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Abstract. This work investigates tolerance and control solutions to
a two-sided interval linear system. Their semantics are different, even
though, we would be able to interchange the role of the interval infor-
mation algebraically. We present necessary and sufficient conditions of
their solvabilities as the inequalities depending on center and radius of
coefficient interval matrices on both sides of the system. In a situation
when the vector of variables is nonnegative, the conditions can simply
be modified as the inequalities depending on boundaries of the inter-
val matrices. This result helps to find out the feasible solutions of a
quadratic programming problem with two-sided interval linear equation
constraints.

Keywords: Interval linear system · Tolerance solution · Control
solution

1 Introduction

An interval linear system of equations is normally referred to as a system Ax = b,
where A is an interval matrix and b is an interval vector, while x is a vector of
variables. As the matrix and the right hand side vector information of the system
is not precise, it is impossible to provide a solution x to the system without any
appropriate meaning.

Some literature presented different types of solutions of the system Ax = b
depending on the purposes of the solutions. These solution types include weak,
strong, tolerance and control solutions whose names reflect well on their math-
ematical definitions. For example, “x is a weak solution to Ax = b” means
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that
∃A ∈ A,∃b ∈ b such that Ax = b,

while “x is a strong solution to Ax = b” means that

∀A ∈ A,∀b ∈ b such that Ax = b.

Beaumont presented in [1] an efficient method derived from the simplex algo-
rithm to compute inner and outer inclusion of the weak (united) solution set.
A full analysis of the solvability and the conditions for checking whether x is a
particular solution type to the system Ax = b was also provided in the literature
[2–4,8–12].

The background on a tolerance solution arose from the crane construction
problem in [8] and the input-output planning problem with inexact data in
[11]. The characteristic of a tolerance solution x is to make Ax stay in the
boundary of b. Shary [12] first motivated an idea of a control solution, which is
the opposite case of a tolerance solution. In addition, Tian et al. developed in
[13] a tolerance-control solution for the case when each row index of the system
Ax = b performs either tolerance or control. Recently, Leela-apiradee, [6] , have
provided its solution set in terms of level set.

Instead of the system Ax = b, the goal of this paper is to deal with a two-
sided interval linear system. “Two-sided” means that the right hand side interval
vector b is substituted by the term By. The paper then presents the tolerance
and control solutions of a two-sided interval linear system together with their
solvability conditions.

To lead to the main idea of the paper, let us first introduce some basic
notation of an interval matrix and an interval vector that can be seen as a
matrix and a vector of interval components as follows.

– An m × n interval matrix A is defined by

A =

⎛
⎜⎜⎜⎝

[a11, a11] [a12, a12] · · · [a1n, a1n]
[a21, a21] [a22, a22] · · · [a2n, a2n]

...
...

. . .
...

[am1, am1] [am2, am2] · · · [amn, amn]

⎞
⎟⎟⎟⎠ ,

where aij and aij are real numbers such that aij ≤ aij for each i ∈
{1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}.

– The interpretation of the interval matrix A can be written as the set of
matrices, that is,

A =
[
A,A

]
=

{
A ∈ R

m×n : A ≤ A ≤ A
}

,

where

A =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

⎞
⎟⎟⎟⎠ and A =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎞
⎟⎟⎟⎠ .
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The ordering ‘≤’ between two matrices A and A is referred to componentwise
inequality, i.e.,

A ≤ A if and only if aij ≤ aij ∀i ∈ {1, 2, . . . ,m},∀j ∈ {1, 2, . . . , n}.

Therefore, we note here that A ∈ A means A ≤ A ≤ A.

Moreover, we can use the following notation to represent the interval matrixA.

A =
[
A,A

]
= [Ac − ΔA, Ac + ΔA] , (1)

where Ac = 1
2 (A + A) and ΔA = 1

2 (A − A).
Fiedler et al. proved in [2] that the lower and upper bounds of the interval

vector Ax, denoted by Ax and Ax for any x = (x1, x2, . . . , xn)T ∈ R
n, can be

viewed by
Ax =

[
Ax,Ax

]
= [Acx − ΔA|x|, Acx + ΔA|x| ] , (2)

where |x| is defined as the absolute of vector x, i.e., |x| = (|x1|, |x2|, . . . , |xn|)T .
Given B be another interval matrix and y be another vector of variables.

In the situation when we have the term By on the right hand side instead of
the vector b, the system “Ax = b” would become “Ax = By”, which is called
a two-sided interval linear system. The dimensions of x and y do not need to
be the same but the number of rows of interval matrices A and B does. The
definitions of weak, strong, tolerance control and tolerance-control solutions of
Ax = By would mathematically be defined in the same fashion as the case of
Ax = b.

In this paper, we focus on the tolerance, control and tolerance-control solu-
tions of the system Ax = By. In Sect. 2 we give the definitions and their char-
acterizations by equivalent conditions. Usually, two sets of quantities are equal
when the left and the right quantities are the same. However, there is often a
situation with imprecise information that one set of quantities is being controlled
by the other. This means that if the two sets of quantities are not precise with
having interval information, then one set of quantities must be subset of the
other. Moreover, one set of the interval information could be more important
to the system than the other. The other set of the interval information must
follow the semantics of the context. This leads to the interpretation of tolerance
and control solutions of a two-sided interval linear system discussed in Sect. 3. A
couple of application examples are demonstrated in Sect. 4, which can be mod-
eled by a two-sided interval linear system and a quadratic programming problem
with two-sided interval linear constraints. The conclusion is addressed in the last
section.
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2 Tolerance and Control Solutions of Two-Sided Interval
System of Linear Equations

To see how the two-sided interval systems are motivated, consider two systems
of standard linear equations below:

Ax = By, (3)
Ax − By = 0, (4)

where A ∈ R
m×n, B ∈ R

m×p, and m,n and p are positive integers. Any (x, y) in
R

n × R
p satisfying System (3) (or (4)) is called a solution of the system. It is

clear that Systems (3) and (4) are algebraically equivalent. The set of solutions of
(3) is the same as the set of solutions of (4). However, if the entries of coefficient
matrices A and B in (3) and (4) are interval data, Systems (3) and (4) turn into

Ax = By, (5)
Ax − By = 0, (6)

respectively, where coefficient terms A and B in (5) and (6) are interval matrices
as defined in the introduction section. System (6) could not be well-defined in
general since the left-hand side may be represented as interval vector with non-
zero width as a result of Moore’s standard interval arithmetic [7], while the
right-hand side is a real zero vector with zero width. Therefore, we would not be
able to move By to the same side as Ax of the equality as usual, when we deal
with interval data. However, System (5) called a two-sided interval system
of linear equations is well-defined since both sides of the equation are interval
vectors. A solution (x, y) ∈ R

n × R
p to System (5) is not as simple as the case

of standard matrices A and B, but it comes with its semantics.
In [2], Fiedler et al. defined tolerance and control solutions to an interval

linear system Ax = b. Based on the concepts of these solutions, Tian et al. later
proposed a tolerance-control solution in [13].

Definition 1 (see [2] and [13]). A vector x ∈ R
n is called

1. a tolerance solution of Ax = b if for each A ∈ A there exists b ∈ b such
that Ax = b,

2. a control solution of Ax = b if for each b ∈ b there exists A ∈ A such that
Ax = b,

3. a tolerance-control solution of Ax = b if each row index of the system is
either tolerance or control.

As we expand an interval linear system Ax = b to a two-sided interval linear
system Ax = By, the types of solutions of Ax = By presented in the following
definition are developed in similar fashion as the solution concepts in Ax = b.

Definition 2. A vector (x, y) ∈ R
n × R

p is called

1. a tolerance solution of Ax = By if for each A ∈ A there exists B ∈ B
such that Ax = By,
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2. a control solution of Ax = By if for each B ∈ B there exists A ∈ A such
that Ax = By,

3. a tolerance-control solution of Ax = By if each row index of the system
is either tolerance or control.

Without semantics, the mathematical expression of tolerance and control solu-
tions are the same. In Sect. 3, we will mention more about these two solutions
and separately redefine them according to their semantics.

We now consecutively establish Theorems 1–3 based on Definition 2 to find
necessary and sufficient conditions for checking tolerance and tolerance-control
solvabilities of Ax = By. The conditions presented in Theorems 2 and 3 are in
a form of inequalities depending on center and radius of the coefficient interval
matrices A and B with absolute terms |x| and |y|.
Theorem 1. A vector (x, y) is a tolerance solution of Ax = By if and only if
it satisfies Ax ⊆ By.

Proof. Assume that (x, y) is a tolerance solution of Ax = By. Let A ∈ A. Then,
there exists B ∈ B such that Ax = By. Thus,

Ax = By ∈ By =
[
By,By

]
,

that is,
By ≤ Ax ≤ By for any A ∈ A,

which concludes Ax ⊆ By. Conversely, we suppose that (x, y) satisfies Ax ⊆ By.
Then, Ax ∈ By for all A ∈ A. Therefore, Ax = By for all A ∈ A and for some
B ∈ B . Hence, (x, y) is a tolerance solution. �

Theorem 2. A vector (x, y) is a tolerance solution of Ax = By if and only if
it satisfies

|Acx − Bcy| ≤ ΔB |y| − ΔA|x|. (7)

Proof. Let (x, y) be a tolerance solution of Ax = By. By Theorem 1 and (2),

[Acx − ΔA|x|, Acx + ΔA|x| ] = Ax ⊆ By = [Bcy − ΔB |y|, Bcy + ΔB |y| ] .
Thus,

Bcy − ΔB |y| ≤ Acx − ΔA|x| ≤ Acx + ΔA|x| ≤ Bcy + ΔB |y|,
which implies

− (ΔB |y| − ΔA|x|) ≤ Acx − Bcy ≤ ΔB |y| − ΔA|x|. (8)

Conversely, let (x, y) satisfy condition (7) Then, it gives (8), which means

By = Bcy − ΔB |y| ≤ Acx − ΔA|x| = Ax

and
Ax = Acx + ΔA|x| ≤ Bcy + ΔB |y| = By.

Therefore, Ax ⊆ By and (x, y) becomes a tolerance solution. �
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We can use inequality (7) to verify whether a given vector (x, y) is a toler-
ance solution to our two-sided interval linear system. The system of inequality
(7) has the absolute terms |x| and |y|, which means it is not the system of linear
inequalities, in general. It depends on the signs of x and y components. How-
ever, when we consider the nonnegative domain of vector variables x and y, the
inequality becomes a simple form as

ΔAx − ΔBy ≤ Acx − Bcy ≤ ΔBy − ΔAx,

which is obtained by substituting |x| = x and |y| = y. This turns into

(Bc − ΔB)y ≤ (Ac − ΔA)x and (Ac + ΔA)x ≤ (ΔB + Bc)y. (9)

According to (1), the inequalities (9) can be concluded as the corollary below.

Corollary 1. Let x and y be nonnegative vector variables. A vector (x, y) is a
tolerance solution of Ax = By if and only if it satisfies

By ≤ Ax and Ax ≤ By.

The similar statements of Theorems 1–2 and Corollary 1 for a control solution
can be done easily by interchanging the roles of “A and B” and “x and y”.

Theorem 3. A vector (x, y) is a tolerance-control solution of Ax = By if and
only if it satisfies

|Acx − Bcy| ≤ ΔA|x| + ΔB |y| − 2δ, (10)
where δ is a vector in R

m with the following components

δi =

{
(ΔA|x|)i, if i ∈ P;
(ΔB |y|)i, if i ∈ M \ P,

and P = {i ∈ M : (Ax)i ⊆ (By)i}, M = {1, 2, . . . ,m}.
Proof. Assume that (x, y) is a tolerance-control solution of Ax = By. Let P be
a subset of M such that row i ∈ P of the system is tolerance. Then, the other
i ∈ M \ P of the system is control. Using Theorem 2, we have

|(Acx)i − (Bcy)i| ≤ (ΔB |y|)i − (ΔA|x|)i for each i ∈ P (11)

and
|(Acx)i − (Bcy)i| ≤ (ΔA|x|)i − (ΔB |y|)i for each i ∈ M \ P (12)

By putting Inequalities (11) and (12) together,

|Acx − Bcy| ≤
(

ΔA|x| − 2
∑
i∈P

(ΔA|x|)iei
)

+
(

ΔB |y| − 2
∑

i∈M\P
(ΔB |y|)iei

)

= ΔA|x| + ΔB |y| − 2
(∑

i∈P

(ΔA|x|)iei +
∑

i∈M\P
ΔB |y|)iei

)

= ΔA|x| + ΔB |y| − 2δ,

where ei is a m-column vector containing 1 at the ith row and 0 elsewhere.
Conversely, let (x, y) satisfy condition (10), which implies Inequalities (11) and
(12). Therefore, (x, y) turns into a tolerance-control solution. �
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3 Semantics of Tolerance and Control Solutions

Looking at the mathematical definitions in the previous section, it may seem that
tolerance and control solutions are algebraically the same. So, why would we need
to define them both? This is because one interval information could be more impor-
tant than another. There are some missing details in Definition 2 about the priority
of the interval information A and B , which may not be represented clearly by just
the mathematical quantification; “for all” and “for some”.

To be able to achieve a control solution of the system Ax = By and justify
the semantics of the word “control”, the boundary matrices A and A of A must
be more important than the ones of B . It could be the interval information that
is given by an expert so that any quantity on the right must be controlled in the
boundary of quantities on the left.

Similarly, to get the semantics of the word “tolerance” in a tolerance solution,
the boundary matrices A and A of A must be more important. They provide
the range of left hand side quantities. Moreover, the situation to come up with
a tolerance solution is such that we need every element in the range to be under
the control of the range of the right hand side quantities. In other words, the
left hand side quantities tolerate themselves within the range of the right hand
side quantities.

For those reasons, we cannot simply substitute A with B and x with y, and
infer that tolerance and control solutions are the same. Therefore, the priority
of the information A and B need to be stated in their definitions as rewritten
below.

Definition 3. Let an interval matrix A play more important role to the two-
sided interval system of linear equations Ax = By. A vector (x, y) ∈ R

n ×R
p is

called

1. a tolerance solution of Ax = By if for each A ∈ A there exists B ∈ B
such that Ax = By. It is in the sense that the range of Ax tolerates within
the range of By,

2. a control solution of Ax = By if for each B ∈ B there exists A ∈ A such
that Ax = By. It is in the sense that the range of Ax controls the range of
By.

4 Applications on Tolerance and Control Solutions of a
Two-Sided Interval Linear System

In this section, we illustrate two small examples to show the difference between
tolerance and control solutions. These examples could be parts of any relevant
application systems.

– Problem Statement 1 is formulated as a tolerance solution to a two-sided
interval linear system, which can be solved by system of inequalities.
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– Problem Statement 2 is formulated as a quadratic programming with control
solutions to two-sided interval linear constraints, whose numerical example is
demonstrated in Example 1.

Problem Statement 1. An animal food manufacturing company has its own
quality control for its three formulas of chicken food: I, II, and III. These for-
mulas must be checked for the level of carbohydrate, fiber, protein, and vitamins
per kilogram per bag. The qualified bags must have the nutrients within the given
boundaries as shown in the table below. The company also has a nutritionist who
can advise customers about using these three formulas of chicken food for meat
and egg chickens. To raise chickens for healthy meat and chickens for healthy
eggs, those chickens should have nutrients within the range represented also in
the table.

Type of nutrients Interval amount of nutrient (kg)

Formula I Formula II Formula III Meat chicken Egg chicken

1. Carbohydrate [a11, a11] [a12, a12] [a13, a13]
[
b11, b11

] [
b12, b12

]

2. Fiber [a21, a21] [a22, a22] [a23, a23]
[
b21, b21

] [
b22, b22

]

3. Protein [a31, a31] [a32, a32] [a33, a33]
[
b31, b31

] [
b32, b32

]

4. Vitamins [a41, a41] [a42, a42] [a43, a43]
[
b41, b41

] [
b42, b42

]

The nutritionist suggests customers to mix three formulas together before
feeding. The total amount of nutrients in the mixed chicken food must be within
the range of the total amount of all needed nutrients to guarantee that all chickens
provide healthy products. This relationship can be represented as a two-sided
interval linear system (13)

⎛
⎜⎜⎝

[a11, a11] [a12, a12] [a13, a13]
[a21, a21] [a22, a22] [a23, a23]
[a31, a31] [a32, a32] [a33, a33]
[a41, a41] [a42, a42] [a43, a43]

⎞
⎟⎟⎠

⎛
⎝

x1

x2

x3

⎞
⎠ =

⎛
⎜⎜⎝

[
b11, b11

] [
b12, b12

]
[
b21, b21

] [
b22, b22

]
[
b31, b31

] [
b32, b32

]
[
b41, b41

] [
b42, b42

]

⎞
⎟⎟⎠

(
y1
y2

)
, (13)

where xj is the amount of bags of animal food formula I, II and III
that should be mixed, when j = 1, 2, 3, respectively,

yk is the amount of meat and egg chickens
that the customer should raise, when k = 1, 2, respectively.

From the company’s point of view, it is important to control the nutrients in
each formula of chicken foods. It turns out that the set of solutions to System (13) is
the set of tolerance solutions as the total of the nutrients created by the mixed food
must be within the range of healthy nutrients. On the other hand, when considering
the customer’s side, the interval information about the nutrients needed for each
chicken is the priority for the customer. In this case, the customer must control the
nutrients in the mixed food by the range of the total amount of all needed nutrients
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for healthy chicken meat and eggs. Then, the set of solutions to System (13) can also
be viewed as the tolerance solution set. Obviously, vector variables x = (x1, x2, x3)T

and y = (y1, y2)T are nonnegative. From Corollary 1, the tolerance solution (x, y)
is obtained by solving the system of inequalities as follows:

bi1y1 + bi2y2 − ai1x1 − ai2x2 − ai3x3 ≤ 0

and
ai1x1 + a2x2 + ai3x3 − bi1y1 − bi2y2 ≤ 0,

for each i ∈ {1, 2, 3, 4}. �

Problem Statement 2. A famous family bakery shop sells homemade fruit
cakes and fruit tarts. The owner uses three grades of mixed dried berries: A, B,
and C, by mixing them together to get the best dessert according to the family
recipe. Suppose the owner determines the initial amount of fruit cakes and fruit
tarts he/she wanted to make as α1 and α2, respectively, and sets up the initial
amount of mixed dried berries grades A, B and C that he/she aims to buy as
β1, β2 and β3, respectively. One kilogram of each mixed dried fruit grade contains
dried blueberries, dried cranberries, dried raspberries, and dried strawberries in
the different uncertain quantities. The table below provides the interval quantities
per kilogram of each mixed dried berries grade.

Type of dried berries Interval amount of berry (kg)

Grade A Grade B Grade C

1. Blueberries
[
b11, b11

] [
b12, b12

] [
b13, b13

]

2. Cranberries
[
b21, b21

] [
b22, b22

] [
b23, b23

]

3. Raspberries
[
b31, b31

] [
b32, b32

] [
b33, b33

]

4. Strawberries
[
b41, b41

] [
b42, b42

] [
b43, b43

]

To control the quality of the desserts, the recipe says that the dessert must
contain each type of dried berries in a certain level as shown in the following
table.

Type of dried berries Interval amount of berry (kg)

Fruit cake Fruit tart

1. Blueberries [a11, a11] [a12, a12]

2. Cranberries [a21, a21] [a22, a22]

3. Raspberries [a31, a31] [a32, a32]

4. Strawberries [a41, a41] [a42, a42]

The relationship of how many kilograms of the mixed dried berries grades A,
B, and C that the shop should have and how many fruit cakes and fruit tarts
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that the shop should make to guarantee the overall quality of the dessert becomes
a two-sided interval linear system as follows:

⎛
⎜⎜⎝

[a11, a11] [a12, a12]
[a21, a21] [a22, a22]
[a31, a31] [a32, a32]
[a41, a41] [a42, a42]

⎞
⎟⎟⎠

(
x1

x2

)
=

⎛
⎜⎜⎝

[
b11, b11

] [
b12, b12

] [
b13, b13

]
[
b21, b21

] [
b22, b22

] [
b23, b23

]
[
b31, b31

] [
b32, b32

] [
b33, b33

]
[
b41, b41

] [
b42, b42

] [
b43, b43

]

⎞
⎟⎟⎠

⎛
⎝

y1
y2
y3

⎞
⎠ , (14)

where xj is the amount of fruit cakes and fruit tarts that should be made,
when j = 1, 2, respectively,

yk is the amount of mixed dried berries grades A, B and C,
when k = 1, 2, 3, respectively.

The quality of desserts is very important to the bakery shop. The owner wants
to re-evaluate the amount x1, x2 and y1, y2, y3 to make sure that the mixed dried
berries the shop has would be covered by the range of the total amount of the
mixed fruits in all dessert items. This way the shop would be able to guarantee
the quality of the desserts. The set of solutions satisfies System (14) is considered
to be the control solution set. In a situation when the owner wants the amount
x1, x2 and y1, y2, y3 as close as possible to the given values α1, α2 and β1, β2, β3,
respectively, it is the same as to minimize the function below:

‖(x, y)T − (α, β)T ‖2 =
2∑

j=1

(xj − αj)2 +
3∑

k=1

(yk − βk)2

=
2∑

j=1

(x2
j − 2αjxj + α2

j ) +
3∑

k=1

(y2
k − 2βkyk + β2

k). (15)

It is sufficient to remove the constant terms α2
j and β2

k from Eq. (15) for every
j ∈ {1, 2} and k ∈ {1, 2, 3}. Therefore, we can model this problem as a quadratic
program P1 with a two-sided interval linear constraint (14), whose constraints
are obtained by using the statement of Corollary 1 for a control solution in the
following way:

P1 : minimize f(x, y) =
2∑

j=1

(x2
j − 2αjxj) +

3∑
k=1

(y2
k − 2βkyk)

subject to
2∑

j=1

aijxj −
3∑

k=1

bikyk ≤ 0, ∀i ∈ {1, 2, 3, 4}

−
2∑

j=1

aijxj +
3∑

k=1

bikyk ≤ 0, ∀i ∈ {1, 2, 3, 4}

xj , yk ≥ 0. ∀j ∈ {1, 2} ∀k ∈ {1, 2, 3}
The Lagrangian function for Problem P1 can be written by

L(z, μ) = cT z +
1
2
zTQz + μ(A′z − b′), (16)
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where

c =

⎛
⎜⎜⎜⎜⎝

−2α1

−2α2

−2β1

−2β2

−2β3

⎞
⎟⎟⎟⎟⎠

, Q =

⎛
⎜⎜⎜⎜⎝

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

⎞
⎟⎟⎟⎟⎠

, z =

⎛
⎜⎜⎜⎜⎝

x1

x2

y1
y2
y3

⎞
⎟⎟⎟⎟⎠

and

A′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 −b11 −b12 −b13
a21 a22 −b21 −b22 −b23
a31 a32 −b31 −b32 −b33
a41 a42 −b41 −b42 −b43

−a11 −a12 b11 b12 b13
−a21 −a22 b21 b22 b23
−a31 −a32 b31 b32 b33
−a41 −a42 b41 b42 b43

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and μ = (μ1, μ2, . . . , μ8) ≥ 0 is the Lagrange multiplier with 5-dimensional row
vector. Let u and v be surplus and slack variables to the inequalities

c + Qz + (A′)TμT ≥ 0 and A′z − b′ ≤ 0,

respectively. As shown in [5], we can represent (16) in the following linear con-
straints form:

Qz + (A′)TμT − u = −c, (17)
A′z + v = b′, (18)

z ≥ 0, μ ≥ 0, u ≥ 0, v ≥ 0, (19)

uT z = 0, μv = 0, (20)

where the equations shown in (20) prescribe complementary slackness. Since it
can clearly be seen that the matrix Q is positive definite, the conditions (17)–(20)
are necessary and sufficient for a global optimum. To create the appropriate lin-
ear program, we add thirteen artificial variables a1, a2, . . . , a13 to each constraint
of (17) and (18) together with minimizing their sum, that is,

P2 : minimize a1 + a2 + · · · + a13

subject to Qz + (A′)TμT − u + a′ = −c,

A′z + v + a′′ = b′,
z ≥ 0, μ ≥ 0, u ≥ 0, v ≥ 0,

uT z = 0, μv = 0,

where a′ = (a1, a2, . . . , a5)T and a′′ = (a6, a7, . . . , a13)T . Hence, the optimal
solution to the quadratic program P1 is found out by solving the linear program
P2. �
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Type of dried berries Interval amount of berry (kg)

Fruit cake Fruit tart Grade A Grade B Grade C

1. Blueberries [0.25, 0.32] [0.20, 0.41] [0.15, 0.30] [0.60, 0.70] [0.22, 0.25]

2. Cranberries [0.05, 0.18] [0.26, 0.35] [0.20, 0.20] [0.23, 0.35] [0.08, 0.12]

3. Raspberries [0.03, 0.15] [0.24, 0.64] [0.10, 0.16] [0.04, 0.10] [0.45, 0.55]

4. Strawberries [0.04, 0.36] [0.34, 0.45] [0.32, 0.48] [0.14, 0.28] [0.18, 0.20]

Example 1. According to Problem statement 2, we provide the numerical infor-
mation in the following table.

– The initial amount of fruit cakes and fruit tarts is α1 = 16 and α2 = 24,
respectively.

– The initial amount of mixed dried berries grade A, B and C is β1 = 15, β2 = 12
and β3 = 10, respectively.

As explained in Problem statement 2 with the above information, our problem
can be represented by Problem P2, that is,

minimize a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10 + a11 + a12 + a13

subject to

2x1 + 0.25µ1 + 0.05µ2 + 0.03µ3 + 0.04µ4 − 0.32µ5 − 0.18µ6 − 0.15µ7 − 0.36µ8 − u1 + a1 = 32,

2x2 + 0.20µ1 + 0.26µ2 + 0.24µ3 + 0.34µ4 − 0.41µ5 − 0.35µ6 − 0.64µ7 − 0.45µ8 − u2 + a2 = 48,

2y1 − 0.15µ1 − 0.20µ2 − 0.10µ3 − 0.32µ4 + 0.30µ5 + 0.20µ6 + 0.16µ7 + 0.48µ8 − u3 + a3 = 30,

2y2 − 0.60µ1 − 0.23µ2 − 0.04µ3 − 0.14µ4 + 0.70µ5 + 0.35µ6 + 0.10µ7 + 0.28µ8 − u4 + a4 = 24,

2y3 − 0.22µ1 − 0.08µ2 − 0.45µ3 − 0.18µ4 + 0.25µ5 + 0.12µ6 + 0.55µ7 + 0.20µ8 − u5 + a5 = 20,

0.25x1 + 0.20x2 − 0.15y1 − 0.60y2 − 0.22y3 + v1 + a6 = 0,

0.05x1 + 0.26x2 − 0.20y1 − 0.23y2 − 0.08y3 + v2 + a7 = 0,

0.03x1 + 0.24x2 − 0.10y1 − 0.04y2 − 0.45y3 + v3 + a8 = 0,

0.04x1 + 0.34x2 − 0.32y1 − 0.14y2 − 0.18y3 + v4 + a9 = 0,

−0.32x1 − 0.41x2 + 0.30y1 + 0.70y2 + 0.25y3 + v5 + a10 = 0,

−0.18x1 − 0.35x2 + 0.20y1 + 0.35y2 + 0.12y3 + v6 + a11 = 0,

−0.15x1 − 0.64x2 + 0.16y1 + 0.10y2 + 0.55y3 + v7 + a12 = 0,

−0.36x1 − 0.45x2 + 0.48y1 + 0.28y2 + 0.20y3 + v8 + a13 = 0,

where all variables are nonnegative and complementary conditions are satis-
fied. By applying the simplex method, the optimal solution to this problem is
eventually displayed as

(
x1

x2

)
=

(
18.49
22.16

)
and

⎛
⎝

y1
y2
y3

⎞
⎠ =

⎛
⎝

17.49
11.01
8.19

⎞
⎠ . 	


In this section we have presented two particular situations to show the dif-
ference between tolerance and control solutions together with the processes for
solving them. The tolerance solution as Problem Statement 1 can directly be
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accomplished using system of inequalities. The quadratic programming problem
constrained with control solutions as Problem Statement 2 was transformed to
become an appropriate linear program. Then, the simplex method enables us to
obtain the optimal solution of the problem as displayed in the above example.

5 Conclusion

This paper presents the concepts of tolerance and control solutions of a two-sided
interval linear system together with their semantics to the system Ax = By.
The conditions to verify that (x, y) is a tolerance or a control or a tolerance-
control solution are also achieved in Theorems 1–3. In application problems,
the vectors x and y are normally specified by nonnegative variables. Therefore,
we simplify Theorem 2 to be Corollary 1 and applied it to implement a two-
sided interval linear system and a quadratic programming with two-sided interval
linear constraints. This work should be beneficial to any applications that have
the restrictions in the format of two-sided interval linear system.
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