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1 Introduction

One of the basic assumptions in a mathematical modelling of the standard eco-
nomic model is the continuity of the excess demand function involved. There are
reasons to maintain that the necessity of this assumption is caused by the meth-
ods provided by mathematics. First of all the fixed points theorems of Brouwer
and Kakutani have to be mentioned, since both require the continuity of the
maps. They are the main tools for establishing the existence of an equilibrium.
However, the necessity of the assumption of continuity has also some economic
motivation: in a neoclassical exchange economy due to the strict convexity and
strict monotony of the preferences of all consumers the excess demand function
is continuous (s. [2], Th.1.4.4).

The paper offers a possibility to substitute the continuity of the excess
demand function by the w-discontinuity of this function and therefore to deal,
in some extent, with unstable economies. We will examine the properties of w-
discontinuous mappings and finally, under some additional conditions, we prove
the existence of a generalized equilibrium. The concept w-discontinuity includes
uncertainty about the deviation of a function from continuity.

The classical microeconomic models have their origins mainly in the work of
L. Walras [18], (1954), a wider discussion of them is presented by K. J. Arrow
and G. Debreu [3], (1954) and also by K.J. Arrow and F.H. Hahn [4], (1991). An
extended description of the classical model can also be found in textbooks on
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microeconomics, for example, H. Varian [17], (1992), D.M. Kreps [14], (1990),
W. Nicholson [15], (1992) or R.M. Starr [16], (2011). For a strictly functional-
analytic approach we refer to the book of C.D. Aliprantis, D.J. Brown and O.
Burkinshaw [2], (1990).

2 w-Discontinuous Mappings and Their Properties

A class of discontinuous mappings is defined as follows. Let (X, d) and (Y, �) be
two metric spaces and w a positive number.

Definition 1. A mapping f : X → Y is said to be w-discontinuous at the point
x0 ∈ X if for every ε > 0 there exists δ such that whenever x ∈ X and d(x0, x) <
δ follows that �(f(x0), f(x)) < ε + w.

The constant w may not be the best possible (smallest) one. Very often, espe-
cially in economic applications, there is known only a rough upper estimation
for the “jump”. Exactly the constant w includes uncertainty about the division
of a function from continuity.

A mapping f is called w-discontinuous in X if it is w-discontinuous at all
points of X.

The notion of w-discontinuous maps is not new. It is already found in [12]
as the concept of oscillation or as continuity defect in [8]. The notion of w-
discontinuity (former w-continuity) was introduced by the author in [5].

Example 1. The usual Dirichlet function on R and also the generalized Dirichlet
function f : Rn → {a, b}, a, b ∈ R, a �= b, defined for all x = (x1, x2, ..., xn) ∈ Rn

by

f(x) =
{

a, if all components xi ∈ Q
b, if there exists i0 such that xi0 ∈ R \ Q

are |a − b|-discontinuous (and for any w ≥ |a − b| also w-discontinuous)
functions. �

If X, Y , V are real normed vector spaces the following properties of w-
discontinuous mappings are established (similar as for continuous mappings).
For proofs see [7].

Proposition 1. Let be fi : X → Y, αi ∈ R, i = 1, . . . , k and g = α1f1 + · · · +
αkfk. Suppose wi > 0 and that fi is wi- discontinuous on the set X for each
i = 1, . . . , k. Then g = α1f1+ · · ·+αkfk is a |α1|w1+ · · ·+ |αk|wk- discontinuous
mapping.

From the Definition 1, which makes sense also for w = 0, immediately follows
that the 0-discontinuous mappings are exactly the continuous ones.

Corollary 1. Suppose that f, g : X → Y , f is w′- discontinuous and g is w′′-
discontinuous. Then f + g and f − g are w′ + w′′- discontinuous mappings. In
particular, if one of the mappings (f or g) is continuous, then f ± g are w′-
discontinuous (or w′′- discontinuous).
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Corollary 2. If f : X → Y is w- discontinuous and c is a constant then c · f is
a |c|w- discontinuous mapping.

Proposition 2. Let f : domf → R and g : dom g → R be w′-, w′′-discontinuous
functions, respectively. Then the functions f ∧ g and f ∨ g are w′ + w′′-
discontinuous on domf ∩ dom g.

Corollary 3. If f is w- discontinuous and g is continuous then f ∨ g is w-
discontinuous.

In order to consider the product of mappings we need the notation of the product
in a normed space.

Definition 2 ([13]). Let X,Y,Z be real normed vector spaces. A mapping
π : X × Y → Z is called a product if it satisfies the following conditions: for
all a, b ∈ X, u, v ∈ Y and λ ∈ R one has

1. π((a + b, v)) = π((a, v)) + π((b, v))
2. π((a, u + v)) = π((a, u)) + π((a, v))
3. π((λa, u)) = λπ((a, u)) = π((a, λu))
4. ‖π((a, u))‖Z ≤ ‖a‖X‖u‖Y .

A simple example is given by X = Y = Rn, Z = R and π((x, y)) = 〈x, y〉 – the

scalar product in Rn, i.e., 〈x, y〉 =
n∑

i=1

xi yi.

Let V,X, Y, Z be real normed vector spaces and let π : X × Y → Z be a
product. The product of the mappings f : domf ⊆ V → X and g : dom g ⊆ V →
Y is understood pointwise, i.e.,

(f · g)(v) = π
(
f(v), g(v)

)
, ∀v ∈ domf ∩ dom g,

where domf, dom g ⊆ V .

Proposition 3. Suppose that f : domf → X is w′-discontinuous and
g : dom g → Y is w′′-discontinuous on domf ∩ dom g. Then f · g is a
(w′w′′ + w′‖g(x0)‖Y + w′′‖f(x0)‖X)-discontinuous mapping at every point x0 ∈
domf ∩ dom g.

Corollary 4. If f : V → X is w-discontinuous and g : V → Y is continuous
then f · g is a ‖g(x0)‖Y w- discontinuous mapping at every point x0 ∈ V .

For the division we reconcile with simplified situation, where (X, d) is again a
metric space.

Proposition 4. Let the function f : X → R be w-discontinuous at the point x0

and f(x0) �= 0. If there exists a neighborhood U of x0 and a number α0 > 0 such
that |f(x)| ≥ α0 for all x ∈ U then the function 1

f is w
α0|f(x0)| -discontinuous at x0.
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As a special case we get

Corollary 5. If f : X → [1,+∞[ is w-discontinuous then 1
f is a w

f(x0)
- discon-

tinuous mapping for every point x0 ∈ X

If the domain of definition for a continuous mapping is compact, then its range
is also compact and, in particular, bounded. The boundedness of the range is
guaranteed for w-discontinuous mappings as well, however, compactness may
not hold.

Example 2. Define f : [0; 2] → [0; 2] as

f(x) =
{

1, if x ∈ {0, 2}
x, if x ∈ ]0, 2[.

The function f is 1-discontinuous and its range ]0, 2[ is bounded, but not
compact. �

Theorem 1. Suppose that A ⊂ X is compact and let f : A → X be w-
discontinuous. Then f(A) is bounded.

The following essential result is proved by O. Zaytsev in [19] and can be consid-
ered as a generalization of the Bohl-Brouwer-Schauder fixed point theorem for
w-discontinuous mappings.

Theorem 2. Let K be a nonempty, compact and convex subset in a normed
vector space X. For every w-discontinuous mapping f : K → K (w > 0) there
exists a point x∗ ∈ K such that ‖ x∗ − f(x∗) ‖≤ w.

3 Market Equilibrium of the Standard Economic Model

We give the description of a simple economic model E considered by Arrow and
Hahn in [4].

Let there be n (n ∈ N) different goods (commodities) on the market: services
and wares, and a finite number of economic agents: households and firms, where
each household can be considered as a firm, and, vice versa, each firm can be
considered as a household.

Let xhi be the quantity of good i which is needed to the household h. If
xhi < 0 then |xhi| denotes the quantity of good i which is supplied by the
household h. If xhi ≥ 0 then xhi is the (real) demand of good i by h, including the
zero demand. The summation over all households will be indicated by xi =

∑
h

xhi

– the total demand of good i, i = 1, . . . , n.
The quantity of good i that is supplied by the firm f will be denoted by yfi.

Again, if yfi < 0 then |yfi| is the demand (input) of good i by f . If yfi ≥ 0 then
yfi is the supplied quantity (output) of i by f , where the zero supply again is
included. The summation over all firms will be indicated by yi =

∑
f

yfi – the

supply of good i, i = 1, . . . , n.
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The initially available amount (or resources) of good i in all households will
be denoted by xi. Note that xi must be non-negative.

A market equilibrium, which is one of the most important characteristics of
any economy (see f. e. [1,2,4,9,11,16]), describes the economic situation that
the total demand of each good in the economy is satisfied by its total supply.
This fact is obviously expressed by saying that the difference between the total
demand of each good and its total supply is less than or equal to zero. The total
supply of good i is understood as the sum of the supply of the good i and the
quantity of i which is already available, i.e. the total supply of the good i equals
to yi +xi. The excess demand of good i is then defined as xi −yi −xi, i = 1, ..., n.

If economic agents at the market are faced with a system of prices, i.e. with
a price vector p = (p1, . . . , pn), where pi is the price of one unit of good i, then
the quantities xhi, yfi and also xi, yi, xi depend on p. Now we denote the excess
demand of the good i by zi(p), i.e.

zi(p) = xi(p) −
(
yi(p) + xi(p)

)
.

If prices are involved then an equilibrium price (a price system at which an
equilibrium is reached) clears the markets.

Further on we frequently make use of the natural order in Rn introduced by
the positive cone

Rn
+ = {x = (x1, . . . , n) ∈ Rn | xi ≥ 0, i = 1, . . . , n},

i.e. for two vectors x = (x1, . . . , xn), y = (y1, . . . , yn) we write x ≤ y iff xi ≤ yi

for all i = 1, . . . , n, we write x < y iff x ≤ y and xi0 < yi0 for at least one index
i0. The norm we will use in the space Rn is defined as

‖x‖ =
n∑

i=1

|xi|, x = (x1, ..., xn) ∈ Rn.

This norm is equivalent to the euclidean norm which is introduced by means

of the scalar product 〈x, y〉 =
n∑

i=1

xi yi. Note that in economic publications the

scalar product of two vectors x, y ∈ Rn is usually written as x y.
For the standard economic model the following four assumptions have to be

met (see [4]).

Assumption 1. Let p = (p1, ..., pn) be an n-dimensional price vector with the
prices pi for one unit of good i as components, i = 1, 2, ..., n. For any p let
the excess demand for i be characterized by a unique number zi(p) and so the
unique vector z(p) = (z1(p), . . . , zn(p)) - the excess demand function with excess
demand functions for i as components (i = 1, 2, ..., n) - is well defined.

Assumption 2. z(p) = z(λp), ∀p > 0 and λ > 0.
The Assumption 2 asserts that z is a homogeneous vector-function of degree

zero. Economically this means that the value of the excess demand function
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does not depend on the price system if the latter is changed for all the goods
simultaneously by the same portion.

From the Assumption 2 follows that prices can be normalized (see [4], p.20
or [9], p.10). If for some price p one has z(p) = 0 then z(λp) = 0 for all prices
of the ray {λp : λ > 0}. Therefore, further on we consider only prices from the
n − 1-dimensional simplex of Rn

Δn = {p = (p1, p2, ..., pn) | pi ≥ 0 and
n∑

i=1

pi = 1}.

We rule out the situations when all the prices are zero or some of them are
negative. Note that Δn is a compact and convex set in the space Rn equipped
with one of its (equivalent) norms.

Assumption 3 or Walras’ Law. p z(p) = 0, ∀p ∈ Δn.
Walras’ Law can be regarded as an attempt to have a model sufficiently

truly reflecting rationally motivated activities of economic agents. According
to Walras’ Law all the firms and all the households both spend their financial
resources completely [9].

Assumption 4. The excess demand function z is continuous on its domain of
definition Δn.

It means that a small change of a price system will imply only a small change
in the excess demand. As a consequence from continuity of z, the standard model
can be used only for the description of economies with continuous excess demand
functions. Sometimes they are called stable economies.

In economies such prices are important at which the excess demand for each
good is nonpositive, i.e. the total supply of each good satisfies at least its total
demand.

Definition 3. A price p∗ ∈ Δn is called an equilibrium (price) if z(p∗) ≤ 0.

If p∗ is an equilibrium price then
n∑

i=1

zi(p∗) ≤ 0.

For the standard model of an economy with a finite number of goods and
agents such prices always exist as is proved in the following theorem.

Theorem 3 ([4]). If an economy E with a finite number of goods and agents
satisfies the Assumptions 1–4, then there exists an equilibrium in E.

4 Economic Models with Discontinuous Excess Demand
Functions

If z is the excess demand function for a neoclassical exchange economy, then z
is continuous on the set

S = {p ∈ Δn | pi > 0, i = 1, 2, ..., n}
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(see [2], Th.1.4.4 and Th.1.4.6). A neoclassical exchange economy (see [2]) is
characterized by a finite set of agents, where each agent i has a non-zero initial
endowment ωi and his preference relation �i is continuous (a preference relation
� is continuous if, given a two sequences (xn)∞

n=1, (yn)∞
n=1 with lim

n→∞ xn = x,

lim
n→∞ yn = y and xn � yn, n = 1, 2..., then x � y), strictly monotone and

strictly convex (on Rn
+) or else his preference relation �i is continuous, strictly

monotone and strictly convex on interior of Rn
+, and everything in the interior

is preferred to anything on the boundary and the total endowment ω =
∑
i

ωi is

strictly positive. If the preference relation �i is continuous, strictly monotone and
strictly convex then the corresponding utility function and the excess demand
function are continuous on the set S. We will consider the situation with a
discontinuous excess demand function. It is clear that in this case the properties
of the preference relations differ from them in the neoclassical exchange economy.
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Fig. 1. The indifference curves of utility function u(x, y) = max{x, y} for the values
1, 2, 3, 4 and 5.

For example, consider the preference relation on R2
+ that is represented by

the utility function u(x, y) = max{x, y} and an initial endowment ω = (2, 2).
The utility function is continuous, but it is not strictly monotone (for example,
(2, 2) > (2, 1) but u(2, 2) = 2 = u(2, 1)) and it is not strictly concave, it is convex.
The indifference curves for the values 1, 2, 3, 4 and 5 are illustrated in Fig. 1. Let
p = (α, 1−α) be a fixed price vector for some 0 < α < 1. We maximize the utility
function u subject to the budget constraint αx+(1−α)y = 2α+2(1−α) = 2. This
line goes through the point (2, 2) and intersects the axis in the points (0, 2

1−α )
and ( 2

α , 0). From Fig. 1 we see that the maximal vector of u over budget set
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(the dotted region in Fig. 1) is the point (0, 2
1−α ) if α > 1

2 and ( 2
α , 0) if α < 1

2 ,
respectively. If α = 1

2 then 2
1−α = 2

α and therefore we have two maximizing
vectors. The demand function in this case is

d(p) = d(α, 1 − α) =

⎧⎨
⎩

(0, 2
1−α ), α > 1

2 ,

{(0, 4), (4, 0)}, α = 1
2 ,

( 2
α , 0), α < 1

2 .

In the point (12 , 1
2 ) the demand multifunction is discontinuous.

In [1] it is proved that in a neoclassical exchange economy the condition
pn → p ∈ ∂S with (pn)n∈N ⊂ S implies lim

n→∞ ||z(pn)|| = ∞. It is also not our

case (see Theorem 1). In [1] it is shown that a utility function u : X → R (X -
topological space) representing a continuous preference relation is not necessar-
ily continuous. If we start with an arbitrary chosen discontinuous utility func-
tion then we have no mathematical tools for finding the corresponding demand
function (in the classical situation an agent maximizes the utility function with
respect to the budget constraint and uses the Lagrange multiplier method for
finding demand function). We note that there exist preference relations which
cannot be represented by a real-valued function, for example, the lexicographic
preference ordering of R2 (by definition (a, b) � (c, d) if (1) a > c or (2) a = c
and b > d) (see [10], notes to chapt.4).

The above situation inspires one to consider models without explicitly given
preference relations. In which cases is the excess demand function discontinuous?
Consider some good i and a fixed price system p. In the case that this good is,
e.g. an aeroplane or a power station, its demand xi(p) is naturally an integer. A
function like xi(p) =

[
30000
1+α

]
, where [x] denotes the integer part of x, provides an

example. Obviously, if the good is a piece-good (table, shoes, flower and other)
then the demand for this good is an integer. Similarly, the supply of piece-goods
is an integer. Therefore the demand and supply functions for piece-goods are
discontinuous and consequently the excess demand function too.

We will analyse some model of an economy with w-discontinuous excess
demand functions.

For the economies under consideration we keep the two first assumptions
from the standard model and change the two last as follows.

Assumption 4’. The excess demand function z is w-discontinuous on its domain
of definition Δn.

The w-discontinuity of the excess demand function makes our model available
to describe some properties of an unstable economy as well.

It is quite natural that for every price vector p ∈ Δn there exist at least one
good i with the price pi > 0 and such that the demand for them is satisfied, i.e.
zi(p) ≤ 0.
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If for some economy E with the excess demand vectors z(p), p ∈ Δn there
holds the Walras’ Law, i.e. p z(p) = 0 for any p ∈ Δn, then for each p ∈ Δn the
inequality

γp =
∑

i:zi(p)≤0

pi > 0

is satisfied. (We write further “zi(p) ≤ 0” instead of “i : zi(p) ≤ 0” and in similar
cases.) Indeed, if for some p = (p1, . . . , pn) ∈ Δn there would be

∑
zi(p)≤0

pi = 0,

then ∑
zi(p)≤0

pi +
∑

zi(p)>0

pi =
n∑

i=1

pi = 1

would imply the existence of an index i0 such that pi0 > 0 and zi0(p) > 0,

which hold then, because of
n∑

i=1

pi = 1, for some i0 there must be pi0 > 0 and

zi0(p) > 0, which yields p z(p) =
n∑

i=1

pizi(p) ≥ pi0zi0(p) > 0, a contradiction to

Walras’ Law.
Our next assumption requires the existence of a uniform lower bound for the

sums
∑

zi(p)≤0

pi, for all p ∈ Δn.

Assumption 3’. γ = inf
p∈Δn

γp > 0.

It seems to be clear that it would be hard to find out why an equilibrium
exists in our model. But it will be possible if we can estimate the unsatisfied
aggregate demand. This leads to the concept of quasi- or k-equilibrium.

Definition 4. Let k be a positive real. A price vector p∗ ∈ Δn is called a k-
equilibrium if it satisfies the condition

∑
zi(p∗)>0

zi(p∗) ≤ k.

The constant k ∈ R+ as a numerical value of the maximally possible unsatisfied
demand for a given price p∗ ∈ Δn characterizes to what state the economy differs
from the market equilibrium (Definition 3).

We can prove now the following

Theorem 4. Let E be an economy with n goods that satisfies the Assumptions
1, 2 and the Assumption 3’ with some number γ > 0. Put

w+ = w+(n, γ) =
1
2n

(
−(n + 1) +

√
(n + 1)2 + 8nγ

)
.

If now the Assumption 4’ is satisfied with w ∈ [0, w+), then the economy E
possesses a k-equilibrium for each k ≥ nw2+(n+1)w

2γ−nw2−(n+1)w .
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Proof. For p ∈ Δn define z+i (p) = max{0, zi(p)}, i = 1, ..., n, z+(p) =
(z+1 (p), . . . , z+n (p)),

ν(p) = 〈p + z+(p), e〉 = 1 +
∑

zi(p)>0

zi(p) and ti(p) =
pi + z+i (p)

ν(p)
, i = 1, ..., n,

where e = (1, . . . , 1) denotes the vector of Rn with all components equal to 1.
Note that ‖e‖ = n.

Define now a map T : Δn → Δn by T (p) = p+z+(p)
〈p+z+(p),e〉 , then T (p) =

(t1(p), ..., tn(p)). Since 0 ≤ ti(p) ≤ 1 for each i and

n∑
i=1

ti(p) =

n∑
i=1

(pi + z+i (p))

ν(p)
=

1 +
∑

zi(p)>0

zi(p)

ν(p)
= 1

one has T (p) : Δn → Δn.

Now the particular maps which the map T consists of, possess the follow-
ing properties. The identity map id on Δn is continuous, by Assumption 4’
the map z : Δn → Rn is w-discontinuous and by Corollary 3 so is z+. By
Corollary 1 the map id + z+ is w-discontinuous, what by Corollary 4 implies
the w‖e‖-discontinuity, i.e. the nw-discontinuity of ν(p) = 〈p + z+(p), e〉. Since
ν : Δn → [1,∞) the function 1

ν is nw
ν(p) -discontinuous as a consequence of Corol-

lary 5. Finally, based on Proposition 3, the map T (p) = (p + z+(p)) 1
ν(p) is w0-

discontinuous at a every point p ∈ Δn, where

w0 = w0(p) =
nw2

ν(p)
+

w

ν(p)
+

nw‖p + z+(p)‖
ν(p)

=
nw2 + w

ν(p)
+nw ≤ nw2 +(n+1)w

(1)
and so, the map T is also nw2 + (n + 1)w-discontinuous on the set Δn.

Since Δn is a convex and compact subset in the normed vector space Rn and
T (p) : Δn → Δn we conclude by means of Theorem 2 that there exists a vector
p∗ ∈ Δn satisfying the inequality

‖T (p∗) − p∗‖ ≤ nw2 + (n + 1)w.

Using the norm in Rn this yields

‖T (p∗) − p∗‖ =
∥∥∥p∗+z+(p∗)

ν(p∗) − p∗
∥∥∥ =

n∑
i=1

∣∣∣p∗
i +z+

i (p∗)
ν(p∗) − p∗

i

∣∣∣
=

n∑
i=1

∣∣∣∣∣
p∗
i +z+

i (p∗)−p∗
i −p∗

i

∑

zi(p
∗)>0

zi(p
∗)

ν(p∗)

∣∣∣∣∣ ≤ nw2 + (n + 1)w.

Since 1 +
∑

zi(p∗)>0

zi(p∗) > 0 one has

n∑
i=1

∣∣∣∣∣∣z
+
i (p∗) − p∗

i

∑
zi(p∗)>0

zi(p∗)

∣∣∣∣∣∣ ≤ (
nw2 + (n + 1)w

)
ν(p∗). (2)
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The left side of inequality (2) can be splitted into two sums

∑
zi(p∗)≤0

∣∣∣∣∣∣z
+
i (p∗) − p∗

i

∑
zi(p∗)>0

zi(p∗)

∣∣∣∣∣∣ +
∑

zi(p∗)>0

∣∣∣∣∣∣zi(p∗) − p∗
i

∑
zi(p∗)>0

zi(p∗)

∣∣∣∣∣∣

=
∑

zi(p∗)≤0

p∗
i

∑
zi(p∗)>0

zi(p∗) +
∑

zi(p∗)>0

∣∣∣∣∣∣zi(p∗) − p∗
i

∑
zi(p∗)>0

zi(p∗)

∣∣∣∣∣∣ . (3)

Using the triangle inequality we get the estimation∣∣∣∣∣∣
∑

zi(p∗)>0

⎛
⎝zi(p∗) − p∗

i

∑
zi(p∗)>0

zi(p∗)

⎞
⎠

∣∣∣∣∣∣ ≤
∑

zi(p∗)>0

∣∣∣∣∣∣zi(p∗) − p∗
i

∑
zi(p∗)>0

zi(p∗)

∣∣∣∣∣∣(4)

and further the left hand side of (4) calculates as
∣∣∣∣∣∣

∑
zi(p∗)>0

⎛
⎝zi(p∗) − p∗

i

∑
zi(p∗)>0

zi(p∗)

⎞
⎠

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

zi(p∗)>0

zi(p∗)

⎛
⎝1 −

∑
zi(p∗)>0

p∗
i

⎞
⎠

∣∣∣∣∣∣

=
∑

zi(p∗)>0

zi(p∗)

⎛
⎝1 −

∑
zi(p∗)>0

p∗
i

⎞
⎠ =

∑
zi(p∗)>0

zi(p∗)
∑

zi(p∗)≤0

p∗
i . (5)

By means of the equalities (3), (5) and the inequalities (2), (4) we obtain now

2
∑

zi(p∗)>0

zi(p∗)
∑

zi(p∗)≤0

p∗
i ≤

∑
zi(p∗)>0

zi(p∗)
∑

zi(p∗)≤0

p∗
i

+
∑

zi(p∗)>0

∣∣∣∣∣∣zi(p∗) − p∗
i

∑
zi(p∗)>0

zi(p∗)

∣∣∣∣∣∣ ≤ (
nw2 + (n + 1)w

)
ν(p∗).

It follows by means of the Assumption 3’

2γ
∑

zi(p∗)>0

zi(p∗) ≤ 2
∑

zi(p∗)>0

zi(p∗)
∑

zi(p∗)≤0

p∗
i ≤ (

nw2 + (n + 1)w
)

ν(p∗).

Since ν(p∗) = 1 +
∑

zi(p∗)>0

zi(p∗) the last inequality yields

∑
zi(p∗)>0

zi(p∗) ≤ nw2 + (n + 1)w
2γ − nw2 − (n + 1)w

, i.e.
∑

zi(p∗)>0

zi(p∗) ≤ k,

where k satisfies k ≥ nw2+(n+1)w
2γ−nw2−(n+1)w .

In order to have the number 2γ − nw2 − (n + 1)w positive the value of w
must belong to the interval [0, w+), where w+ is the positive root of the equation
w2 + n+1

n w − 2γ
n = 0. ��
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Fig. 2. No classical equilibrium, but k-equilibrium exists.

5 Conclusions

We make some remarks.

1. Let n and γ > 0 be fixed. Then w+ = w+(n, γ) is defined as indicated in the
theorem. For w ∈ [0, w+) put

k0(n,w) =
nw2 + (n + 1)w

2γ − nw2 − (n + 1)w
.

The number k0(n,w) is non-negative as was shown above. Note that a sharper
estimation (our estimation is based on the rough inequality ν(p) ≥ 1) in (1)
would yield a smaller value of k0(n,w) and, therefore, would give a better
result. In view of Theorem 2, however, an estimation has be obtained inde-
pendently on p.

2. In Fig. 2 for n = 2 there is shown a situation without a classical equilibrium.
It is clear that there is no p ∈ Δ2 which satisfies the inequality z(p) =
(z1(p), z2(p)) ≤ 0. The Assumptions 1, 2, 4’ are obviously fulfilled. The
Assumption 3’ also holds. Indeed, represent p = (p1, p2) ∈ Δ2 as

p = (1 − t)p′ + tp′′, t ∈ [0, 1],

then t ∈ [0, 1
2 ] implies z1(p) > 0, z2(p) < 0 and so γp = p2 and t ∈ ( 12 , 1]

implies z1(p) = 0, z2(p) > 0 and so γp = p1. In both cases we get γp ≥ 1
2

which shows that the Assumption 3’ holds with γ = 1
2 . Theorem 4 guarantees

the existence of a k-equilibrium for k ≥ 2w2+3w
1−2w2−3w if w < − 3

4 +
√
17
4 . Note

that Walras’ Law is not satisfied.
3. The number w+(n, γ) is positive for each n and fixed γ > 0. If one takes w = 0

then k0(n, γ) = 0 and with k = 0 there is obtained the classical case. Observe
that in this case it is not necessary to use the Walras’ Law for establishing a
classical equilibrium.
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4. Note that in the classical situation it is impossible to carry out any quanti-
tative analysis. On the contrary, the inequalities from Theorem4

w < w+(n, γ) and k ≥ k0(n,w)

give a chance to analyse the behaviour of an economy for different numerical
values of the parameters n,w, γ included in our model. From

0 ≤ w+(n, γ) =
−(n + 1) +

√
(n + 1)2 + 8nγ

2n

<
−(n + 1) + (n + 1) +

√
8nγ

2n
=

√
2γ

n

it follows that lim
n→∞ w+(n, γ) = +0. Since k0(n, 0) = 0, the positive number

k can be chosen arbitrary small. This shows that the larger the number of
goods the better the chance for a classical equilibrium.

5. It is reasonable to put k0(n,w+(n, γ)) = +∞. If for fixed n and γ the value
w is sufficiently close to w+(n, γ), then k is very large. In such a case the
existence of an k-equilibrium seems to be of low economic meaning.

6. The results of this paper have been developed in a collaboration with prof.
M. R. Weber from the Dresden University of Technology [7].

7. Other application of w-discontinuous mappings is to find a of quasi-
equilibrium in economic models that the author has developed in [6] in a
collaboration with a student D. Rika.
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