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1 Introduction

Various two-sample statistical tests are designed to determine whether given
two populations differ significantly. In such case we assume that the universe of
discourse consists of two populations, say X and Y , with cumulative distribution
functions F and G, respectively. Then, having a random sample of size n drawn
from the X population and another random sample of size m drawn from the Y
population, we consider the null hypothesis that these two samples are actually
drawn from the same population, i.e. H0 : F = G. One may verify H0 against the
general alternative hypothesis that the populations just differ in some way. The
Kolmogorov-Smirnov test or the Wald-Wolfowitz run test are often used in this
context (see e.g. [5]). However, they are really useful in preliminary studies only
since affected by any type of difference between distributions, they are not very
efficient in detecting any specific type of the difference like difference in location
or difference in variablity. Other tests, like the Mann-Whitney-Wilcoxon test, the
median test, etc. (see e.g. [5]) are particularly sensitive to differences in location
when the populations are identical otherwise and hence cannot be expected to
perform extremely well against other alternatives.

However, sometimes we need statistical procedures designed to detect dif-
ferences in variability or dispersion instead of location. Indeed, comparison of
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variability might be of interest in many areas including social sciences, biology,
clinical trials, engineering, manufacturing and quality control, etc. Moreover,
tests for the equality of variances are often required as a preliminary tool for the
analysis of variance (ANOVA), dose–response modeling, discriminant analysis,
etc.

It is important to emphasize that comparing variability is much harder than
comparing measures of location. The famous F test assumes that both underlying
populations are normally distributed and is not robust to departures from nor-
mality even asymptotically. Thus many nonparametric two-sample tests based
on the ranks have been proposed for the scale problem. The best-known tests
are the Ansari-Bradley test, the Mood test, the Siegel-Tukey test, the Klotz
normal-scores test, the Sukhatme test, etc.

Designing tests for the dispersion problem turns out to be much more difficult
in the case of imprecise or vague data which appear quite often in the real-life
problems. In particular, human ratings based on opinions or associated with per-
ceptions often lead to data that cannot be expressed in a numerical scale because
they consist of intrinsically imprecise or fuzzy elements. Since they are also real-
izations of some random experiment, we are faced with random fuzzy structures
that cannot be analyzed with classical statistical methods. Obviously, one may
try to neglect, hide or remove imprecision but the most recommended approach
is to consider it as a challenge for modeling and developing new inferential tools.

A general framework for such modeling is given by fuzzy random variables.
However, besides mathematical elegence they also bring some fundamental dif-
ficulties. For instance, random fuzzy numbers are not linearly ordered so the
aforementioned tests based on ranks cannot be directly applied in fuzzy envi-
ronment. Depending on the context various test constructions have been pro-
posed in the literature (for the overview we refer the reader e.g. to [7,8,11–
14,16,18,19,21,26]). However, the dispersion problem with imprecise data has
not beed considered very often. Ramos-Guajardo and Lubiano [26] proposed the
bootstrap generalization of the Levene test for random fuzzy sets to examine
homoscedasticity of k populations. Grzegorzewski [15] introduced two general-
izations of the Sukhatme test for interval-valued data.

In this paper we suggest a permutation test for fuzzy data to compare vari-
ability of two populations. For motivations we turned back to the classical infer-
ence showing that permutation tests, like the bootstrap, require extremly limited
assumptions. Indeed, permutation tests are totally distribution-free and require
only exchangeability (i.e., under the null hypothesis we can exchange the labels
on the observations without affecting the results). Classical permutation test
are often more powerful than their bootstrap counterparts (see [9]). Permuta-
tion test are exact if all permutation are considered, while bootstrap tests are
exact only for very large samples. Moreover, asymptotically permutation tests
are usually as powerful as the most powerful parametric tests (see [1]). Keeping
this in mind we combine the Pan test [22] and the Marozzi test [20] and then
generalize them into the permutation testing procedure that handle fuzzy data.
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The paper is organized as follows: in Sect. 2 we recall basic concepts related
to fuzzy data modeling and operations on fuzzy numbers. Section 3 is devoted
to fuzzy random variables. In Sect. 4 we introduce the two-sample test for the
dispersion dedicated to fuzzy data. Next, in Sect. 5 we present some results of the
simulation study and the case study with the proposed test. Finally, conclusions
and some indications for the futher research are given in Sect. 6.

2 Fuzzy Data

A fuzzy number is an imprecise value characterized by a mapping A : R →
[0, 1], called a membership function), such that its α-cut defined by

Aα =

{
{x ∈ R : A(x) � α} if α ∈ (0, 1],
cl{x ∈ R : A(x) > 0} if α = 0,

(1)

is a nonempty compact interval for each α ∈ [0, 1]. Operator cl in (1) denotes
for the closure. Thus every fuzzy number is completely characterized both by
its memberschip function A(x) or by a family of its α-cuts {Aα}α∈[0,1]. Two
α-cuts are of special interest: A1 = core(A) known as the core, which contains
all values which are fully compatible with the concept described by the fuzzy
number A and A0 = supp(A) called the support, which are compatible to some
extent with the concept modeled by A.

The most often used fuzzy numbers are trapezoidal fuzzy numbers (some-
times called fuzzy intervals) with membership functions of the form

A(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x−a1
a2−a1

if a1 � x < a2,

1 if a2 � x � a3,
a4−x
a4−a3

if a3 < x � a4,

0 otherwise,

(2)

where a1, a2, a3, a4 ∈ R such that a1 � a2 � a3 � a4. A trapezoidal fuzzy
number (2) is often denoted as Tra(a1, a2, a3, a4). Obviously, a1 = inf supp(A),
a2 = inf core(A), a3 = sup core(A) and a4 = sup supp(A), which means that
each trapezoidal fuzzy numbers is completely described by its support and core.

A fuzzy number A is said to be a triangular fuzzy number if a2 = a3,
while if a1 = a2 and a3 = a4 we have the so-called interval (or rectangular)
fuzzy number. The families of all fuzzy numbers, trapezoidal fuzzy numbers,
triangular fuzzy number and interval fuzzy numbers will be denoted by F(R),
F

T (R), FΔ(R) and F
I(R), respectively, where F

I(R) ⊂ F
Δ(R) ⊂ F

T (R) ⊂ F(R).
Basic arithmetic operations in F(R) are defined through natural α-cut-wise

operations on intervals. In particular, the sum of two fuzzy numbers A and B is
given by the Minkowski addition of corresponding α-cuts, i.e.

(A + B)α =
[
inf Aα + inf Bα, sup Aα + supBα

]
,
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for all α ∈ [0, 1]. Similarly, the product of a fuzzy number A by a scalar θ ∈ R

is defined by the Minkowski scalar product for intervals, i.e. for all α ∈ [0, 1]

(θ · A)α = [min{θ inf Aα, θ supAα},max{θ inf Aα, θ sup Aα}] .

It is worth noting that a sum of trapezoidal fuzzy numbers is also a trape-
zoidal fuzzy number: if A = Tra(a1, a2, a3, a4) and B = Tra(b1, b2, b3, b4) then

A + B = Tra(a1 + b1, a2 + b2, a3 + b3, a4 + b4). (3)

Moreover, the product of a trapezoidal fuzzy number A = Tra(a1, a2, a3, a4) by
a scalar θ is a trapezoidal fuzzy number

θ · A =

{
Tra(θ · a1, θ · a2, θ · a3, θ · a4) if θ � 0,

Tra(θ · a4, θ · a3, θ · a2, θ · a1) if θ < 0.
(4)

Unfortuntely,
(
F(R),+, ·) has not linear but semilinear structure since in

general A + (−1 · A) �= 1{0}. Consequently, the Minkowski-based difference does
not satisfy, in general, the addition/subtraction property that (A+(−1·B))+B =
A. To overcome this problem the so-called Hukuhara difference was defined as
follows:

C := A −H B if and only if B + C = A

Although now A −H A = 1{0} or (A −H B) + B = A hold but the Hukuhara
difference does not always exist. Therefore, one should be aware that subtraction
in F(R) generally leads to critical problems and should be avoided, if possible.

At least some of the problems associated with the lack of a satisfying differ-
ence in constructing statistical tools for reasoning based on fuzzy observations
could be overcome by using adequate metrics defined in F(R) – for the general
overview see [2]. Obviously, one can define various metrics in F(R) but perhaps
the most often used in statistical context is the one proposed by Gil et al. [6]
and by Trutschnig et al. [27].

Let λ be a normalized measure associated with a continuous distribution
having support in [0, 1] and let θ > 0. Then for any A,B ∈ F(R) we define a
metric Dλ

θ as follows

Dλ
θ (A,B) =

( ∫ 1

0

[
(mid Aα − mid Bα)2 + θ · (spr Aα − spr Bα)2

]
dλ(α)

)1/2

, (5)

where mid Aα = 1
2 (inf Aα + supAα) and sprAα = 1

2 (sup Aα − inf Aα) denote
the mid-point and the radius of the α-cut Aα, respectively.

Both λ and θ correspond to some weighting: λ allows to weight the influence
of each α-cut, while by a particular choice of θ one may weight the impact of the
distance between the mid-points of the α-cuts (i.e. the deviation in location) in
contrast to the distance between their spreads (i.e. the deviation in vagueness).
In practice, the most common choice of λ is the Lebesgue measure on [0, 1]), while



86 P. Grzegorzewski

the most popular choice is θ = 1 or θ = 1
3 . It is worth noting that assuming θ = 1

we obtain

Dλ
1 (A,B) =

( ∫ 1

0

[1
2
(inf Aα − inf Bα)2 +

1
2
(supAα − supBα)2

]
dλ(α)

)1/2

, (6)

i.e. the metric which weights uniformly the two squared Euclidean distances
and is equivalent to the distance considered in [4,10]. One may also notice that
assuming θ = 1

3 we obtain

Dλ
1/3(A,B) =

√∫ 1

0

(∫ 1

0

[
A

[t]
α − B

[t]
α

]2
dt

)
dλ(α), (7)

where A
[t]
α = (1 − t) inf Aα + t sup Aα, which means that Dλ

1/3(A,B) aggregates
uniformly the squared Euclidean distances between the convex combination of
points in α-cuts representing A and B.

It should be stressed that whatever (λ, θ) is chosen Dλ
θ is an L2-type metric in

F(R) having some important and useful properties. It is translational invariant,
i.e. Dλ

θ (A + C,B + C) = Dλ
θ (A,B) for all A,B,C,∈ F(R), and it is rotational

invariant, i.e. Dλ
θ

(
(−1) · A, (−1) · B

)
= Dλ

θ (A,B) for all A,B ∈ F(R). More-
over, (F(R),Dλ

θ ) is a separable metric space and for each fixed λ all Dλ
θ are

topologically equivalent.

3 Fuzzy Random Variables

Suppose that the result of an experiment consists of random samples of impre-
cise data described by fuzzy numbers. To cope with such problem we need a
model which grasps both aspects of uncertainty that appear in data, i.e. ran-
domness (associated with data generation mechanism) and fuzziness (connected
with data nature, i.e. their imprecision). To handle such data Puri and Ralescu
[24] introduced the notion of a fuzzy random variable (also called a random
fuzzy number).

Definition 1. Given a probability space (Ω,A, P ), a mapping X : Ω → F(R)
is called a fuzzy random variable if for all α ∈ [0, 1] the α-cut function Xα is a
compact random interval.

In other words, X is a random fuzzy variable if and only if X is a Borel
measurable function w.r.t. the Borel σ-field generated by the topology induced
by Dλ

θ .
Puri and Ralescu [24] defined also the Aumann-type mean of a fuzzy random

variable X as the fuzzy number E(X) ∈ F(R) such that for each α ∈ [0, 1] the
α-cut

(E(X)
)
α

is equal to the Aumann integral of Xα. It is seen that

(E(X)
)
α

=
[
E(mid Xα) − E(spr Xα),E(mid Xα) + E(spr Xα)

]
.
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To characterize dispersion of a fuzzy random variable X we can also define (see
[17]) the Dλ

θ -Fréchet-type variance V(X), which is a nonnegative real number
such that

V(X) = E

([
Dλ

θ (X, E(X))
]2

)
=

∫ 1

0

Var(mid Xα)dλ(α) + θ

∫ 1

0

Var(sprXα)dλ(α).

Given a sample of random fuzzy numbers X = (X1, . . . , Xn) a natural estimator
of E(X) is the average X ∈ F(R) such that for each α ∈ [0, 1]

Xα =
[ 1
n

n∑
i=1

inf(Xi)α,
1
n

n∑
i=1

sup(Xi)α

]
(8)

=
[ 1
n

n∑
i=1

mid (Xi)α − 1
n

n∑
i=1

spr (Xi)α,
1
n

n∑
i=1

mid (Xi)α +
1
n

n∑
i=1

spr (Xi)α

]
,

while the estimator of V(X) is the Dλ
θ -type sample variance S2 ∈ R given by

S2 =
1

n − 1

n∑
i=1

Dλ
θ

(
Xi,X

)2
. (9)

Although aforementioned constructions preserve many properties known
from the real-valued inference, one should be aware of the problems typical
of statistical reasoning with fuzzy data. As it was noted in Sect. 2, there are
problems with subtraction of fuzzy numbers. Similar problems appear in the
case of division of fuzzy numbers. Hence, it is advisable to avoid both opera-
tions wherever it is possible. Moreover, some difficulties in fuzzy data analysis is
caused by the lack of universally accepted total ranking between fuzzy numbers.
Another source of possible problems that appear in conjunction of randomness
and fuzziness is the absence of suitable models for the distribution of fuzzy ran-
dom variables. Even worse, there are not yet Central Limit Theorems for fuzzy
random variables which can be applied directly in statistical inference.

The disadvantages mentioned above make the straightforward generalization
of the classical statistical methodology into the fuzzy context either difficult or,
sometimes, even impossible. For instance, in most cases we are not able to find
the null distribution of a test statistic based on fuzzy data and, consequently, to
find either the critical value or to compute the p-value required for rejection or
acceptance of the hypothesis under study. To break through that problem some
researchers propose to use the bootstrap [7,8,18,19,21,25,26].

In this paper we suggest another methodology based on permutations. For
motivations we turn back to the classical inference which shows that permutation
tests, like the bootstrap, require extremly limited assumptions. Bootstrap tests
usually rely on assumption that successive observations are independent, while
permutation tests require only exchangeability, i.e. under the null hypothesis we
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can exchange the labels on the observations without affecting the results (obvi-
ously, if the observations in a sample are independent and identically distributed
then they are exchangeable). In the real-valued framework one can also indicate
two advantages of the permutation tests over the bootstrap tests. Firstly, permu-
tation test are often more powerful than their bootstrap counterparts (see [9]).
Secondly, permutation test are exact if all permutation are considered, while
bootstrap tests are exact only for very large samples. Moreover, asymptotically
permutation tests are usually as powerful as the most powerful parametric tests
(see [1]). For more information on classical permutation tests we refer the reader
to [9,23]. All these reasons indicate that the permutation test applied to fuzzy
random variables might be also a competitive tool useful in statistical inference
for imprecise data.

4 Permutation Test for Fuzzy Data to Compare
Variability

Suppose, we observe independently two fuzzy random samples X = (X1, . . . , Xn)
and Y = (Y1, . . . , Ym) drawn from populations with unknown distributions func-
tion F and G, respectively. We want to verify the null hypothesis that both
samples come from the same distribution, i.e.

H0 : F (t) = G(t) for all t ∈ R, (10)

against the alternative hypothesis that the dispersion of the distributions F and
G differ (or against the one-sided alternative that the indicated distribution is
more dispersed that the other one).

Most of the tests for scale assume that the distributions under study do not
differ in location since possible location differences may mask differences in dis-
persion. Otherwise, the sample observations should be adjusted by subtrating the
respective location parameters, like means or medians. If the true characteristics
of location are not known we usually subtract their estimators.

Following remarks of Marozzi [20] on the resampling version of the Pan
test [22] and the resampling framework for scale testing described by Boos and
Brownie [3], we’ll try to eliminate the location effects with sample means. How-
ever, keeping in mind problems with subtratiion in fuzzy environment described
in Sect. 2, contrary to the crisp case, we do not consider the differences but
the distances between sample observations and corresponding sample means
calculated as in (8). Therefeore, further on instead of X = (X1, . . . , Xn) and
Y = (Y1, . . . , Ym) we consider the adjusted samples V = (V1, . . . , Vn) and
W = (W1, . . . , Wm), respectively, where

Vi = Dλ
θ (Xi,X), for i = 1, . . . , n

Wj = Dλ
θ (Yj , Y ), for j = 1, . . . , m.

Now let us consider the following test statistics

T (X,Y) =
ln V − lnW√
1
n

S2
V

V
2 + 1

m

S2
W

W
2

(11)
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where S2
V and S2

W denote sample variances of V and W, respectively, calcu-
lated by (9). Obviously, too big or too small values of (11) indicate that the
null hypothesis should be rejected since the considered distributions differ in
dispersion.

In the original Pan test [22] the decision whether to reject the null hypothesis
is based on the test statistic valued with respect to some quantile from the
t-Student distribution. However, Marozzi [20] showed that the resampling version
of the Pan test should be rather preferred to the original one. In the case of fuzzy
data any assumptions on the type of the underlying distribution of the samples
are much more dubious than in the crisp case. For this reason we also consider
here the permutation version of the Pan test. To carry out such a test we adapt
the general idea of permutation tests to our fuzzy context.

The crucial idea of the proposed test construction is that the null hypothesis
implies total exchangeability of observed data with respect to groups. Indeed, if
H0 holds then all available observations may be viewed as if they were randomly
assigned to two groups but they come from the same population.

Let Z = X � Y, where � stands for the vector concatenation, so that the
two samples are pooled into one, i.e. Zi = Xi if 1 � i � n and Zi = Yi−n if
n + 1 � i � N , where N = n + m.

Now, let Z
∗ denote a permutation of the initial dataset Z. More formally, if

ν = {1, 2, . . . , N} and πν is a permutation of the integers ν, then Z∗
i = Zπν(i)

for i = 1, . . . , N . Then the first n elements of Z∗ is assigned to the first sample
Z

∗ and the remaining m elements to Z
∗. In other words, it works like a random

assignment of elements into two samples of the size n and m, respectively. Each
permutation corresponds to some relabeling of the combined dataset Z. Please,
note that if H0 holds then we are completely free to exchange the labels X or Y
attributed to particular observations.

As a consequence of elements’ exchangeability in Z
∗ under H0 we can esti-

mate the distribution of the test statistic T by considering all permutations of
the initial dataset Z and computing a value of T (Z∗) corresponding to each per-
mutation. Namely, given Z = z, where z = x � y, we take its permutation z∗

and determine its adjustment with respect to sample means, i.e. we create two
samples v∗ = (v∗

1 , . . . , v∗
n) and w∗ = (w∗

1 , . . . , w∗
m) as follows

v∗
i = Dλ

θ (z∗
i ,

1
n

n∑
j=1

z∗
j ), if i = 1, . . . , n

w∗
j = Dλ

θ (z∗
i ,

1
m

m∑
i=j

z∗
j ), if i = n + 1, . . . , N.

Next, following (11) we compute its actual value corresponding to given permu-
tation z∗, i.e.
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T (z∗) =
ln v∗ − ln w∗√

1
n

S2
v∗

(w∗)2 + 1
m

S2
w∗

(w∗)2

. (12)

Finally, assuming K denotes a fixed number of drawings (usually not smaller
than 1000), we calculate the p-value of our test. In the case on the one-sided
upperer-tail test, i.e. when verifying H0 : F = G vs. H1 stating that F is more
disperded than G, we obtain

p-value =
1
K

K∑
k=1

1
(
T (z∗

k) � t0
)
, (13)

where each z∗
k ∈ P(z), z∗

k = x∗
k�y∗

k, and t0 = T (x,y) stands for the test statistic
value obtained for the original fuzzy samples x and y.

For the one-sided lower-tail test, i.e. when verifying H0 : F = G vs. H1 : F
is less disperded than G, we have

p-value =
1
K

K∑
k=1

1
(
T (z∗

k) � t0
)
, (14)

while for the two-sided test, i.e. when verifying H0 : F = G vs. H1 : F and G
differ in dispersion, we obtain

p-value =
1
K

[
K∑

k=1

1
(
T (z∗

k) � |t0|
)

+ 1
(
T (z∗

k) � −|t0|
)]

. (15)

5 Empirical Study

5.1 Simulations

We conducted some simulations to illustrate the behavior of the proposed test.
To generate fuzzy samples from a trapezoidal-valued fuzzy random variable X =
Tra(ξ1, ξ2, ξ3, ξ4), where ξ1, ξ2, ξ3, ξ4 are real-valued random variables such that
ξ1 � ξ2 � ξ3 � ξ4, the following characterization appears to be useful (see [19]):
c = 1

2 (ξ3 + ξ2) = mid1X, s = 1
2 (ξ3 − ξ2) = spr1X, l = ξ2 − ξ1 and r = ξ4 − ξ3.

Conversely, we have Tra〈c, s, l, r〉 = Tra(c − s − l, c − s, c + s, c + s + r).
In our study we generated fuzzy observations x = (x1, . . . , xn) and y =

(y1, . . . , ym) by simulating the four real-valued random variables xi = 〈cXi, sXi,
lXi, rXi〉 and yi = 〈cY j , sY j , lY j , rY j〉, respectively, with the last three ones ran-
dom variables in each quartet being nonnegative. In particular, we generated
trapezoidal-valued fuzzy random variables using the following real-valued ran-
dom variables: cXi, cY j from the normal distribution and sXi, sY j , lXi, lY j , rXi

and rY j from the uniform or chi-square distribution.
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Fig. 1. Empirical null distribution of the permutation test with red vertical line indi-
catinges the value of the test statistic. (Color figure online)

An illustration how the test works, is shown in Fig. 1 and Fig. 2. Figure 1
shows a histogram made for the test statistic (11) null distribution obtained for
two fuzzy samples of sizes n = 10 and m = 12. Both samples were generated
as follows: cX and cY came from the standard normal distribution N(0, 1) and
sX , sY , lX , lY and rX , rY from the uniform distribution U(0.0.5). In this case we
have obtained t0 = 0.3088, which is illustrated by a vertical line, while p-value =
0.384. A decision suggested by our test is: do not reject H0.

Fig. 2. Empirical null distribution of the permutation test with red vertical line indi-
catinges the value of the test statistic. (Color figure online)

On the other hand, in Fig. 2 we have a histogram made for the test statistic
(11) null distribution obtained for two fuzzy samples of the same samle sizes
as before but which differ in dispersion. Namely, cX was generated from the
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standard normal distribution N(0, 1), but cY from N(0, 2), while sX , sY , lX , lY
and rX , rY were, as befor, uniformly distributed from U(0.0.5). In this case we
have obtained t0 = −3.5373, illustrated by a vertical line, and p-value = 0.007,
leading to the decision: reject H0.

Table 1. Empirical size of the test for various sample sizes.

n m empirical size n m empirical size
10 10 0.021 10 15 0.024
20 20 0.024 10 20 0.015
50 50 0.023 10 50 0.009
100 100 0.034 50 100 0.026

We also examined the proposed permutation test with respect to its size.
Therefore, 1000 simulations of the test performed on independent fuzzy samples
comming from the same distribution were generated at the significance level
0.05. In each test K = 1000 permutations were drawn. Then empirical percent-
ages of rejections under H0 were determined. The results both for equal and
nonequal sample sizes are gathered in Table 1. It is seen that our test is con-
servative. Moreover, this tendency deepens significantly as the imbalance of the
sample sizes increases. These interesting results of the preliminary study of the
proposed test properties indicate that further and more extensive study is highly
recommended.

5.2 Case Study

Some statistical analyses of fuzzy data related to the Gamonedo cheese quality
inspection was performed by Ramos-Guajardo and Lubiano [26] and Ramos-
Guajardo et al. [25]. The Gamonedo cheese is a kind of a blue cheese produced
Asturias, Spain. It experiences a smoked process and later on is let settle in
natural caves or a dry place. To keep the quality of a cheese the experts (or
tasters) usually express their subjective perceptions about different characteris-
tics of the cheese, like visual parameters (shape, rind and appearance), texture
parameters (hardness and crumbliness), olfactory-gustatory parameters (smell
intensity, smell quality, flavour intensity, flavour quality and aftertaste) and their
overall impression of the cheese.

Recently some of the tasters were proposed to express their subjective per-
ceptions about the quality of the Gamonedo cheese by using trapezoidal fuzzy
numbers. These fuzzy sets were determined in the following way: the set of val-
ues considered by the expert to be fully compatible with his/her opinion led to
α = 1-cut, while the set of values that he/she considered to be compatible with
his/her opinion at some extent (i.e., the taster thought that it was not possi-
ble that the quality was out of this set) led to α = 0-cut of a fuzzy number.
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Then these two α-cuts were linearly interpolated to get the trapezoidal fuzzy set
representing exppert’s personal valuation. For more details on the data aquisition
and analysis we refer the reader to Ramos-Guajardo et al. [25].

Table 2. Sample of the opinions of Expert 1 and 2 concerning the overall impression
of the Gamonedo cheese (see [25])

Opinion Expert 1 Expert 2 Opinion Expert 1 Expert 2
1 (65, 75, 85, 85) (50, 50, 63, 75) 21 (65, 70, 76, 80) (60, 64, 75, 85)
2 (35, 37, 44, 50) (39, 47, 52, 60) 22 (75, 80, 86, 90) (54, 56, 64, 75)
3 (66, 70, 75, 80) (60, 70, 85, 90) 23 (65, 70, 73, 80) (50, 50, 60, 66)
4 (70, 74, 80, 84) (50, 56, 64, 74) 24 (70, 80, 84, 84) (44, 46, 55, 57)
5 (65, 70, 75, 80) (39, 45, 53, 57) 25 (55, 64, 70, 70) (59, 63, 74, 80)
6 (45, 50, 57, 65) (55, 60, 70, 76) 26 (64, 73, 80, 84) (49, 50, 54, 58)
7 (60, 66, 70, 75) (50, 50, 57, 67) 27 (50, 56, 64, 70) (55, 60, 70, 75)
8 (65, 65, 70, 76) (65, 67, 80, 87) 28 (55, 55, 60, 70) (44, 47, 53, 60)
9 (60, 65, 75, 80) (50, 50, 65, 75) 29 (60, 70, 75, 80) (19, 20, 30, 41)
10 (55, 60, 66, 70) (50, 55, 64, 70) 30 (64, 71, 80, 80) (40, 44, 50, 60)
11 (60, 65, 70, 74) (39, 46, 53, 56) 31 (50, 50, 55, 65) (50, 50, 59, 66)
12 (30, 46, 44, 54) (19, 29, 41, 50) 32 (50, 54, 60, 65) (50, 53, 60, 66)
13 (60, 65, 75, 75) (40, 47, 52, 56) 33 (65, 75, 80, 86) (50, 52, 58, 61)
14 (70, 75, 85, 85) (54, 55, 65, 76) 34 (50, 55, 60, 66) (60, 65, 72, 80)
15 (44, 45, 50, 56) (59, 65, 75, 85) 35 (40, 44, 50, 50) (50, 50, 55, 60)
16 (51, 56, 64, 70) (50, 52, 57, 60) 36 (70, 76, 85, 85) (30, 34, 43, 47)
17 (40, 46, 54, 60) (60, 60, 70, 80) 37 (44, 50, 53, 60) (19, 25, 36, 46)
18 (55, 60, 65, 70) (50, 54, 61, 67) 38 (34, 40, 46, 46) (53, 63, 74, 80)
19 (80, 85, 90, 94) (40, 46, 50, 50) 39 (40, 45, 51, 60)
20 (80, 84, 90, 90) (44, 50, 56, 66) 40 (84, 90, 95, 95)

Here we utilize some data given in [25] to compare the opinions of the two
experts about the overall impression of the Gamonedo cheese (the trapezoidal
fuzzy sets corresponding to their opinions are gathered in Table 2). Thus we have
two independent fuzzy samples of sizes n = 40 and m = 38 comming from the
unknown distributions F and G, respectively. Our problem is to check whether
there is a general agreement between these two experts. To reach the goal we
verify the following null hypothesis H0 : F = G, stating there is no significant
difference between experts’ opinions, against H1 : ¬H0 that their opinions on
the cheese quality differ.

Substituting data from Table 2 into formula (11) we obtain t0 = 1.355. Then,
after combining samples and generating K = 10 000 random permutations we
have obtained the p-value of 0.082. Hence, assuming the typical 5% significant
level we may conclude that there is no significant difference between the disper-
sion of experts’ opinion on the overal impression of the Gamonedo cheese. In
Fig. 3 one can find the empirical null distribution of the permutation test with
red vertical line indicating the value t0 of the test statistic.
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Fig. 3. Empirical null distribution of the permutation test with red vertical line indi-
cating the value of the test statistic.

6 Conclusions

Hypothesis testing with samples which consist of random fuzzy numbers is nei-
ther easy nor straightforward. Most of statistical tests developed in this area are
based on the bootstrap. In this paper another approach for constructing tests
for fuzzy data is proposed. Namely, the two-sample permutation test for disper-
sion is suggested. Some simulations to illustrate its behavior and to examine its
properties are given. Moreover, the case study dedicated to fuzzy rating problem
is performed.

The results obtained seem to be promissing, but further research including
power studies and a comparison with other tests are still intended in the nearest
future. In particular, the behavior of the test under strong imbalance in the
sample sizes is worth of further examination. Next, we would like to perform
an extensive simulation study to compare the performance of our permuatation
test and the bootstrap test for the dispersion.

Moreover, some other topics related to the dispersion problem with fuzzy
data seem to be of interest. Firstly, we plan to design other two-sample tests
for scale, like the permutation test for fuzzy data based on the classical O’Brien
test, as well as a permutation test for the homogeneity of more than two fuzzy
samples. Secondly, a permutation test for fuzzy data to compare jointly the
central tendency and variability of two populations would be of desirable.
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