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Abstract. The main idea of the paper is to generalize the concept of
lattice valued fuzzy measures and integrals for data from complete resid-
uated lattice where double negation law holds and then to show their
relationship to isotone L-fuzzy concept forming operators.
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1 Introduction

Once I saw a very nice presentation about fuzzy sets and its applications and
basic technics where very simple but nice toy example of fuzzy measure and
fuzzy integral were presented. It was my almost first meeting with such an area
where I found some small intuitive connection with fuzzy Formal concept analysis
(FCA) [2,3,5,6,12,13] that is my main topic for years. After that experience my
scientific curiosity led me to papers that seemed to me as a newcomer as most
understandable [1,7,14–17] and also very useful was to read two papers that
deals with both fuzzy integrals and fuzzy FCA [4,8].

Main topic of the paper is to first connect two notions, lattice valued fuzzy
measures and integrals [17] and t-norm and t-conorm fuzzy measures and inte-
grals [16] into one “complete residuated lattice”-valued fuzzy measures and inte-
grals, where double negation law has to be preserved. Next step is to show their
connection with isotone derivation (concept forming) operators of fuzzy formal
context that are the most important part of FCA.

Second section is dedicated to basics of isotone FCA based on data from com-
plete residuated lattice. Third section is about proposition of so called one-sided
fuzzy concept-forming operators and the definition of new complete residuated
lattice valued fuzzy measures and integrals. All needed and some new properties
are proved.
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2 Isotone L-fuzzy Formal Concept Analysis

Definition 1. An algebra L =
〈
L,∧,∨, 0, 1,⊗,→ 〉

is said to be a complete
residuated lattice if

1.
〈
L,∧,∨, 0, 1

〉
is a complete lattice where 0 and 1 are the bottom and top

elements (resp.).
2.

〈
L,⊗, 1

〉
is a commutative monoid.

3. 〈⊗,→〉 is an adjoint pair, i.e. k ⊗ m ≤ n if and only if k ≤ m → n, for all
k,m, n ∈ L, where ≤ is the ordering generated by ∧ and ∨.

It will be important to have L with double neggation law, ie. ¬¬k = k for
any k ∈ L, where ¬k = k → 0.

Definition 2. A Girard monoid is a residuated lattice L satisfying the law of
double negation, namely, the equality x = (x → 0) → 0 holds for all x ∈ L.

This notion represents one of the several flavours in which one can find residuated
lattices, it was used by Girard in his development programme for linear logics,
and a study of its structure in the particular case of the unit interval can be
found in [9]. Other well-known enriched versions of residuated lattices include,
for instance, Heyting algebras (satisfying x⊗ y = x∧ y), BL-algebras (satisfying
divisibility, i.e. x ∧ y = x ⊗ (x → y), and the prelinearity, i.e. (x → y) ∨ (y →
x) = 1), or MV-algebras (BL-algebra satisfying the law of double negation).

Definition 3. The operator ⊕ : L × L → L is defined by

a ⊕ b = ¬a → b = (a → 0) → b.

Assuming that we are working on a Girard monoid, it is not difficult to
check that ⊕ is commutative and associative. Furthermore, the De Morgan laws
between ⊗ and ⊕, and also between ∨ and ∧, and contraposition law also hold.
Hereafter, we will assume that L is a Girard monoid.

Let X be any final set. The ordered set (complete lattice) of all L-sets over
X will be denoted by LX .

Definition 4. L-Fuzzy Formal Context is a triple 〈B,A,L, r〉 where B is the
set of objects, A is the set of attributes and r : B × A → L is a binary relation
between objects and attributes.

Definition 5. Let us define two pairs of so called isotone derivation opera-
tors between (L-fuzzy) powerset complete lattices over the sets of objects and
attributes as follows:

1. – ↗: LB ←− LA and ↙: LA ←− LB.
– ↗ (f)(a) =

∨
b∈B(f(b) ⊗ r(b, a)) for any f ∈ LB.

– ↙ (g)(b) =
∧

a∈A(r(b, a) → g(a)) for any g ∈ LA.
2. – ↖: LB ←− LA and ↘: LA ←− LB.

– ↖ (f)(a) =
∧

b∈B(r(b, a) → f(b)) for any f ∈ LB.
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– ↘ (g)(b) =
∨

a∈A(g(a) ⊗ r(b, a)) for any g ∈ LA.

For above defined operators holds (↙,↗) and (↘,↖) form an isotone Galois
connections between LB and LA, i.e. for any f ∈ LB and g ∈ LA holds

↗ (f) ≤ g ⇔ f ≤↙ (g) and g ≤↖ (f) ⇔ ↘ (g) ≤ f.

As a consequence of previous facts the compositions

– ↙↗ and ↖↘ forms closure operators on LB or LA respectively.
– ↗↙ and ↘↖ forms interior operator on LA or LB respectively.

That means that

– all compositions are monotone
– ↙↗ and ↖↘ are inflationary (i.e. ↖↘ (g) ≥ g for any g ∈ LA)
– ↗↙ and ↘↖ are deflationary (i.e. ↘↖ (f) ≤ f for any f ∈ LB).
– all compositions are idempotent (i.e. ↙↗↙↗ (f) =↙↗ (f) for any f ∈ LB)

Pairs (f, g) ∈ LB × LA such that ↗ (f) = g and ↙ (g) = f is called L-
fuzzy formal concept of L-context 〈B,A,L, r〉 with respect to operators (↗,↙).
f is then called extent and g is called intent. All extents will be denoted by
Ext(B,A,L, r,↗,↙) and all intents by Int(B,A,L, r,↗,↙). Similarly for the
other pair of operators (↖,↘). Sets of all extents and intents ordered by L-fuzzy
set inclusion form complete lattices.

3 L-fuzzy Isotone Derivation Operators and L-fuzzy
Measures and Integrals

Krajči in [10,11] defined a modification of antitone L-fuzzy derivation operators
(↑, ↓), mappings between LB and LA into the case of mappings between 2B and
LA, due to better understanding or interpretation of possible results.

So now the isotone derivation operators will be modified into one sided form:
Let X ⊆ B be an arbitrary classical subset. χX is a characteristic function

of X. Let us define a new mappings ↗ : 2B → LA and ↖ : 2B → LA

↗(X)(a) =↗ (χX)(a) =
∨

b∈B

χX(b) ⊗ r(b, a)

=
∨

b∈X

1 ⊗ r(b, a) ∨
∨

b∈Xc

0 ⊗ r(b, a)

=
∨

b∈X

1 ⊗ r(b, a) ∨ 0 =
∨

b∈X

r(b, a)
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↖(X)(a) =↖ (χX)(a) =
∧

b∈B

(r(b, a) → χX(b))

=
∧

b∈X

(r(b, a) → 1) ∧
∧

b∈Xc

(r(b, a) → 0)

= 1 ∧
∧

b∈Xc

(r(b, a) → 0) =
∧

b∈Xc

¬r(b, a)

Definition 6. Let B be an arbitrary set and L be the lattice with bottom 0 and
top element 1. The mapping μ : P(B) → L is called L-valued fuzzy measure iff
μ is monotone, μ(∅) = 0 and μ(B) = 1.

Before the theorem about a new measure, let us define a notion of normal
L-set and normal L-context.

Definition 7. Any L-set from LX is called normal when its maximal member-
ship value is equal to 1 (top of L). Let 〈B,A,L, r〉 be a L-fuzzy formal context,
such that its columns r(−, a) are normal L-fuzzy sets from LB. Such L-context
is also called normal.

Theorem 1. Let 〈B,A,L, r〉 be a normal L-fuzzy formal context. Let a ∈ A be
arbitrary attribute. The following upper and lower L-valued mappings

– μ
a

where for any X ⊆ B is μ
a
(X) = ↗(X)(a)

– μa where for any X ⊆ B is μa(X) = ↖(X)(a).

are L-valued fuzzy measures.

Proof. It is well known that operators ↗ and ↖ are monotone, hence also their
one-sided fuzzy form will also be monotone. Moreover

μa(B) =
∧

b∈Bc

¬r(b, a) = 1 and μ
a
(∅) =

∨

b∈∅
r(b, a) = 0

for any a ∈ A.
What can be little questionable are the following two facts. In general μa(∅)

need not to be equal to 0 and μ
a
(B) need not to be equal to 1. This is why

the precondition of normality is here, which says that there for any a ∈ A there
exists at least one b ∈ B such that r(b, a) = 1. Hence

μa(∅) =
∧

b∈∅c

¬r(b, a) =
∧

b∈B

¬r(b, a) = 0 and μ
a
(B) =

∨

b∈B

r(b, a) = 1

��
Before the definition of integral let us first define some auxiliary notation.

Let f ∈ LB be an arbitrary L-set over B. Then
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– fα = {b ∈ B|f(b) ≥ α} is well known α-cut of L-set for some α ∈ L
– fα = {b ∈ B|f(b) �≤ α}

The following definition is a generalisation of the definition of lower and
upper-lattice valued fuzzy integrals from [17].

Theorem 2. Let 〈B,A,L, r〉 be the normal L-fuzzy formal context and for each
a ∈ A there are corresponding μ

a
and μa lower and upper L-fuzzy measures.

The following lower and upper L-valued mappings defined for any f ∈ LB and
X ⊆ B as follows

∫

X

fdμ
a

=
∨

α∈L
α ⊗ μ

a
(fα ∩ X) and

∫

X

fdμa =
∧

α∈L
α ⊕ μa(fα ∩ X)

are lower and upper L-valued fuzzy integrals.

Proof. In [14] where the definition of fuzzy integral says that it has to be idempo-
tent homeomorphism. So we have to prove for above defined L-valued mappings
the following properties:

1. they are monotone
2. they map top L-set from LB to 1 and bottom to 0
3. for any γ ∈ L a constant L-set γ defined as γ(b) = γ for any b ∈ B holds:

–
∫

B
γdμ

a
= γ

–
∫

B
γdμa = γ

1. The monotonicity follows directly from the definition of integrals.
2. From interior and closure operator properties of ↗ and ↙ from the Sect. 2

and the normality precondition the following holds.
∫

B

χBdμ
a

=
∨

α∈L
α ⊗ μ

a
(B) =

∨

α∈L
α ⊗ 1 = 1 ⊗ 1 = 1

∫

B

χ∅dμ
a

=
∨

α∈L
α ⊗ μ

a
(∅) =

∨

α∈L
α ⊗ 0 = 0

∫

B

χBdμa(B) =
∧

α∈LL

α ⊕ μa(B) =
∧

α∈L
α ⊕ 1 = 1

∫

B

χBdμa(∅) =
∧

α∈LL

α ⊕ μa(∅) =
∧

α∈L
α ⊕ 0 = 0 ⊕ 0 = 0
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3.
∫

B

γdμ
a

=
∨

α∈L
α ⊗ μ

a
(B ∩ γα)

=
∨

α∈L;α≤γ

α ⊗ μ
a
(B ∩ γα) ∨

∨

α∈L;α�≤γ

α ⊗ μ
a
(B ∩ γα)

=
∨

α∈L;α≤γ

α ⊗ μ
a
(B) ∨

∨

α∈L;α�≤γ

α ⊗ μ
a
(∅)

= γ ⊗ μ
a
(B) ∨

∨

α∈L;α�≤γ

α ⊗ 0

= (γ ⊗ 1) ∨ 0 = γ

∫

B

γdμa =
∧

α∈L
α ⊕ μa(B ∩ γα)

=
∧

α∈L;α≤γ

α ⊕ μa(B ∩ γα) ∧
∧

α∈L;α�≤γ

α ⊕ μa(B ∩ γα)

=
∧

α∈L;α≤γ

α ⊕ μa(∅) ∧
∧

α∈L;α�≤γ

α ⊕ μa(B)

= γ ⊕ μa(∅) ∧
∧

α∈L;α�≤γ

α ⊕ 1

= γ ∧ 1 = γ

��
The following theorem will show a relationship between new integrals and

concept forming operators.

Theorem 3. Let 〈B,A,L, r〉 be a L-context and {μ
a
|a ∈ A} and {μa|a ∈ A} be

its collections of measures. Then for corresponding integrals holds:
∫

B

fdμ
a

=↗ (f)(a) and
∫

B

fdμa =↖ (f)(a).

Proof. Let f be an arbitrary from LB .
∫

B

fdμ
a

=
∨

α∈L
α ⊗ μ

a
(B ∩ fα)

=
∨

α∈L
α ⊗

∨

b∈fα

r(b, a)

=
∨

α∈L
α ⊗

∨

b∈B;f(b)≥α

r(b, a)
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=
∨

α∈L

∨

b∈B;f(b)≥α

α ⊗ r(b, a)

=
∨

b∈B

∨

α∈L;f(b)≥α

α ⊗ r(b, a)

=
∨

b∈B

f(b) ⊗ r(b, a) =↗ (f)(a)

∫

B

fdμa =
∧

α∈L
α ⊕ μa(B ∩ fα)

=
∧

α∈L
¬α →

∧

b∈(fα)c

¬r(b, a)

=
∧

α∈L

∧

b∈B;f(b)≤α

¬α → ¬r(b, a)

=
∧

α∈L

∧

b∈B;f(b)≤α

r(b, a) → α

=
∧

b∈B

∧

α∈L;f(b)≤α

r(b, a) → α

=
∧

b∈B

r(b, a) → f(b) =↖ (f)(a)

Theorem 4. Let 〈B,A,L, r〉 be a L-context and {μ
a
|a ∈ A} and {μa|a ∈ A} be

its collections of measures. Then for corresponding integrals holds:
∫

X

fdμ
a

=↗ (f ∩ χX)(a) and
∫

X

fdμa =↖ (f ∩ χX)(a)

Proof. Let f be an arbitrary from LB and X ⊆ B.
∫

X

fdμ
a

=
∨

α∈L
α ⊗ μ

a
(fα ∩ X)

=
∨

α∈L
α ⊗

∨

b∈fα∩X

r(b, a)

=
∨

α∈L

∨

b∈fα∩X

α ⊗ r(b, a)

=
∨

α∈L

∨

b∈X,f(b)≥α

α ⊗ r(b, a)

=
∨

b∈X

∨

α∈L,α≤f(b)

α ⊗ r(b, a)
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=
∨

b∈X

f(b) ⊗ r(b, a)

=
∨

b∈B

(f(b) ∧ χX(b)) ⊗ r(b, a)

=↗ (f ∩ χX)(a)

∫
X

fdμa =
∧

α∈L
α ⊕ μa(fα ∩ X)

=
∧

α∈L
α ⊕

∧
b∈(fα∩X)c

¬r(b, a)

=
∧

α∈L
α ⊕

∧
b∈(fα)c∪Xc

¬r(b, a)

=

⎛
⎝ ∧

α∈L
α ⊕

∧
b∈(fα)c

¬r(b, a)

⎞
⎠ ∧

⎛
⎝ ∧

α∈L
α ⊕

∧
b∈(X)c

¬r(b, a)

⎞
⎠

=

⎛
⎝ ∧

α∈L
¬α →

∧
f(b)≤α

¬r(b, a)

⎞
⎠ ∧

⎛
⎝ ∧

α∈L
¬α →

∧
b∈(X)c

¬r(b, a)

⎞
⎠

=

⎛
⎝ ∧

α∈L

∧
f(b)≤α

r(b, a) → α

⎞
⎠ ∧

⎛
⎝ ∧

α∈L

∧
b∈(X)c

r(b, a) → α

⎞
⎠

=

⎛
⎝ ∧

b∈B

∧
α∈L;α≥f(b)

r(b, a) → α

⎞
⎠ ∧

⎛
⎝ ∧

b∈(X)c

∧
α∈L

r(b, a) → α

⎞
⎠

=

( ∧
b∈B

r(b, a) → f(b)

)
∧

⎛
⎝

⎛
⎝ ∧

b∈(X)c

r(b, a) → 0

⎞
⎠ ∧

( ∧
b∈X

r(b, a) → 1

)⎞
⎠

=↖ (f)(a) ∧
( ∧

b∈B

(r(b, a) → χX(b))

)

=↖ (f)(a)∧ ↖ (χX)(a) =↖ (f ∩ χX)(a)

��
Theorem 5. Let X ⊆ B and f ∈ LB be arbitrary. Then

∫

X

fdμa = ¬
∫

Xc

¬fdμa
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Proof.
∫

X

fdμa =↘ (f ∩ χX)(a)

=
∧

b∈B

(r(b, a) → (f ∩ χX)(b)) =
∧

b∈B

(¬(f ∩ χX)(b) → ¬r(b, a))

=
∧

b∈B

(¬(f ∩ χX)(b) → (r(b, a) → 0))

=
∧

b∈B

((¬(f ∩ χX)(b) ⊗ r(b, a)) → 0)

= (
∨

b∈B

(¬(f ∩ χX)(b) ⊗ r(b, a)) → 0)

= ¬(
∨

b∈B

(¬(f ∩ χX)(b) ⊗ r(b, a)))

= ¬ ↗ (¬(f ∩ χX))(a) = ¬ ↗ (¬f ∩ χXc))(a)

= ¬
∫

Xc

¬fdμa

4 New Measures and Integrals Defined on Concept
Lattices

And at the end we can also define a “new” measures and integrals for L-context
〈B,A,L, r〉 as follows:

– μ : P(B) → Int(B,A,L, r,↗,↙) defined as μ(X)(a) = μ
a
(X)

– μ : P(B) → Int(B,A,L, r,↖↘) defined as μ(X)(a) = μa(X)
–

∫
X

fdμ : LB → Int(B,A,L, r,↗,↙) defined as
∫

X
fdμ(a) =

∫
X

fdμ
a

–
∫

X
fdμ : LB → Int(B,A,L, r,↗,↙) defined as

∫
X

fdμ(a) =
∫

X
fdμ

a

In such a case the measures and integrals are mappings to closure and interior
systems that are complete lattices

– Int(B,A,L, r,↗,↙) with top ↗ (χB) and bottom χ∅
– Int(B,A,L, r,↖,↘) with top χB and bottom ↖ (χ∅)

Where all “inconveniences” with normality are hence solved.

Proposition 1. Let μB
a

and μB be L-measures corresponded to L-context
〈B,A,L, r〉. Let μA and μA be L-measures corresponded to L-context 〈A,B,L, rt〉
where rt is the transposition of r. Then

∫

B

fdμB ≤ g ⇔ f ≤
∫

A

gdμA

and ∫

A

gdμA ≤ f ⇔ g ≤
∫

B

fdμB

Proof. From previous facts.
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5 Conclusion

New lattice valued fuzzy measures and integrals are proposed by using data
and operations from Girard monoid, i.e. complete residuated lattice with double
negation law that are built from fuzzy formal context. Main result is to show
the relationship between proposed measures and integrals and isotone concept-
forming operators.
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