can
have some confidence that our main program works as expected. We will
return to this topic towards the end of the chapter.

So how do we write a function in Python? Starting with a simple example,
consider the previously considered mathematical function

A(n) = P (1+ r/100)n.

For given values P = 100 and r = 5.0, we can implement this in Python as
follows:

def amount(n):
P = 100
r = 5.0
return P*(1+r/100)**n

These two lines of code are very similar to the examples from Chapter 3, but
they contain a few new concepts that are worth noting. Starting with the first
line, def amount(n): is called the function header, and defines the function’s
interface. All function definitions in Python start with the word def, which
is simply how we tell Python that the following code defines a function. Af-
ter def comes the name of the function, followed by parentheses containing
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the function’s arguments (sometimes called parameters). This simple func-
tion takes a single argument, but we can define functions that take multiple
arguments by separating the arguments with commas. The parentheses need
to be there, even if we do not want the function to take any arguments, in
which case we would just leave the parentheses empty.

The lines following the function header are the function body, which need
to be indented. The indentation serves the same purpose as for the loops
in Chapter 3: to specify which lines of code belong inside the function, or
to the function body. The two first lines of the function body are regular
assignments, but since they occur inside a function, they define local variables
P and r. Local variables the argument n are used inside the function just as
regular variables. We will return to this topic in more detail later. The last
line of the function body starts with the keyword return, which is also new in
this chapter and is used to specify the output returned by the function. It is
important not to confuse this return statement with the print statements we
used previously. The use of print will simply output something to the screen,
while return makes the function provide an output, which can be thought of
as a variable being passed back to the code that called the function. Consider
for instance the example n = len(somelist) used in the previous chapter,
where len returned an integer that was assigned to a variable n.

Another important thing to note about the code above is that it does not
do much. In fact, a function definition does essentially nothing before it is
called.1 The analogue to the function definition in mathematics is to simply
write down a function f(x) as a mathematical expression. This defines the
function, but there is no output until we start evaluating the function for
some specific values of x. In programming, we say that we call the function
when we use it. When programming with functions, it is common to refer to
the main program as basically every line of code that is not inside a function.
When running the program, only the statements in the main program are
executed. Code inside function definitions is not run until we include a call
to the function in the main program. We have already called pre-defined
functions like sin, len, etc, in previous chapters, and a function we have
written ourselves is called in exactly the same way:

def amount(n):
P = 100
r = 5.0
return P*(1+r/100)**n

year1 = 10
a1 = amount(year1) # call
a2 = amount(5) # call

1This is not entirely true, since defining the function creates a function object, which
we can see by defining a dummy function in the Python shell and then calling dir()
to obtain a list of defined variables. However, no visible output is produced until we
actually call the function, and forgetting to call the function is a common mistake when
starting to program with functions.
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print(a1, a2)
print(amount(6)) # call
a_list = [amount(year) for year in range(11)] #multiple calls

The call amount(n) for some argument n returns a float object, which es-
sentially means that amount(n) is replaced by this float object. We can
therefore make the call amount(n) everywhere a float can be used.

Note that, unlike many other programming languages, Python does not
require the type of function arguments to be specified. Judging from the
function header only, the argument of amount(n) above could be any kind
of variable. However, by looking at how n is used inside the function, we
can tell that it must be a number (integer or float). If we write complex
functions where the argument types are not obvious, we can insert a comment
immediately after the header, a so-called doc string, to tell users what the
arguments should be. We will return to the topic of doc strings later in this
chapter.

4.2 Function Arguments and Local Variables

Just as in mathematics, we can define Python functions with more than one
argument. The formula above involves both P and r in addition to n, and
including them all as arguments could be useful. The function definition could
then look like

def amount(P, r, n):
return P*(1+r/100.0)**n

# sample calls:
a1 = amount(100, 5.0, 10)
a2 = amount(10, r= 3.0, n=6)
a3 = amount(r= 4, n = 2, P=100)

Note that we are using the arguments P, r, and n inside the function exactly
as in the previous example, where we defined P and r inside the function.
Inside a function, there is no distinction between such local variables and the
arguments passed to the function. The arguments also become local variables,
and are used in exactly the same way as any variable we define inside the
function. However, there is an important distinction between local and global
variables. Variables defined in the main program become global variables,
whereas variables defined inside functions are local. The local variables are
only defined and available inside a function, whereas global variables can
be used everywhere in a program. If we tried to access P, r, or n (e.g., by
print(P)) from outside the function, we will simply obtain an error message
stating that the variable is not defined.
Arguments can be positional arguments or keyword arguments. No-
tice also the alternative ways of calling a function. We can either specify the
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argument names in the call, as in r=3.0, n=6, or simply pass the values. If
we specify the names, the order of the arguments becomes arbitrary, as in the
last call above. Arguments that are passed without specifying the name are
called positional arguments, because their position in the argument list de-
termines the variable to which they are assigned. Arguments that are passed
including the name are called keyword arguments. Keyword arguments need
to match the definition of the function; that is, calling the function above with
amount(100, 5.0, year=5) would cause an error message because year is
not defined as an argument to the function. Another rule worth noting is
that a positional argument cannot follow a keyword argument; a call such
as amount(100, 5.0, n=5) is fine, but amount(P=100, 5.0, 5) is not and
the program will stop with an error message. This rule is quite logical, since
a random mix of positional and keyword arguments would make the call very
confusing.
The difference between local and global variables. The distinction
between local and global variables is generally important in programming,
and can be confusing at first. As stated above, the arguments passed to
a function, as well as variables we define inside the function, become local
variables. These variables behave exactly as we are used to inside the function,
but are not visible outside it. The potential source of confusion is that global
variables are also accessible inside a function, just as everywhere else in the
code. We could have assigned a value to the variables P and r outside the
function, anywhere before the first call to amount, and the code would still
work:

P = 100
r = 5.0

def amount(n):
return P*(1+r/100)**n

print(amount(7))

Here n is passed as an argument, while, for P and r, the values assigned
outside the function is used. However, it is also possible to define local and
global variables with the same name, such as

P = 100
r = 5.0

def amount(n):
r = 4.0
return P*(1+r/100)**n

Which value of r is used in the function call here? Local variable names always
take precedence over the global names. When the mathematical formula is
encountered in the code above, Python will look for the values of the variables
P, r, and n that appear in the formula. First, the so-called local namespace
is searched, that is, Python looks for local variables with the given names. If
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local variables are found, as for r and n in this case, these values are used. If
some variables are not found in the local namespace, Python will move to the
global namespace, and look for global variables that match the given names.
If a variable with the right name is found among the global variables, that
is, it has been defined in the main program, then the corresponding value is
used. If no global variable with the right name is found there are no more
places to search, and the program ends with an error message. This sequential
search for variables is quite natural and logical, but still a potential source
of confusion and programming errors. Additional confusion can arise if we
attempt to change a global variable inside a function. Consider, for instance,
this small extension of the code above:

P = 100
r = 5.0

def amount(n):
r = 4.0
return P*(1+r/100)**n

print(amount(n=6))
print(r)

126.53190184960003
5.0

As revealed by the print statements, r is set to 4.0 inside the function, but
the global variable r remains unchanged after the function has been called.
Since the line r = 4.0 occurs inside a function, Python will treat this as
the definition of a new local variable, rather than trying to change a global
one. We thus define a new local r with value 4.0, while there is still another
r defined in the global namespace. After the function has ended, the local
variable no longer exists (in programming terms, it goes out of scope), whereas
the global r is still there and has its original value. If we actually want to
change a global variable inside a function, we must explicitly state so by using
the keyword global. Consider this minor change of the code above:

P = 100
r = 5.0

def amount(n):
global r
r = 4.0
return P*(1+r/100)**n

print(amount(n=6))
print(r)

126.53190184960003
4.0
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In this case, the global r is changed. The keyword global tells Python that
we do want to change a global variable, and not define a new local one. As a
general rule, one should minimize the use of global variables inside functions
and, instead, define all the variables used inside a function either as local
variables or as arguments passed to the function. to the function. Similarly,
if we want the function to change a global variable then we should make
the function return this variable, instead of using the keyword global. It is
difficult to think of a single example where using global is the best solution,
and in practice it should never be used. If we actually wanted the function
above to change the global r, the following is a better way:

P = 100
r = 5.0

def amount(n,r):
r = r - 1.0
a = P*(1+r/100)**n
return a, r

a0, r = amount(7)
print(a0, r)

Notice that, here, we return two values from the function, separated by a
comma, just as in the list of arguments, and we also assign the returned
values to the global variables a0, r in the line where the function is called.
Although this simple example might not be the most useful in practice, there
are many cases in which it is useful for a function call to change a global
variable. In such cases the change should always be performed in this way,
by passing the global variable in as an argument, returning the variable from
the function, and then assigning the returned value to the global variable.
Following these steps is far better than using the global keyword inside the
function, since it ensures that each function is a self-contained entity, with a
clearly defined interface to the rest of the code through the list of arguments
and return values.
Multiple return values are returned as a tuple. For a more practi-
cally relevant example of multiple return values, say we want to implement a
mathematical function so that both the function value and its derivative are
returned. Consider, for instance, the simple physics formula that describes
the height of an object in vertical motion; y(t) = v0t + (1/2)gt2, where v0 is
the initial velocity, g is the gravitational constant, and t is time. The deriva-
tive of the function is y′(t) = v0 −gt, and we can implement a Python function
that returns both the function value and the derivative:

def yfunc(t, v0):
g = 9.81
y = v0*t - 0.5*g*t**2
dydt = v0 - g*t
return y, dydt
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# call:
position, velocity = yfunc(0.6, 3)

As above, the return arguments are separated by a comma, and we assign
the values to the two global variables position and velocity, also separated
by a comma. When a function returns multiple values like this, it actually
returns a tuple, the immutable list type defined in the previous chapter. We
could therefore replace the call above with something like the following:

pos_vel = yfunc(0.6,3)
print(pos_vel)
print(type(pos_vel))

(0.034199999999999786, -2.886)
<class ’tuple’>

We see that the function returns a tuple with two elements. In the previous
call, when we included a comma-separated list of variable names on the left-
hand side (i.e., position, velocity), Python would unpack the elements in
the tuple into the corresponding variables. For this unpacking to work, the
number of variables must match the length of the tuple; otherwise, we obtain
an error message stating that there are too many or not enough values to
unpack.

A function can return any number of arguments, separated by commas
exactly as above. Here we have three:

def f(x):
return x, x**2, x**4

s = f(2)
print(type(s), s)
x, x2, x4 = s

Notice the last line, where a tuple of length 3 is unpacked into three individual
variables.

Example: A function to compute a sum. For a more relevant function
example, of a kind that will arise frequently in this book, consider the sum

L(x;n) =
n∑

i=1

xi

i
,

which is an approximation to − ln(1 − x) for a finite n and |x| < 1. The
corresponding Python function for L(x;n) looks like

def L(x,n):
s = 0
for i in range(1,n+1):

s += x**i/i

return s
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#example use
x = 0.5
from math import log
print(L(x, 3), L(x, 10), -log(1-x))

The output from the print statement indicates that the approximation im-
proves as the number of terms n is increased, as is usual for such approxi-
mating series. For many purposes, it would be useful if the function returned
the error of the approximation, that is, − ln(1 − x) − L(x;n), in addition to
the value of the sum:

from math import log

def L2(x, n):
s = 0
for i in range(1,n+1):

s += x**i/i
value_of_sum = s

error = -log(1-x) - value_of_sum
return value_of_sum, error

# typical call:
x = 0.8; n = 10
value, error = L2(x, n)

A function does not need a return statement. All the functions con-
sidered so far have included a return statement. While this will be the case
for most of the functions we write in this course, there will be exceptions,
and a function does not need to have a return statement. For instance, some
functions only serve the purpose of printing information to the screen, as in

def somefunc(obj):
print(obj)

return_value = somefunc(3.4)

Here, the last line does not make much sense, although it is actually valid
Python code and will run without errors. If somefunc does not return any-
thing, how can we then call the function and assign the result to a variable? If
we do not include a return statement in a function, Python will automatically
return a variable with value None. The value of the variable return_value in
this case will therefore be None, which is not very useful, but serves to illus-
trate the behavior of a function with no return statement. Most functions we
will write in this course will either return variables or print or plot something
to the screen. One typical use of a function without a return value is to print
information in a tabular format to the screen. This is useful in many contexts,
including studying the convergence of series approximations such as the one
above. The following function calls the L2(x,n) function defined above, and
uses a for loop to print relevant information in a nicely formatted table:
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def table(x):
print(f’x={x}, -ln(1-x)={-log(1-x)}’)
for n in [1, 2, 10, 100]:

value, error = L2(x, n)
print(f’n={n:4d} approx: {value:7.6f}, error: {error:7.6f}’)

table(0.5)

x=0.5, -ln(1-x)=0.6931471805599453
n= 1 approx: 0.500000, error: 0.193147
n= 2 approx: 0.625000, error: 0.068147
n= 10 approx: 0.693065, error: 0.000082
n= 100 approx: 0.693147, error: 0.000000

This function does not need to return anything, since entire purpose is to
print information to the screen.

4.3 Default Arguments and Doc Strings

When we used the range-function in the previous chapter, we saw that we
could vary the number of arguments in the function call from one to three, and
the non-specified arguments would be assigned default values. We can achieve
the same functionality in our own functions, by defining default arguments
in the function definition:

def somefunc(arg1, arg2, kwarg1=True, kwarg2=0):
print(arg1, arg2, kwarg1, kwarg2)

A function defined in this way can be called with two, three, or four argu-
ments. The first two have no default value and must therefore be included in
the call, while the last two are optional and will be set to the default value if
not specified in the call. In texts on Python programming, default arguments
are often referred to as keyword arguments, although these terms do not mean
exactly the same thing. They are, however, closely related, which is why the
terms are sometimes used interchangeably. Just as we cannot have keyword
arguments preceding positional arguments in a function call, we cannot have
default arguments preceding non-default arguments in the function header.
The following code demonstrates uses of the alternative function calls for a
useless but illustrative function. Testing a simple function such as the follow-
ing, which does nothing but print out the argument values, is a good way to
understand the implications of default arguments and the resulting flexibility
in argument lists:

>>> def somefunc(arg1, arg2, kwarg1=True, kwarg2=0):
>>> print(arg1, arg2, kwarg1, kwarg2)

>>> somefunc(’Hello’, [1,2]) # drop kwarg1 and kwarg2
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Hello [1, 2] True 0 # default values are used

>>> somefunc(’Hello’, [1,2], ’Hi’)
Hello [1, 2] Hi 0 # kwarg2 has default value

>>> somefunc(’Hello’, [1,2], ’Hi’, 6)
Hello [1, 2] Hi 0 # kwarg2 has default value

>>> somefunc(’Hello’, [1,2], kwarg2=’Hi’) #kwarg2
Hello [1, 2] True Hi # kwarg1 has default value

>>> somefunc(’Hello’, [1,2], kwarg2=’Hi’, kwarg1=6)
Hello [1, 2] 6 Hi # specify all args

Using what we now know about default arguments, we can improve the func-
tion considered above, which implements the formula

y(t) = v0t− 1
2gt2.

Here, it could be natural to think of t as the primary argument to the func-
tion, which should always be provided, while v0 and possibly also g could be
provided as default arguments. The function definition in Python could read

def yfunc(t, v0=5, g=9.81):
y = v0*t - 0.5*g*t**2
dydt = v0 - g*t
return y, dydt

#example calls:
y1, dy1 = yfunc(0.2)
y2, dy2 = yfunc(0.2,v0=7.5)
y3, dy3 = yfunc(0.2,7.5,10.0)

Documentation of Python functions. An important Python convention
is to document the purpose of a function, its arguments, and its return values
in a doc string - a (triple-quoted) string written immediately after the func-
tion header. The doc string can be long or short, depending on the complexity
of the function and its inputs and outputs. The following two examples show
how a doc string can be used:

def amount(P, r, n):
"""Compute the growth of an investment over time."""
a = P*(1+r/100.0)**n
return a

def line(x0, y0, x1, y1):
"""
Compute the coefficients a and b in the mathematical
expression for a straight line y = a*x + b that goes
through two points (x0, y0) and (x1, y1).

x0, y0: a point on the line (floats).



46 4 Functions and Branching

x1, y1: another point on the line (floats).
return: a, b (floats) for the line (y=a*x+b).
"""
a = (y1 - y0)/(x1 - x0)
b = y0 - a*x0
return a, b

Doc strings do not take much time to write, and are very useful for others who
want to use the function. A widely accepted convention in the Python com-
munity, doc strings are also used by various tools for automatically generating
nicely formatted software documentation. Much of the online documentation
of Python libraries and modules is automatically generated from doc strings
included in the code.

4.4 If-Tests for Branching the Program Flow

In computer programs we often want to perform different actions depending
on a condition. As usual, we can find a similar concept in mathematics that
should be familiar to most readers of this book. Consider a function defined
in a piecewise manner, for instance,

f(x) =
{

sinx, 0 ≤ x ≤ π
0, otherwise

The Python implementation of such a function needs to test the value of the
input x, and return either zero or sin(x) depending on the outcome. Such
a decision in the program code is called branching and is obtained using an
if-test, or, more generally, an if-else block. The code looks like

from math import sin, pi

def f(x):
if 0 <= x <= pi:

return sin(x)
else:

return 0

print(f(0.5))
print(f(5*pi))

The new item here is the if-else block. An if-test is simply constructed by
the keyword if followed by a Boolean variable or expression, and then a
block of code which is to be executed if the condition is true. When the if-
test is reached in the function above, the Boolean condition is tested, just
as for the while loops in the previous chapter. If the condition is true, the
following block of indented code is executed (in this case, just one line); if
not, the indented code block after else is executed. You might also notice
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that, unlike the functions seen so far, this function has two return statements.
This is perfectly valid and is quite common in functions with if-tests. When
a return statement is executed, the function call is over and any following
lines in the function are simply ignored. Therefore, there is usually no point
in having multiple return statements unless they are combined with if-tests,
since, if the first one is always executed the others will never be reached.

Sometimes we just want a piece of code to be executed if a condition is
true, and to do nothing otherwise. In such cases, we can skip the else block
and define only an if-test:

if condition:
<block of statements, executed if condition is True>

<next line after if-block, always executed>

Here, whatever is inside the if-block is executed if condition is true, other-
wise the program simply moves to the next line after the block. As above,
we can add an else-block to ensure that exactly one of two code blocks is
executed

if condition:
<block of statements, executed if condition is True>

else:
<block of statements, executed if condition is False>

For mathematical functions of the form considered above we usually want to
include an else-block, since we want the function to return a meaningful value
for all input arguments. Forgetting the else-block in the definition f(x) above
would make the function return sin(x) (a float) for 0 ≤ x ≤ π, and otherwise
None, which is obviously not what we want. Finally, we cans combine multiple
if-else statements with different conditions

if condition1:
<block of statements>

elif condition2:
<block of statements>

elif condition3:
<block of statements>

else:
<block of statements>

<next statement>

Notice the keyword elif, short for else if, which ensures that that subse-
quent conditions are only tested only if the preceding ones are False. The
conditions are checked one by one and, as soon as one is evaluated as true,
the corresponding block is executed and the program moves to the first state-
ment after the else block. The remaining conditions are not checked. If none
of the conditions is true, the code inside the else block is executed.

Multiple branching has useful applications in mathematics, since we often
see piecewise functions defined on multiple intervals. Consider for instance
the piecewise linear function
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N(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < 0
x, 0 ≤ x < 1
2−x, 1 ≤ x < 2
0, x ≥ 2

.

which in Python can be implemented with multiple if-else-branching

def N(x):
if x < 0:

return 0
elif 0 <= x < 1:

return x
elif 1 <= x < 2:

return 2 - x
elif x >= 2:

return 0

In later chapters we will see multiple examples of more general use of branch-
ing, not restricted to mathematics or piecewise-defined functions.

Inline if-tests for shorter code. The list comprehensions in Chapter 3
offered a more compact alternative to the standard way of defining lists, and
a similar alternative exists for if-tests. A common use of if-else blocks is to
assign a value to a variable, where the value depends on some condition, just
as in the examples above. The general form looks like

if condition:
variable = value1

else:
variable = value2

This code can be replaced by the following one-line if-else block:

variable = (value1 if condition else value2)

Using this compact notation, we can write the example from the start of this
section as

def f(x):
return (sin(x) if 0 <= x <= pi else 0)

4.5 Functions as Arguments to Functions

Arguments to Python functions can be any Python object, including another
function. This functionality is quite useful for many scientific applications,
where we need to define mathematical functions that operate on or make use
of other mathematical functions. For instance, we can easily write Python
functions for numerical approximations of integrals

∫ b
a f(x)dx, derivatives

f ′(x), and roots f(x) = 0. For such functions to be general and useful, they
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should work with an arbitrary f(x), which is most conveniently accomplished
by passing a Python function f(x) as an argument to the function.

Consider the example of approximating the second derivative f ′′(x) by
centered finite differences,

f ′′(x) ≈ f(x−h)−2f(x)+f(x+h)
h2 .

The corresponding Python function looks like

def diff2(f, x, h=1E-6):
r = (f(x-h) - 2*f(x) + f(x+h))/float(h*h)
return r

We see that the function f is passed to the function just as any other argu-
ment, and is called as a regular function inside diff2. Of course, for this to
work, we need to actually send a callable function as the first argument to
diff2. If we send something else, like a number or a string, the code will stop
with an error when it tries to make the call f(x-h) in the next line. Such
potential errors are part of the price we pay for Python’s flexibility. We can
pass any argument to a function, but the object we pass must be possible to
use as intended inside the function. As noted above, for more complex func-
tions, it is useful to include a doc string that specifies the types of arguments
the function expects.
Lambda functions for compact inline function definitions. In order
to use the function diff2 above, one would standardly define our f(x) as a
Python function, and then pass it as an argument to diff2. The following
code shows an example:

def f(x):
return x**2 - 1

df2 = diff2(f,1.5)
print(df2)

The concept known as a lambda function offers a compact way to define
functions, which can be convenient for the present application. Using the
keyword lambda, we can define our f on a single line, as follows:

f = lambda x: x**2 - 1

More generally, a lambda function defined by

somefunc = lambda a1, a2, ...: some_expression

is equivalent to

def somefunc(a1, a2, ...):
return some_expression

It could be natural to ask whether anything is really gained here, and whether
it is useful to introduce a new concept just to reduce a function definition
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from two lines to one line. One answer is that the lambda function definition
can be placed directly in the argument list of the other function. Instead of
first defining f(x) and then passing it as an argument, as in the code above,
we can combine these tasks into one line:

df2 = diff2(lambda x: x**2-1,1.5)
print(df2)

Using lambda functions in this way can be quite convenient in cases in which
we need to pass a simple mathematical expression as an argument to a Python
function. We save some typing, and could also improve the code’s readability.

4.6 Solving Equations with Python Functions

Solving equations of the form f(x) = 0 is a frequently occuring task in all
branches of science and engineering. For special cases, such as a linear or
quadratic f , we have simple formulas that give us the solution directly. In
the general case, however, the equation cannot be solved analytically, and we
need to find an approximate solution using numerical methods. We shall see
that we can create powerful and flexible tools for equation solving based on
the building blocks introduced so far. Specifically, we will combine functions
and function arguments with the while loop introduced in Chapter 3.

Finding roots on an interval with the bisection method. One of the
simplest algorithms for solving equations of the form f(x) = 0 is called the
bisection method. This method is founded on the intermediate value theorem,
which states that, if a continuous function changes sign on an interval [a,b]
then there must be a value x ∈ [a,b] such that f(x) = 0. In the bisection
method we start by choosing an interval [a,b] on which f changes sign (i.e.,
f(a)f(b) < 0), and then compute the midpoint m = (a + b)/2 and check the
sign of f(m). If f changes sign on [a,m] then we repeat the process on the
interval [a,m]; otherwise, we choose [m,b] as our new interval and repeat the
process there. These steps are conveniently implemented as a while loop, and
we can create a generic tool by placing the while loop inside a function that
takes a function as argument:

from math import exp

def bisection(f,a,b,tol= 1e-3):
if f(a)*f(b) > 0:

print(f’No roots or more than one root in [{a},{b}]’)
return

m = (a+b)/2

while abs(f(m)) > tol:
if f(a)*f(m) < 0:
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b = m
else:

a = m
m = (a+b)/2

return m

#call the method for f(x)= x**2-4*x+exp(-x)
f = lambda x: x**2-4*x+exp(-x)
sol = bisection(f,-0.5,1,1e-6)

print(f’x = {sol:g} is an approximate root, f({sol:g}) = {f(sol):g}’)

We see that the bisection function takes four arguments: the mathematical
function f(x) implemented as a Python function, the bounds for our initial
interval, and the tolerance for the approximate solution. The first if-test of
the function simply checks that f changes sign in [a,b], which ensures that the
function has at least one root on the interval. We then proceed to define the
midpoint m and enter the while-loop, which forms the core of the algorithm.
This loop will continue running as long as abs(f(m)) > tol (otherwise m is
our solution), repeatedly checking whether f changes sign on [a,m] or [m,b],
and then calculating a new m to repeat the process on an interval of half the
size.
Newton’s method gives faster convergence. The bisection method con-
verges quite slowly, and other methods are far more popular for solving non-
linear equations. In particular, numerous varieties of Newton’s method are
widely used in practice. Newton’s method is based on a local linearization of
the non-linear function f(x). Starting with an initial guess x0, we replaces
f(x) by a linear function g(x) that satisfies g(x) ≈ f(x) in a small interval
around x0. Then, we solve the equation g(x) = 0 to find an updated guess
x1, and repeat the process of linearization around that point. Repeated ap-
plication of these steps converges quickly towards the true solution, provided
that the initial guess x0 is sufficiently close. In mathematics, one step of the
algorithm looks like

xn+1 = xn − f(xn)
f ′(xn) ,

where xn is the solution after n iterations, xn+1 is the improved approxima-
tion, and f ′(xn) is the derivative of f in xn.

Just as the bisection method, Newton’s method is easy to implement in
a while loop, and we can implement it as a generic function that takes a
Python function implementing f(x) as argument. The function will also need
f ′(x), since this is used in the algorithm, as well as an initial guess x0 and a
tolerance:

from math import exp

def Newton(f, dfdx, x0, tol= 1e-3):
f0 = f(x0)
while abs(f0) > tol:
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x1 = x0 - f0/dfdx(x0)
x0 = x1
f0 = f(x0)

return x0

#call the method for f(x)= x**2-4*x+exp(-x)
f = lambda x: x**2-4*x+exp(-x)
dfdx = lambda x: 2*x-4-exp(-x)

sol = Newton(f,dfdx,0,1e-6)

print(f’x = {sol:g} is an approximate root, f({sol:g}) = {f(sol):g}’)

Notice how the x0 variable is updated inside the loop. The algorithm only
needs to know the value at one iteration to compute the next one, so for each
iteration we update x0 to hold the most recent approximation, and then use
this to compute the next one. Note also that the implementation provided
here is not very robust, and if the method does not converge, it will simply
continue in an infinite loop. One simple way to improve the implementation
is to stop the method after a given number of iterations:

from math import exp

def Newton2(f, dfdx, x0, max_it=20, tol= 1e-3):
f0 = f(x0)
iter = 0
while abs(f0) > tol and iter < max_it:

x1 = x0 - f0/dfdx(x0)
x0 = x1
f0 = f(x0)
iter += 1

converged = iter < max_it
return x0, converged, iter

#call the method for f(x)= x**2-4*x+exp(-x)
f = lambda x: x**2-4*x+exp(-x)
dfdx = lambda x: 2*x-4-exp(-x)

sol, converged, iter = Newton2(f,dfdx,0,tol=1e-3)

if converged:
print(f’Newtons method converged in {iter} iterations’)

else:
print(f’The method did not converge’)

Newton’s method usually converges much faster than the bisection method,
but has the disadvantage the function f needs to be manually differentiated.
In Chapter 8 we will see some examples of how this step can be avoided.
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4.7 Writing Test Functions to Verify our
Programs

In the first part of this chapter, we mentioned the idea of writing tests to
verify that functions work as intended. This approach to programming can be
very effective, and although we spend some time writing the tests, we often
save much more time by the fact that we discover errors early, and can build
our program from components that are known to work. The process is often
referred to as unit testing, since each test verifies that a small unit of the
program works as expected. Many programmers even take the approach one
step further and write the test before they write the actual function. This
approach is often referred to as test-driven development and is an increasingly
popular method for software development.

The tests we write to test our functions are also functions, a special type
of function known as test functions. Writing good test functions, which test
the functionality of our code in a reliable manner, can be quite challenging;
however, the overall idea of test functions is very simple. For a given function,
which often takes one or more arguments, we choose arguments such that we
can calculate the result of the function by hand. Inside the test function,
we then simply call our function with the right arguments and compare the
result returned by the function with the expected (hand-calculated) result.
The following example illustrates how we can write a test function to test
that the (very) simple function double(x) works as it should:

def double(x): # some function
return 2*x

def test_double(): # associated test function
x = 4 # some chosen x value
expected = 8 # expected result from double(x)
computed = double(x)
success = computed == expected # Boolean value: test passed?
msg = f’computed {computed}, expected {expected}’
assert success, msg

In this code, the only Python keyword that we have not seen previously is
assert, which is used instead of return whenever we write a test function.
Test functions should not return anything, so a regular return statement
would not make sense. The only purpose of the test function is to compare
the value returned by a function with the value we expect it to return, and
to write an error message if the two are different. This task is precisely what
assert does. The keyword assert should always be followed by a condi-
tion, success in the code above, that is true if the test passes and false if
it fails. The code above follows the typical recipe; we compare the expected
with the returned result in computed == expected, which is a Boolean ex-
pression returning true or false. This value is then assigned to the variable
success, which is included in the assert statement. The last part of the
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assert statement, the text string msg, is optional and is simply included to
give a more meaningful error message if the test fails. If we leave this out, and
only write assert success, we will see a general message stating that the
test has failed (a so-called assertion error), but without much information
about what actually went wrong.

Some rules should be observed when writing test functions:

• The test function must have at least one statement of the type assert
success, where success is a Boolean variable or expression, which is true
if the test passed and false otherwise. We can include more than one assert
statement if we want, but we always need at least one.

• The test function should take no arguments. The function to be tested
will typically be called with one or more arguments, but these should be
defined as local variables inside the test function.

• The name of the function should always be test_, followed by the name
of the function we want to test. Following this convention is useful because
it makes it obvious to anyone reading the code that the function is a test
function, and it is also used by tools that can automatically run all test
functions in a given file or directory. More about this is discussed below.

If we follow these rules, and remember the fundamental idea that a test func-
tion simply compares the returned result with the expected result, writing
test functions does not have to be complicated. In particular, many of the
functions we write in this course will evaluate some kind of mathematical
function and then return either a number or a list/tuple of numbers. For this
type of function, the recipe for test functions is quite rigid, and the structure
is usually exactly the same as in the simple example above.

If you are new to programming, it can be confusing to be faced with
a general task such as "write a test function for the Python function
somefunc(x,y)," and it is natural to ask questions about what arguments the
function should be tested for and how you can know what the expected values
are. In such cases it is important to remember the overall idea of test func-
tions, and also that these are choices that must be made by the programmer.
You have to choose a set of suitable arguments, then calculate or otherwise
predict by hand what the function should return for these arguments, and
write the comparison in the test function.

A test function can include multiple tests. We can have multiple assert
statements in a single test function. This can be useful if we want to test a
function with different arguments. For instance, if we write a test function
for one of the piecewise-defined mathematical functions considered earlier in
this chapter, it would be natural to test all the separate intervals on which
the function is defined. The following code illustrates how this can be done:

from math import sin, pi

def f(x):
if 0 <= x <= pi:
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return sin(x)
else:

return 0

def test_f():
x1, exp1 = -1.0, 0.0
x2, exp2 = pi/2, 1.0
x3, exp3 = 3.5, 0.0

tol = 1e-10
assert abs(f(x1)-exp1) < tol, f’Failed for x = {x1}’
assert abs(f(x2)-exp2) < tol, f’Failed for x = {x2}’
assert abs(f(x3)-exp3) < tol, f’Failed for x = {x3}’

Note here that, since we compare floating point numbers, which have finite
precision on a computer, we compare with a tolerance rather than the equality
==. The tolerance tol is some small number, chosen by the programmer,
that is small enough that we would consider a di�erence of this magnitude
insignificant, but greater than the machine precision (¥ 10≠16). In practice,
comparing floats using == will quite often work, but sometimes it fails and it
is impossible to predict when this will happen. The code therefore becomes
unreliable, and it is much safer to compare with a tolerance. On the other
hand, when we work with integers , we can always use ==.

One could argue that the test function code above is quite inelegant and
repetitive, since we repeat the same lines multiple times with very minor
changes. Since we only repeat three lines, it might not be a big deal in this
case, but if we included more assert statements it would certainly be both
boring and error-prone to write code in this way. In the previous chapter, we
introduced loops as a much more elegant tool f or performing such repetitive
tasks. Using lists and a for loop, the example above can be written as follows:
from math import sin, pi

def f(x):
if 0 <= x <= pi:

return sin(x)
else:

return 0

def test_f():
x_vals = [-1, pi/2, 3.5]
exp_vals = [0.0, 1.0, 0.0]
tol = 1e-10
for x, exp in zip(x_vals, exp_vals):

assert abs(f(x)-exp) < tol, \
f’Failed for x = {x}, expected {exp}, but got {f(x)}’

Python tools for automatic testing. An advantage of following the nam-
ing convention for test functions defined above is that there are tools that
can be used to automatically run all the test functions in a file or folder
and report if any bug has sneaked into the code. The use of such automatic
testing tools is essential in larger development projects with multiple people
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working on the same code, but can also be quite useful for your own projects.
The recommended and most widely used tool is called pytest or py.test,
where pytest is simply the new name for py.test. We can run pytest from
the terminal window, and pass it either a file name or a folder name as an
argument, as in

Terminal

Terminal> pytest .
Terminal> pytest my_python_project.py

If we pass it a file name, pytest will look for functions in this file with a name
starting with test_, as specified by the naming convention above. All these
functions will be identified as test functions and called by pytest, regardless
of whether the test functions are actually called from elsewhere in the code.
After execution, pytest will print a short summary of how many tests it
found, and how many that passed and failed.

For larger software projects, it might be more relevant to give a directory
name as argument to pytest, as in the first line above. In this case, the
tool will search the given directory (here ., the directory we are currently
in) and all its sub-directories for Python files with names starting or ending
with test (e.g., test_math.py, math_test.py, etc.). All these files will be
searched for test functions following the naming convention, and these will
be run as above. Large software projects typically have thousands of test
functions, and it is very convenient to collect them in a separate file and use
automatic tools such as pytest. For the smaller programs we write in this
course, it can be just as easy to write the test functions in the same file as
the functions being tested.

It is important to remember that test functions run silently if the test
passes; that is, we only obtain an output if there is an assertion error, other-
wise nothing is printed to the screen. When using pytest we are always given
a summary specifying how many tests were run, but if we include calls to the
test functions directly in the .py file, and run this file as normal, there will
be no output if the test passes. This can be confusing, and one is sometimes
left wondering if the test was called at all. When first writing a test function,
it can be useful to include a print-statement inside the function, simply to
verify that the function is actually called. This statement should be removed
once we know the function works correctly and as we become used to how
the test functions work.
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