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Abstract. Electroencephalography (EEG) studies produce region-
referenced functional data in the form of EEG signals recorded across
electrodes on the scalp. The high-dimensional data capture underlying
neural dynamics and it is of clinical interest to model differences in
neurodevelopmental trajectories between diagnostic groups, for exam-
ple typically developing (TD) children and children with autism spec-
trum disorder (ASD). In such cases, valid group-level inference requires
characterization of the complex EEG dependency structure as well as
covariate-dependent heteroscedasticity, such as changes in variation over
developmental age. In our motivating study, resting state EEG is col-
lected on both TD and ASD children aged two to twelve years old.
The peak alpha frequency (PAF), defined as the location of a prominent
peak in the alpha frequency band of the spectral density, is an impor-
tant biomarker linked to neurodevelopment and is known to shift from
lower to higher frequencies as children age. To retain the most amount
of information from the data, we model patterns of alpha spectral varia-
tion, rather than just the peak location, regionally across the scalp and
chronologically across development for both the TD and ASD diagnostic
groups. We propose a covariate-adjusted hybrid principal components
analysis (CA-HPCA) for region-referenced functional EEG data, which
utilizes both vector and functional principal components analysis while
simultaneously adjusting for covariate-dependent heteroscedasticity. CA-
HPCA assumes the covariance process is weakly separable conditional on
observed covariates, allowing for covariate-adjustments to be made on
the marginal covariances rather than the full covariance leading to sta-
ble and computationally efficient estimation. A mixed effects framework
is proposed to estimate the model components coupled with a boot-
strap test for group-level inference. The proposed methodology provides
novel insights into neurodevelopmental differences between TD and ASD
children.
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1 Introduction

Despite the numerous developmental delays observed in children with autism
spectrum disorder (ASD) compared to their typically developing peers (TD),
the neural mechanisms underpinning these delays are not well characterized. To
address this gap, our motivating study collected resting-state electroencephalo-
grams (EEG) on TD and ASD children aged two to twelve years old, making it
possible to contrast neural processes between the two diagnostic groups over a
wide developmental range. EEG and magnetoencephalography (MEG) charac-
terize cortical and intracortical brain activity, respectively, via the measurement
of electrical potentials and their corresponding oscillatory dynamics (i.e. spec-
tral characteristics). Recent studies in cognitive development using both EEG
and MEG highlight the peak alpha frequency (PAF), defined as the location
of a single prominent peak in the spectral density within the alpha frequency
band (6-14 Hz), as a potential biomarker associated with autism diagnosis [7-9].
Specifically, the location of the PAF tends to shift from lower to higher fre-
quencies as TD children age but this chronological shift is notably delayed or
absent in ASD children [7,8,12,16]. This trend is observed in our motivating
data from a temporal electrode (T8) where the PAF, identifiable as ‘humps’ in
age-specific slices of the group-specific bivariate mean spectral density (across
age and frequency), increases in frequency with age for TD children but not for
ASD children (Fig.1(a)).
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Fig. 1. (a) The group-specific bivariate mean alpha band spectral density (across age
and frequency (6-14 Hz)) at ages 50, 70, 90 and 110 months from the T8 electrode.
(b) A diagram of the 25 electrode montage used in our motivating data with the T8
electrode marked by a star.

Although the PAF holds promise as a biomarker for neural development in
TD and ASD children, emphasis on the identification of a single peak produces
considerable drawbacks. Estimation of a subject-electrode specific PAF can be
error prone due to the presence of noise and multiple local maxima [6] and mea-~
surement of PAF inherently reduces the information from the alpha spectral
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band to a single scalar summary resulting in a loss of information. To avoid
these limitations, we follow Scheffler et al. [15] and consider the entire spectral
density across the alpha band as a functional measurement of neural activity. We
focus on modeling and contrasting patterns of alpha spectral variation regionally
across the scalp and chronologically across development for both the ASD and
TD diagnostic groups. While Scheffler et al. [14] proposed a hybrid principal
components analysis (HPCA) decomposition that models variation in region-
referenced functional EEG data, it does not allow for the covariance structure
to change across development as needed in our application. Previous research
clearly shows that alpha spectral dynamics differ as a function of age between
TD and ASD children and to assume a constant covariance structure across
development risks missing important findings. To avoid this misspecification, we
propose a covariate-adjusted hybrid principal components analysis (CA-HPCA)
that models variation in high-dimensional functional data while simultaneously
allowing the patterns of variation to change as a function of subject-specific
covariates. CA-HPCA assumes the covariance process is weakly separable con-
ditional on observed covariates, allowing for covariate-adjustments to be made
on the marginal covariances rather than the full covariance leading to stable and
computationally efficient estimation.

In the simplified context of one-dimensional functional data, existing methods
allow for covariate-adjustments to the functional covariance in two ways: (1) both
the eigenvalues and eigenfunctions of the functional covariance are allowed to
change as a function of observed covariates or (2) the eigenfunctions are assumed
to be constant across the covariate dimension but their corresponding eigenvalues
(hence principal scores) are covariate-dependent. In the former class, Cardot [2]
proposed a non-parametric covariate-adjusted functional principal components
analysis (FPCA) in the context of dense functional data and Jiang and Wang
[10] extended covariate-adjusted FPCA to noisy or sparse settings by estimating
subject-specific scores using conditional expectation. In both cases, covariance
estimation is performed non-parametrically by simultaneous smoothing across
the covariate and functional domains via kernel methods. By fixing eigenfunc-
tions across the covariate domain, Chio et al. [5] introduced a semi-parametric
functional regression model that estimates covariate-dependent principal scores
using a single-index model and Backenroth et al. [1] developed a heteroscedastic
FPCA for repeatedly measured curves that models eigenvalues as an exponential
function of covariate and subject-dependent effects.

Our proposed covariate-adjusted hybrid principal components analysis com-
bines existing one-dimensional methods for covariate-dependent functional het-
eroscedasticity with recent advances in multi-dimensional FPCA to allow
covariate-adjustments in the context of high-dimensional functional data. We
briefly explore the methodological contributions of our proposed model and the
resulting computational gains. A central theme in FPCA decompositions for
multi-dimensional functional data is the use of simplifying assumptions regard-
ing the covariance structure to ease estimation. A flexible approach in modeling
two-dimensional functional data is to assume weak separability of the covariance
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process [4,11] in which the marginal covariances along each dimension are tar-
geted and the full covariance is projected onto a tensor basis formed from the
corresponding marginal eigenfunctions. Thus, estimation is reduced from that
of the total covariance in four-dimensions to the marginal covariances in two-
dimensions for which efficient two-dimensional smoothers exist. Scheffler et al.
[14] extended weak separability to region-referenced functional EEG data (simi-
lar to our motivating study) by allowing a discrete regional dimension via HPCA.
We leverage the simplifying assumptions and computational efficiency of HPCA
through the proposed CA-HPCA which introduces covariate-dependence to the
marginal covariances rather than the total covariance and allows the marginal
eigenvalues and eigenfunctions to change across the covariate domain.
CA-HPCA provides a flexible modeling framework but introduces potential
compute burden through the addition of a covariate dimension to estimation
of the marginal covariances which for a scalar covariate requires smoothing
across three dimensions. Previous methods such as Cardot [2] and Jiang and
Wang [10] utilized kernel methods to estimate covariate-dependent marginal
covariances but these approaches are computationally intensive and scale poorly
with the introduction of additional covariates. To address this challenge, we
extend the fast functional covariance smoothing proposed by Cederbaum et al.
[3] to allow for covariate-adjustments by including an additional basis along
the covariate dimension. Thus, CA-HPCA generalizes covariate-adjustments to
high-dimensional functional covariances and substantially reduces the resulting
computational burden by applying adjustments to the marginal covariances and
introducing covariate-dependence to cutting-edge fast covariance smoothers. A
mixed effects framework is proposed to estimate the model components and is
paired with parametric bootstrap resampling to perform inference across the
covariate domain. The remaining sections are organized as follows. Section 2
introduces the proposed CA-HPCA and Sect. 3 describes the corresponding esti-
mation procedure. Application of the proposed method to our resting state EEG
data follows in Sect. 4. Section 5 concludes with a brief summary and discussion.

2 Covariate-Adjusted Hybrid Principal Components
Analysis (CA-HPCA)

Let Yy (a;,r,w) be a random function observed in the presence of some contin-
uous non-functional covariate a; € A, for subject ¢, i = 1,...,ngq, from group
d,d=1,....,D, in region r, r = 1,..., R, and at frequency w, w € 2. We
decompose Yy;(a;,r,w) additively such that the expectation and covariance of
the process depend on the covariate a;,

Yai(ai,r,w) = na(a;,r,w) + Zai(ai, r,w) + €qiai, r,w),
where ng(a;,r,w) = E{Yy(a;,r,w)|a;} denotes the group-region mean func-

tion, Zg;(a;,,w) denotes a mean zero region-referenced stochastic process with
3 . ! / — / !
total variance Xgrp(a;r,wir’ W) = cov{Zg(a;,rw), Zgi(a;, ", w')|a;}, and
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€qi(a;, r,w) denotes measurement error with mean zero and variance 03 that is
independent across the regional and functional domains. We assume the group-
region means 74(a,r,w) are smooth in both the functional domain {2 and the
non-functional domain A though we place no restrictions across the regional
domain R%.

In the proposed CA-HPCA model, we assume that the total covariance
Yar(a;r,w;r’,w') is weakly separable for each a € A. Weak separability, a
concept recently proposed by Lynch and Chen [11] and adapted by Scheffler
et al. [14] to region-referenced functional EEG data, implies that a covariance
can be approximated by a weighted sum of separable covariance components
and that the direction of variation (i.e. eigenvectors/eigenfunctions) along one
dimensions of the EEG data is the same across fixed slices of the other dimen-
sion. Note that weak separability is more flexible than strong separability (i.e.
separability) commonly utilized in spatiotemporal modeling which requires the
total covariance, not just the directions of variation, is the same up to a constant
for fixed slices of the other dimensions. Unlike previously applications of weak
separability, we assume that the total covariance is weakly separable conditional
on observed covariates and the marginal covariance functions vary smoothly
along the covariate domain. Let the covariate-adjusted regional and functional
marginal covariances be defined as

R

{Zar(a)}lr = /QCOV{Zdi(aia""yW)vZdi(aivrlvw)}dw = ZTdk,R(ai)de(aiyT)de(aiy7’/)7
k=1
R o
Za0(ai,w,w) = cov{Zgi(ai, ,w), Zai(as,mw)} =Y Tae,0(a:)pac(ai,w)par(ai, '),
r=1 =1

where vgi(a,r) are covariate-adjusted marginal eigenvectors, ¢q(a,w) are
covariate-adjusted marginal eigenfunctions, and 74, = (a) and 74 o (a) are their
respective covariate-adjusted marginal eigenvalues. Utilizing the covariate-
dependent eigenvectors and eigenfunctions, the covariate-adjusted hybrid prin-
cipal components decomposition (CA-HPCA) of Yy;(a;,r,w) is given as,

Ydi<af’ia T,W) = nd(aia r, w) + Zdi(aia T, w) + Edi(a'h ’1"7(4))

R oo
= nalai,r,w) + Y > Eaike(ai)Var(ai, 7)bar(a;, w) + €ai(ai, r,w),

k=1/=1

where &g ke(a;) are subject-specific scores defined through the projection
(Zai(ai,ryw), Vag(ai, r)pae(a;, w)) = Zil [ Zgi(ai,r,w) vap(ai, m)dae(a;, w)dw.
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Weak separability of the total covariance at each covariate value implies that
the scores €4 1e(a;) are uncorrelated leading to the decomposition of the total
covariance Xy r(a;r,w;r’,w’) as follows,

deT(a; T, W3 T‘l, UJ’) = COV{Zd’i (a7 7 OJ), Zdi(a7 7“,7 w,)la} + o—nzl(s(a’7 T, W 7J7 UJ/)

R oo
= Z Ta,ke(@)Var(a, r)var(a, ") pae(a, w)pae(a,w’) + o38(a; ryw;r’,w'),
k=1¢=1

where 74 re(a) = var{&q; xe(a)}. Note, the above model assumes that both the
marginal directions of variation and their associated tensor weights are allowed
to vary across the covariate domain. In practice, the CA-HPCA decomposition
is truncated to include only K, and L4 covariate-adjusted marginal eigencom-
ponents for the regional and functional domains, respectively, with the number
of components initially selected on the marginal fraction of variance explained
(FVE). One guideline is to include the minimum number of covariate-adjusted
marginal eigencomponents in the CA-HPCA expansion that explain at least 90%
of variation in their respective covariate-adjusted marginal covariances. The final
number of components can be fixed after the subject-specific scores and their
associated variance components are estimated in Sect. 3 which allow enumeration
of the overall FVE in the observed data not just the marginal covariances.

3 Estimation of Model Components and Inference

The following section outlines the CA-HPCA estimation procedure, provides
detailed descriptions of each step, and outlines how to perform inference via
parametric bootstrap.

(1) Estimation of group-region mean functions: We estimate the group-region
mean function n4(a,r,w) for each region via smoothing performed by projection
onto a tensor basis formed by penalized marginal B-splines in the regional and
functional domains. Smoothing parameter selection and variance components
are estimated using restricted maximum likelihood (REML) methods.

(2) Estimation of covariate-adjusted marginal covariances and measurement
error variance: We estimate the covariate-adjusted marginal covariances by
assuming each two-dimensional marginal covariance varies smoothly over the
covariate dimension. For the functional marginal covariance, Xy o (a,w,w’), we
extend the fast bivariate covariance smoother of Cederbaum et al. [3] to include a
third covariate dimension a € A. The resulting trivariate smoother maintains the
computational efficiency of Cederbaum et al. [3] while simultaneously allowing
the marginal functional covariance to vary smoothly along the covariate dimen-
sion. As an added bonus, we also obtain an initial estimate of the measurement
error variance 637 o
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Algorithm: CA-HPCA Estimation Procedure

1. Estimation of group-region mean functions
(a) Calculate 74(a;,r,w) by applying a bivariate penalized spline smoother
to all observed data {a;,w, Yg;(a;,r,w): i=1,...,n4;0; € A;w € 2},
(b) Mean center each observation, f/dci(ai, r,w) = Yyi(a;, r,w) — falai, r,w).
2. Estimation of covariate-adjusted marginal covariances and measurement
error variance
(a) Calculate Xy o(a,w,w’) and 6% (, by applying trivariate penalized spline
smoothers  to the prog'l\ucts, 7
{a;,w, ", Y5 (a;,m,w)Y§(a;,r,w') bi=1,...,ng0; € Ajw,w' € 2}.
(b) Calculate 2d773(a) by smoothing each (r,r") entry across A. For r # 1/,
estimate {idﬁn(a)}(w/) by applying a univariate kernel smoother to

{ag,r, 7, ?dci(ai,r,w)?dci(ai,r/,w) ci=1,...,nga; € A}. For r =1/,
estimate { X4 (a)}( by applying a univariate penalized smoother to
{ai,r,r, Y (@i, r,w)Yg (@i, mw) =65 i =1,...,na;a; € A}.

3. Estimation of covariate-adjusted marginal eigencomponents

(a) For each unique value of a observed, employ FPCA on ﬁd, ola,w,w’) to
estimate the eigenvalue, eigenfunction pairs,
{Tde,ﬁ(a)7¢dl(avw) :€:17H~>Ld}' =R
(b) For each unique value of a observed, employ PCA on X z(a) and to
estimate the eigenvalue, eigenvector pairs {74k = (@), vax(a,r) :
k=1,... K}
4. Estimation of covariate-adjusted variance components and subject-specific
scores via linear mixed effects models
(a) Calculate 744(a;) = cov{édig(ai)} and 63 by fitting the proposed linear
mixed effects model.
(b) Select G/, such that FVEgq > .8 for d =1,...,D and form predictions
Yai(a;,r, w)A. R
(c) Calculate (g;q{a; as the BLUP (gig(a;) = E {Caig(a;)|Yai}-
5. Inference via parametric bootstrap.

For fixed slices of the covariate domain, the regional marginal covariance
{X¥ir(a)}r, is discrete and thus not amenable to trivariate smoothers as the
functional marginal covariance above. Therefore, we estimate the raw regional
marginal covariance at each covariate-value, remove the measurement variance
from the diagonals as in Scheffler et al. [14] and then apply a Nadarya-Watson ker-
nel smoother to the resulting matrices entry-by-entry along the covariate domain.
Our kernel smoother is the kernel weighted-average, {Xqr(ao)}orry = Yooy
>wen Ea(ao, ai) Yy (ai, r,w)Ysi(ai, ' w) /|92 30 Kx(ao, a;), where Ky (-, ) is
some kernel with smoothness parameter A and (2| is the number of observed
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functional grid points. The smoothing parameter A\ is selected to minimize
the LOSOCV(A) statistic across all channel pairs (r,7’), LOSOCV()X) =
Zle > < LOSOCV(A, 7, 7"), LOSOCV(A,r,7") = (1/|2ng) >0 > cn
[)Afdci(ai, r,w) )Afd‘é(ai, r w) 7{2((17_7? (ai)}(m/)} 2, where {251_7? (a;)} is the smoothed
marginal covariance matrix with the ¢th subject left out. Thus, we introduce two
novel covariate-adjusted smoothers that allow for calculation of the covariate-
adjusted marginal covariances which are then used for subsequent covariate-
adjusted eigendecompositions.

(3) Estimation of covariate-adjusted marginal eigencomponents: To estimate the
covariate-adjusted marginal eigencomponents we perform eigendecompositions
at each fixed covariate-value as described in Scheffler et al. [14] retaining a com-
mon number of K4 and L, covariate-adjusted eigencomponents.

(4) FEstimation of covariate-adjusted variance components and subject-specific
scores wia linear mized effects models: We make use of the estimated func-
tional fixed effects and marginal eigencomponents to propose a linear mixed
effects framework for modeling covariate-adjusted region-referenced functional
data. Under the assumption of joint normality of the covariate-adjusted subject-
specific scores and measurement error, the proposed mixed effects framework
induces regularization and stability in modeling the data by enforcing a low-rank
structure on the covariate-adjusted variance components 744(a). The resulting
variance components can be used to select the number of eigencomponents to
include in the CA-HPCA decomposition by quantifying the proportion of vari-
ance explained and for hypothesis testing and point-wise confidence bands via
parametric bootstrap. We present the linear mixed effects modeling framework
below.

To make the notation more compact, we replace the double index kf in CA-
HPCA truncated at K and Ly with a single index g = (k—1) + K4(¢ — 1) + 1,

Gq
Yai(ai,r,w) = nalai, 1,w) + Y &aig(a:)pag(ai,m,w) + eai(ai, r,w),
g=1

where @dg(aiJ"M) = var(ai, 7)Pae(ai, w), Cdz’g(ai) = <Zdi(ai77"7w)7@dg(aivrvw»v
Tag = cov{laig(a;)}, and Gq = KqLg. Let Yy;(a;) represent the vectorized form
of Yy;(a;,r,w) for subject 4,4 = 1,...,ng4, observed along with covariate value a;.
Note, an argument for the covariate domain a is included to stress that a subject’s
covariance is covariate-dependent. Analogous vectorized forms for the covariate-
adjusted functional fixed effects, n4(a;,r,w), the region-referenced stochastic
process Zg;(a;, r,w), multidimensional orthonormal basis ¢q4(a;, 7,w), and the
measurement error €4;(a;, r,w) are denoted by n4;(a:), Zai(a:), Pag(ai), and €q;,
respectively. Under the assumption that {4;(a;) = {Cai1(ai),. .., Ciic,(a;)} and
€q; are jointly Gaussian and cov{(g;(a;),€q4;} = 0 at a fixed value of a;, the
proposed linear mixed effects model is given as
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Yai(ai) = nai(ai) + Zai(a;) + €a;
Ga
= nai(a;) + ZCdig(ai)sOdg(ai) +€qi, for i=1,...,nq. (1)
g=1
The model can be fit separately in each group, d = 1,...,D and the regional
and functional dependencies in Yy;(a;) are induced through the subject-specific
random effects (gig(a;) in (1). Given the assumption that the total covari-
ance is weakly separable for fixed values of a, cov{{uig(a;), Caig/(a;)} = 0 for
g # g/ and thus the covariance of the subject-specific scores possess a diago-
nal diagonal structure, cov{Ca;(a;)} = Ty(a;) = diag{7s(a;)}, where 14(a;) =
{ra1(ai), ..., 7ac(a;)}. We further assume that T;(a) evolves smoothly along
the covariate domain and target the smooth variance components through their
corresponding precision components. Given previous estimates for ng;(a;) and
ag(a;), estimates of the variance components and subject-specific scores are
obtained using REML methods [17].

The assumption that the variance components evolve smoothly over the
covariate domain resolves several challenges that emerge when modeling the
covariate-adjusted subject-specific scores. First, the estimation procedure is able
to borrow strength across the covariate-domain when modeling variation, a
necessity when specific covariate values may only be observed once as in our
motivating data. Second, we are able to project the precision components onto a
smooth low-rank basis which induces regularization and control over the speed
at which 74(a) is allowed to vary. Alternatively, a projection based approach
is less computationally burdensome with estimates of the subject-specific scores
obtained directly by numerical integration, (Adig (i) = (Zai(ai,r,w), Pag(as, r,w))
and their corresponding variance components calculated empirically, 744 =
cov{Caig(a)}, but the resulting estimates are unstable due to the limited num-
ber of observations at each point along the covariate domain. Therefore, despite
the added compute time, our proposed linear mixed effects framework is better
suited for providing covariate-adjustments to the region-referenced functional
process in a controlled and principled manner.

The estimated variance components are used to choose the number of
eigencomponents included in the CA-HPCA decomposition where G/; denotes
a set of eigencomponents such that the total fraction of variance explained
(FVEdG;) is greater than 0.8 in each group d = 1,...,D. We recommend
starting with a larger number Gy = K4L4 of eigencomponents in the mixed
effects modeling used for the estimation of {rg4(a;) : ¢ = 1,...,G4} and
then reducing or adding components as appropriate to fix the final value
of G). In order to estimate the group-specific fraction of total variance
explained via the G/, eigencomponents, we consider the quantity, F VEqc, =

S 325 Faglai) Ya/ J1327 {1 Yas(ais v, w) = ialai, v, w)l| = R [ 63da}|da,
where || f(a;,r,w)|]? = Zle [ fla;,r,w)?dw. Once G is selected, the subject-
specific scores can be obtained using their best linear unbiased predictor (BLUP)
as in Scheffler et al. [14].
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(5) Inference via parametric bootstrap: Inference in the form of hypothesis testing
and point-wise confidence intervals can be performed via a parametric bootstrap
based on the estimated CA-HPCA model components. To test the null hypoth-
esis that all groups have equal means in the region r for a fixed covariate value
a € A, ie Hy:ngla,r,w) =n(a,r,w) for d=1,...D, we propose a parametric
bootstrap procedure based on the CA-HPCA decomposition. For b =1,..., B,
the proposed parametric bootstrap generates outcomes based on the estimated

model components under the null hypothesis as Y;i(ai,r, w) = flag,r,w) +
R G’ N

Zdbi<a’i’ va) + GZi(ai7 T, w) = n(ai’ 7 w) + Zq:dl Cgig(ai)(pdg(ah T, w) + egi(ai> T w)

in region r and as Y} (a;,mw) = fala;,r,w) + Z5(a;,r,w) + € (ai,r,w) =

fa(a;,r,w) + Zgjl Cgiggédg(ai,r, w) + €% (a;,mw) in the other regions, where
subject-specific scores and measurement error are sampled from Csig(ai) ~
NA{0, 7ag(a;)} and €5 (a;, r,w) ~ N(0,63%). The proposed test statistic T,.(a) =
[25:1 [{ha(a,w, s) — i(a,r,w)}2dw]'/? is based on the norm of the sum of the
departures of the estimated group-region shifts 7j4(a,r,w) from the estimate of
the common shift across groups, 7j(a,r,w). The common region shift estimate
7(a,r,w), under the null, is set to the point-wise average of the group-region
shift estimates, fg(a,r,w), d = 1,...,D. We utilize the proposed parametric
bootstrap to estimate the distribution of the test statistic 7).(a) which can be
used to evaluate the null hypothesis along the covariate domain.

To generate point-wise confidence intervals for estimates of 74(a,r,w), we
repeat the above parametric bootstrap procedur/e but instead generate outcomes
from the model Y} (a;,r,w) = fa(a;,r,w) + Zfﬁl Qsiggédg (ai,r,w) + €5 (ai, r,w).
At each iteration of the bootstrap, estimate ﬁg(a, r,w) from the simulated data
and then form point-wise confidence intervals based on percentiles of the esti-
mated group-region mean functions as a function of a, r and w across iterations,

{ﬁgg(a’raw) : b: 1,7B}

4 Application to the Task-Free Paradigm Data

Data structure: In our motivating data application, EEG signals were sampled
at 500 Hz for two minutes from a 128-channel HydroCel Geodesic Sensor Net on
58 ASD and 39 TD children aged 25 to 146 months old (diagnostic groups were
age matched). EEG recordings were collected during an ‘eyes-open’ paradigm
in which bubbles were displayed on a screen in a sound-attenuated room to
subjects at rest [7]. We describe the dataset in our previous work and present an
abbreviated description here, though the reader may reference Scheffler et al. [15]
for technical details related to pre-processing and data acquisition. EEG data
for each subject is interpolated down to a standard 10-20 system 25 electrode
montage (R=25) using spherical interpolation as detailed in Perrin et al. [13],
producing 25 electrodes with continuous EEG signal (Fig. 1 (b)). Alpha spectral
density (2 = (6Hz, 14 Hz)) estimates for each electrode were obtained and the
resulting electrode-specific alpha spectral estimates form an instance of region-
referenced functional data.
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Data analysis results: We present the results from our application of CA-HPCA
to the EEG data collected under the ‘eyes-open’ paradigm. While the main focus of
our analysis is to characterize differences in alpha spectral dynamics between TD
and ASD children over the course of development via inference on the group-region
mean functions, we begin by briefly discussing the eigencomponents produced by
the decomposition. The leading four; four and four; six covariate-adjusted regional
and functional marginal eigencomponents are collectively found to explain 1.006
and 0.895 of the total FVE (F'V Eygr ) in the TD and ASD groups, respectively.
In the functional dimension along the covariate domain, the first least leading
covariate-adjusted marginal eigenfunctions ¢4 (a,w) (Fig. 2(a), top row) display
maximal variation at approximately 6 and 10 Hz (in opposing directions), where
the location of maximal variation shifts in TD children from higher to lower fre-
quencies as age increases but remains relatively constant in ASD children. The sec-
ond leading covariate-adjusted marginal eigenfunctions ¢42(a,w) (Fig. 2(a), bot-
tom row) show maximal variation at 6 Hz, 8.5 Hz, 10.5 Hz and 6 Hz, 7.5 Hz in the
TD and ASD groups, respectively, where again peak variation moves from higher
to lower frequencies as age increases in the TD group but not the ASD group
which instead displays shifts in the magnitude of maximal variation across devel-
opment. The first two leading covariate-adjusted marginal eigenfunctions together
explain at least 65% of the variation in the covariate-adjusted functional marginal
covariances. In the regional dimension along the covariate domain, the first lead-
ing covariate-adjusted marginal eigenvectors vg; (a, r) (Fig. 2(b), top row) display
maximal variation in the central; right temporal; left posterior and central; mid-
dle posterior electrodes at younger ages with a shift to right posterior and frontal;
right temporal electrodes at older ages in the TD and ASD groups, respectively.
The second leading covariate-adjusted marginal eigenvector vga(a,r) (Fig. 2(b),
bottom row) shows maximal variation in the frontal and right frontal; right tem-
poral electrodes at younger ages which moves to frontal; right posterior (opposing
directions) and central; left posterior (opposing directions) at older ages in the TD
and ASD groups, respectively. The first two covariate-adjusted marginal eigenvec-
tors together explain at least 70% of the variation in the covariate-adjusted regional
marginal covariances.

To test for differences between TD and ASD groups in the alpha spectrum
over development, we utilize the parametric bootstrap procedure described in
Sect. 3 under the null hypothesis that the TD and ASD group-region mean func-
tions are equal for every electrode r at each age a = 25,...,145 months which
takes the form Hy : ng(r,w,a) = n(r,w,a), d = 1,2. Figure 3(a) displays the
results of the hypothesis tests for all electrodes and ages with p-values trans-
formed to the —log;, scale to better stratify results where values greater than
—log;(0.05) = 1.30 denote significance at level a = .05. Nearly all electrodes
show significant differences between diagnostic groups in the alpha spectrum at
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Fig.2. (a) Estimated first and second leading covariate-adjusted eigenfunctions
¢a1(a,w) and ¢g2(a,w) at a = 50,70,90,110 months. (b) Estimated first and second
leading covariate-adjusted eigenvectors vgi(a,r) and vaa(a,r) at a = 50,70,90,110
months.

some point over development (with the exception of the P3 and P7 electrodes)
with the strongest group differences occurring at younger ages (30-50 months)
and older ages (100-130 months) in the frontal, central, temporal, and posterior
regions.

The greatest differences in the group-region mean functions across develop-
ment are observed in the T8 and T10 electrodes displayed in Fig. 3(b) along with
their 95% point-wise confidence intervals generated as described in Sect.3. At
both electrodes, the TD group displays a well-defined peak in the alpha spec-
trum that shifts from 8 Hz—10 Hz moving from 50-110 months, whereas the ASD
group generally has less clearly-defined peaks that tend to center around 9 Hz
throughout development. Differences in the estimated group-region mean func-
tions mirror the results found from the parametric bootstrap procedure with
separation of the point-wise confidence intervals occurring at 50; 90; 110 months
and 110 months for the T8 and T10 electrodes, respectively. When aggregated,
the observations and inferences obtained from the CA-HPCA model compo-
nents provide evidence for differences in both the mean structure and patterns
of covariation between the two diagnostic groups that shift and change over
development highlighting the need to provide covariate-adjustments in modeling
the high-dimensional EEG data.
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Fig. 3. (a) The —log,, transformed p-values from the hypothesis test for each electrode
from the parametric bootstrap test for a = 25,...,145 months. (b) The estimated
group-region mean functions ng4(a,r,w) at ages a = 50, 70,90, 110 months from the T8
and T10 electrodes. Grey shading denotes 95% point-wise confidence intervals for each
estimate.

5 Discussion

We proposed a covariate-adjusted hybrid principal components analysis (CA-
HPCA) which decomposes region-referenced functional data and accounts for
covariate-dependent heteroscedasticity by assuming the high-dimensional covari-
ance structure is weakly separable conditional on observed covariates. The pro-
posed estimation procedure develops computationally efficient fast-covariance
smoothers that incorporate covariate-dependence when estimating marginal
covariances as well as a mixed effects framework which admits inference along
the covariate-domain via bootstrap sampling. The CA-HPCA decomposition was
developed to model EEG data over a broad developmental range but may be
applied to other settings where high-dimensional data is expected to exhibit
differential covariation as a function heterogenous covariates.
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