
On the Analysis of Illicit Supply
Networks Using Variable State

Resolution-Markov Chains
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Abstract. The trade in illicit items, such as counterfeits, not only leads
to the loss of large sums of private and public revenue, but also poses
a danger to individuals, undermines governments, and—in the most
extreme cases—finances criminal organizations. It is estimated that in
2013 trade in illicit items accounted for 2.5% of the global commerce.
To combat illicit trade, it is necessary to understand its illicit supply
networks. Therefore, we present in this article an approach that is able
to find an optimal description of an illicit supply network using a series
of Variable State Resolution-Markov Chains. The new method is applied
to a real-world dataset stemming from the Global Product Authentica-
tion Service of Micro Focus International. The results show how an illicit
supply network might be analyzed with the help of this method.
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1 Introduction

Illicit trade is defined as the trade in illegal goods and services that have a
negative impact on our economies, societies, and environments [12]. Two of the
most prevalent forms of illicit trade are counterfeiting and piracy, whose neg-
ative effects have been studied by both the OECD and the ICC. The former
estimates that in 2013 counterfeiting and piracy accounted for 2.5% of all world
imports [10], while the latter assesses that by 2022 counterfeiting and piracy will
drain 4.2 trillion dollars from the world economy and put 5.4 million jobs at risk.
1 The consequences of illicit trade go beyond the loss of public and private rev-
enue. Counterfeit medicines, for instance, have caused a large number of malaria
and tuberculosis related deaths [6], while counterfeit cigarettes, cd’s, etc. have
been linked to terrorist organizations [1]. These examples show the danger that

1 iccwbo.org/global-issues-trends/bascap-counterfeiting-piracy/,Accessed:07-17-2019.
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illicit trade poses to our communities. Therefore, finding ways to combat this
type of trade is of paramount importance.

A possibility for battling illicit trade is through the disruption of its illicit
supply networks (ISNs). Different methods on how to achieve this disruption
are found in literature. Many articles deal with technologies for distinguishing
between licit and illicit goods, such as the works of Dégardin et al. [3], Simske
et al. [15], and Meruga et al. [9]. More closely related to the present article
are those in which the ISNs are investigated directly. Some examples of this
type of articles are shown by Giommoni et al., [5], Magliocca et al. [7], and
Triepels et al. [16]. In the first, network analysis of the heroin trafficking networks
in Europe is conducted. In the second, a simulation of the response of drug
traffickers to interdiction is presented. In the third, international shipping records
are used to create Bayesian networks able to detect smuggling and miscoding.

The goal of this article is to identify the locations in which illicit activity is
more prevalent. To achieve this goal, we make use of Markov Chains, as they are
a type of model that is useful at determining the amount of time that a system
(i.e. a supply network) spends on a given state (i.e. a location) [13]. The first step
for creating a Markov Chain is to define what the states, or nodes, of the model
will be. These states can be defined at different resolution levels, as shown for
instance in [8]. In this article, the states represent possible geographic locations
within a supply network; which in turn can be defined in terms of countries,
regions, continents, etc. Unfortunately, the state description (i.e. the Markov
Chain design) that is best at modeling a given system is not immediately clear.
To address this issue, we present in this work a new method that optimizes—in
terms of a user-defined cost function—the design of a Markov Chain. Notice
that the models created via this new method are referred to as Variable State
Resolution-Markov Chains (VSR-MCs) to denote the fact that their states are
a combination of the various possible descriptions. Furthermore, a real world
dataset containing spatio-temporal information of serial code authentications is
used to show how the new approach can be used to analyze ISNs. This dataset
stems from the Global Product Authentication Service of Micro Focus Interna-
tional. The VSR-MC obtained with this data is then used to compare a licit
supply network to its illicit counterpart. The results of this comparison offer
insight on the locations in which illicit activity is more prevalent.

The remainder of this article is organized as follows: Sect. 2 offers prelimi-
nary information on Markov Chains. Section 3 shows the new method. Section 4
describes this article’s experiment. Section 5 shows and discusses the obtained
results and Sect. 6 contains the conclusion and outlook of this work.

2 Preliminaries

A Markov Chain can be defined as a discrete time random process {Xn : n ∈ N0}
whose random variables2 only take values within a given state space, i.e. xn ∈
2 Note that the common notation for random variables is used herein, i.e. random

variables are written in uppercase and their realizations in lowercase.
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S [2]. In this section, a state space—consisting of K ∈ N>1 different states—is
defined as S = {sk : k ∈ [1,K]}. In general, a Markov Chain can be viewed as a
Markov Process with discrete time and state space.

The most important property of a Markov Chain is its lack of “memory”,
i.e. the probability of an outcome at time n + 1 depends only on what happens
at time n [11]. This is better described by the following equation:

P(Xn+1|Xn = xn, . . . , X1 = x1) = P(Xn+1|Xn = xn). (1)

A Markov Chain is further characterized by its transition probability matrix
Pn; a matrix defined as:

Pn =

⎡
⎢⎣

p11 · · · p1K

...
. . .

...
pK1 · · · pKK

⎤
⎥⎦

n

, (2)

with the entries pij,n representing the probability of transitioning from state si

to state sj at time n, i.e. P(Xn+1 = sj |Xn = si). If the transition probabilities
are independent of n (i.e. Pn = P), the Markov chain is called time homoge-
neous [11].

Additionally, the probabilities of X0 being equal to each one of the states
can be written in vector form as follows:

π0 = [P(X0 = s1), · · · ,P(X0 = sK)]T = [π01, · · · , π0K ]T , (3)

where π0 is the start probability vector and π0k is the probability of X0 being
equal to sk.

Based on Eq. (1), (2), and (3), the probability of a sequence of events in a
time homogeneous Markov Chain can be calculated as a multiplication of a start
probability and the corresponding pij values [14]. For instance, the probability
of the sequence {X0 = s1,X1 = s3,X2 = s2} is given as:

P(X0 = s1,X1 = s3,X2 = s2) = π01 · p13 · p32. (4)

Interested readers are referred to [2] and [11] for more information on Markov
Chains.

3 Variable State Resolution-Markov Chain

The method presented herein offers a novel alternative on how to optimize the
design of a Variable State Resolution-Markov Chain (VSR-MC). The main dif-
ference between a traditional Markov Chain and a VSR-MC is the way in which
the state space is defined. This difference stems from the fact that a state can be
defined at different resolution scales, which are referred in this article as scales
of connectivity. For example, a geographic location within a supply network can
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be described at a country or at a continent scale. Based on this idea, we define
the state space of a VSR-MC as:

S = {ΦG(sk) : k ∈ [1,K]}
= {sG,k′ : k′ ∈ [1,KG]} , with

G = {glr : l ∈ [1, L], r ∈ [1, Rl]},

(5)

where sk represents the states, G is a set containing the groups (i.e. glr) in which
the states can be clustered, L ∈ N>0 is the number of scales of connectivity, and
Rl ∈ N>1 is the number of groups within the lth scale. Furthermore, ΦG(sk) is
a function that defines KG ∈ N>1 new states, which are referred to as sG,k′ . In
other words, ΦG(sk) is defined as follows:

ΦG(sk) =

{
sk , if sk /∈ G

glr : sk ∈ glr , else .
(6)

When defining G, it is important to consider that each sk can only be con-
tained in either one or none of the groups within the set. For the sake of
illustration, Fig. 1 shows an example of possible high resolution states and their
corresponding groups at different scales of connectivity.

Fig. 1. Example of various states and their corresponding groups

Based on all previous aspects, it is clear that we can create different Markov
Chains based on the combination of different states and groups. For instance,
consider a case in which four states (i.e. s1, s2, s3, and s4) can be aggregated in
two groups (i.e. g11 = {s1, s2} and g12 = {s3, s4}). As shown in Table 1, the pos-
sible combinations result in four VSR-MCs with different scales of connectivity.

In general, the number of combinations (i.e. group sets G) that can be
obtained with L scales of connectivity is given by the next equation:

Nc = 1 +
L∑

l=1

(l + 1)Rl − lRl , (7)
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Table 1. Possible state spaces of the Variable State Resolution-Markov Chains with
four states s1, s2, s3, and s4, one scale of connectivity, and two groups g11 = {s1, s2}
and g12 = {s3, s4}. As given by Eq. (7), the number of possible group sets equals four.

G {} {g11} {g12} {g11, g12}
S {s1, s2, s3, s4} {g11, s3, s4} {s1, s2, g12} {g11, g12}

where Nc is the number of all possible combinations and Rl is again the number
of groups within each scale.

After defining the group sets G, the probabilities of the group set-dependent
transition matrices (PG) and start probability vectors (πG,0) are calculated.
These probabilities are obtained using a dataset containing N sequences of events
of the system we want to model. In this article the sequences are described as:

xm = {xmn : n ∈ [0, Nm]}, (8)

in which xm is the mth sequence within the dataset, Nm ∈ N>0 is a value
that defines the sequence length, and xmn is one of the realizations forming the
sequence.

As mentioned at the beginning, the main goal is to find the scale of con-
nectivity that will optimize the Markov chain architecture. In other words, we
are interested in finding the VSR-MC that minimizes a problem-specific cost
function c(·). This optimization problem can be described in general as:

Gopt = argmin
G

c(G,S,PG,πG,0, · · · ), (9)

where Gopt represents the optimal group set.

4 Experimental Study

4.1 Data

The dataset used comes from the Global Product Authentication Service (GPAS)
of Micro Focus International. GPAS protects products in the marketplace by
embedding a URL and unique serial number into a QR code placed on each
product. The consumer is encouraged to scan the QR code which can authenti-
cate their purchase in real-time. This dataset contains therefore spatio-temporal
information of licit and illicit activity. To be more specific, it contains the authen-
tication results (i.e. “True” or “False”) of 1,725,075 unique serial codes.3 In
addition to the authentication, the dataset contains the geographic position (i.e.
latitude and longitude) and the time at which each serial code was authenticated.
Since many codes have been authenticated several times at different times and
places, we assume that a reconstruction of the supply network is possible.
3 The serial codes correspond to five different products. In this article, however, they

are not separated by their product type, but are rather investigated as a single group.
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In the present article, we are interested in analyzing licit and illicit serial
codes that are authenticated a similar number of times at different geographic
locations. Henceforth, the data is preprocessed as follows. First, all entries with
missing geographic information, as well as all serial codes that do not change
their position are removed from the dataset (i.e. 1,659,726). Afterwards, codes
whose authentication result is sometimes “True” and sometimes “False” are also
eliminated (i.e. 5,453). Note that the serial codes that have been removed are
still of interest, as they can be used in the future for other type of analysis. For
instance, serial codes that do not change position could be used to identify hot
spots of serial code harvesting, while serial codes that change their authentication
can be used to analyze locations in which the original licit codes might have been
copied. As mentioned earlier, the serial codes we are considering here are the ones
authenticated at different locations. We do this because we are interested in
discovering the network architecture, and by inference the distribution channels,
of the illicit actors. Finally, serial codes authenticated first and last at the exact
same position, as well as those authenticated in more geographic positions than
99% of all serial codes are deleted (i.e. 3,897). The goals of this final step are
the removal of serial codes that are suspect of being demos and the elimination
of copied serial codes authenticated a huge number of times (i.e. with a clearly
different behavior than licit serial codes).

The resulting dataset contains 55,999 unique serial codes, of which 31,989
are authenticated as “True”, while 24,010 are authenticated as “False”.

4.2 Description

The goal of this experiment is to find a VSR-MC able to accurately describe a
licit and an illicit supply network. To do so, we create a series of Markov Chains
with computed probabilities of state-state transitions for both licit and illicit
serial codes. Then, we select the one that is best at classifying illicit activity as
the one with the optimal scale of connectivity. To solve this classification problem
and to obtain representative results, we create three different training/test set
pairs, by randomly selecting—three separate times—50% of the unique serial
codes as training set and the rest as test set.

We begin the experiment by defining three different ways in which the loca-
tion of a serial code can be described, i.e. country, region, or continent. These
descriptions are the scales of connectivity of the VSR-MC we are looking to cre-
ate. Using the given geographic positions, we can easily determine the countries
and continents where the serial codes were authenticated. The regions, in con-
trast, are calculated using a clustering algorithm, i.e. the affinity propagation
algorithm [4]. This algorithm clusters the countries of a specific continent based
on a similarity measure. The similarity measure we use here is the geographic
proximity between the countries’ centroids. For the sake of illustration, Table 2
shows the three scales of connectivity used in this article.

As Eq. (7) shows, the regional and continental descriptions can be used to cre-
ate a staggering number of possible combinations; whose individual testing would
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Table 2. Scales of connectivity

Continents Regions Countries

Africa Africa 1 Djibouti, Egypt, Ethiopia, Kenya, Sudan

Africa 2 Angola, Botswana, Mozambique, Namibia, South Africa,

Zambia, Zimbabwe

Africa 3 Algeria, Libya, Morocco, Tunisia

Africa 4 Burundi, Congo - Kinshasa, Malawi, Rwanda, South Sudan,

Tanzania, Uganda

Africa 5 Benin, Burkina Faso, Côe d’Ivoire, Ghana, Mali, Niger,

Nigeria, Togo

Africa 6 Cape Verde, Gambia, Guinea, Guinea-Bissau, Liberia,

Mauritania, Senegal, Sierra Leone

Africa 7 Cameroon, Congo - Brazzaville, Gabon

Africa 8 Comoros, Madagascar, Mauritius, Réunion, Seychelles

Asia Asia 1 Bangladesh, Bhutan, India, Maldives, Myanmar (Burma),

Nepal, Sri Lanka

Asia 2 Japan, South Korea

Asia 3 Bahrain, Iran, Kuwait, Oman, Qatar, Saudi Arabia, United

Arab Emirates, Yemen

Asia 4 Cambodia, Hong Kong SAR China, Laos, Macau SAR China,

Taiwan, Thailand, Vietnam

Asia 5 Brunei, Indonesia, Malaysia, Philippines, Singapore

Asia 6 Armenia, Azerbaijan, Georgia, Iraq, Israel, Jordan, Lebanon,

Palestinian Territories, Syria, Turkey

Asia 7 China, Mongolia, Russia

Asia 8 Afghanistan, Kazakhstan, Kyrgyzstan, Pakistan, Tajikistan,

Turkmenistan, Uzbekistan

Europe Europe 1 Albania, Bulgaria, Cyprus, Greece, Macedonia, Malta,

Montenegro, Serbia

Europe 2 Iceland

Europe 3 Moldova, Romania, Ukraine

Europe 4 France, Portugal, Spain

Europe 5 Belgium, Denmark, Germany, Ireland, Luxembourg,

Netherlands, United Kingdom

Europe 6 Åland Islands, Finland, Norway, Sweden

Europe 7 Austria, Bosnia & Herzegovina, Croatia, Czechia, Hungary,

Italy, Monaco, Slovakia, Slovenia, Switzerland

Europe 8 Belarus, Estonia, Latvia, Lithuania, Poland

North America North America 1 United States

North America 2 Canada

North America 3 Mexico

North America 4 Bahamas, Curaçao, Dominican Republic, Haiti, Jamaica

North America 5 Barbados, British Virgin Islands, Guadeloupe, Martinique,

Puerto Rico, Sint Maarten, Trinidad & Tobago

North America 6 Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua,

Panama

Oceania Oceania 1 Australia, Fiji, New Zealand, Samoa

Oceania 2 Northern Mariana Islands, Palau, Papua New Guinea

South America South America 1 Bolivia, Brazil, Paraguay

South America 2 Colombia, Ecuador, Peru

South America 3 Argentina, Chile, Uruguay

South America 4 French Guiana, Guyana, Venezuela
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be computationally infeasible. For this reason, the next paragraphs describe a
two step alternative to deal with this issue.

Step 1: We begin by finding an optimal VSR-MC using only the regions
and continents. In other words, we define the regions as the Markov states sk

and the continents as the groups at the first—and only—scale of connectivity,
i.e. g1r ∈ {Africa, Asia, North America, South America, Oceania}. Using these
groups and Eq. (5), we define a total of 64 different state spaces S.

Afterwards, we calculate for each state space and each available training set
the probabilities that are necessary to construct a Markov Chain. To be more
specific, for each state space two start probability vectors and two transition
probability matrices are calculated, for licit and illicit serial codes, respectively.
These probabilities are based on the trajectories that are described herein as a
sequence of geographic positions in which a serial code has been authenticated.
Based on Eq. (8), the trajectories can be described as:

xα
m = {xα

mn : n ∈ [0, Nm]} : α = {licit, illicit}, (10)

where α indicates if the trajectory corresponds to a licit or an illicit serial code.
Notice that we assume the Markov Chains to be homogeneous. Therefore,

all sequences within the training sets that have an Nm > 1 are divided in Nm

sequences of two realizations each. With these new set of sequences as well as
Eq. (5), the start probabilities can be calculated:

πα
G,0i =

1
Mα

Mα∑
m=1

I(xα
m0 = sG,i) : α = {licit, illicit}, i ∈ [1,KG], (11)

where πα
G,0i is the probability of a sequence starting at state sG,i, Mα represents

the number of available sequences (licit or illicit), and I(·) is a function that
equals one if its condition is fulfilled and equals zero otherwise. Thereafter, the
elements of the transition matrices can be obtained using Bayes’s rule:

pα
G,ij =

1
Mαπα

G,0i

Mα∑
m=1

I(xα
m0 = sG,i ∩ xα

m1 = sG,j)

: α = {licit, illicit}, i, j ∈ [1,KG],

(12)

with pα
G,ij being the probability of transitioning from state sG,i to sG,j .

So, using the previous values we can determine—in every state space—the
probability of a serial code sequence if we assume it to be licit or illicit, i.e.
PG(xm|α) : α = {licit, illicit}. Thereafter, we can use the resulting probabilities
to classify a serial code as illicit if PG(xm|illicit) ≥ PG(xm|licit).

The method described previously is used to classify all codes within the test
sets. Afterwards, the classification results are evaluated using the weighted F-
Score, i.e.:

Fβ,G = (1 + β2)
Qp,G Qr,G

β2 Qp,G + Qr,G
, (13)
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where Qp,G represents the precision, Qr,G is the recall, and β is a parameter that
defines which of the former values is weighted more strongly. The value of β is
set equal to 0.5 to give precision two times more importance than recall. This
is done, since we are more interested in correctly identifying illicit serial codes
(precision) than we are in flagging every possible one (recall).

After finishing the evaluation on each test set, the mean value and variance
of the weighted F-Score are calculated, i.e. F β,G and σ2

β,G, respectively. With
these values, the optimization problem described in Eq. (9) can be redefined as:

Gopt = argmin
G

γ (1 − F β,G) + (1 − γ) σ2
β,G : γ ∈ [0, 1]. (14)

Notice that in this article the parameter γ is set equal to 0.5 to give both terms
of the cost function an equal weight and to make the cost function less sensitive
to noise. Solving Eq. (14) results in an optimal VSR-MC whose state space S
(defined by Gopt) might be a combination of regions and continents.

Step 2: If the number of regions within the state space S is greater than zero,
we can conduct an additional experiment to test if a country level description
of the regions improves our modeling of the supply network. Note that our
experiment uses a forward selection to reduce the number of combinations that
need to be tested. We first create new state spaces by individually separating the
regions within S into their corresponding countries. For instance, if S contains
6 regions we obtain 6 new state spaces. Afterwards, we test if some of these
new state spaces result in a Markov Chain with a cost (cf. Eq (14)) that is lower
than the one currently consider optimal. If so, we define the VSR-MC with the
lowest cost as the new optimal one and its state space as the new optimal state
space S. Afterwards, we repeat the previous steps again until none of the new
Markov Chains result in a better cost or until there are no more regions within
the state space. The result of this process is a VSR-MC with states that could
stem from all of our available scales of connectivity (i.e. countries, regions, and
continents). For the sake of simplicity, we will refer to the group set that maps
the individual countries to the state space of this new optimal VSR-MC also as
Gopt. It is worth noting, that since we are not testing all possible state spaces,
the solution of our method may not be the global optimum. Nevertheless, we
still consider our approach of dividing one region at a time to be acceptable.
There are two main reasons for this: (i) we are able to improve the overall cost
function testing only a small subset of all combinations; and (ii) we are able to
increase the resolution of our network description, something that may improve
our understanding of how the network operates.

After finding the best VSR-MC, we use all available data to recalculate the
probabilities of the transition matrices to analyze the differences between the
licit and the illicit supply networks with more detail. The analysis consists in
calculating the limiting distributions of the licit and illicit transition matrices.
These describe the probabilities of authenticating the serial codes at the different
locations if we observe our system (i.e. the supply network) over a long period of
time. In other words, these values can be interpreted as estimates of the amount
of time that licit or illicit serial codes will spend on the different locations.
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Therefore, a comparison of licit and illicit limiting distributions will allow us to
estimate the locations where we expect illicit serial codes to spend more time.
The comparison is based on a relative difference that is defined in this article as:

Δπ′
sGopt,i

=
πlicit

sGopt,i
− πillicit

sGopt,i

πlicit
sGopt,i

, (15)

where πlicit
sGopt,i

is the licit limiting distribution value of sGopt,i, πillicit
sGopt,i

repre-
sents the illicit limiting distribution value of sGopt,i, and Δπ′

sGopt,i
is the relative

difference for state sGopt,i.
After estimating the relative differences, we can test the difference between

our approach and a simple descriptive analysis. This test consists in comparing
the Δπ′

sGopt,i
values to benchmark relative differences (BRDs) calculated using

descriptive statistics. To be more specific, the BRDs are also obtained with
Eq. (15), but instead of using the limiting distribution values, we use the actual
percentage of true and false authentications on the given states.

5 Results and Discussion

The results obtained on the three separate test sets by the VSR-MCs with only
regions and continents as scales of connectivity (cf. Sect. 4.2; Step 1) are depicted
in Fig. 2.

The first thing we notice when looking at Fig. 2 is that the standard devia-
tions are relatively small. This not only means that the results on all test sets
are similar, but also that our mean estimates are quite accurate, as the standard
error of the mean is directly proportional to the standard deviation. In addition,
Fig. 2 also shows that the precision does not appear to change when modifying
the state space; as it is consistently around 90%. In contrast, the use of different
group sets divides the recall in two distinct groups with different recall values;
the first between 60 and 70% and the second between 80 and 90%. The decrease
in recall is caused by considering Asia as a continent instead of looking at its
individual regions. In other words, individual networks between Asian regions
seem to play an important role in the accurate modeling of licit and illicit sup-
ply networks. Due to the recall, the weighted F-Score is also dependent on Asia
being modeled as a single state or as individual regions. This result, i.e. that the
scale of connectivity affects the quality of the supply network models, supports
the use of this article’s method (cf. Sect. 3). Therefore, we use Eq. (14) and the
obtained weighted F-Scores to determine the scale of connectivity that will best
describe the licit and illicit supply networks.

According to Eq. (14), the optimal VSR-MC is the one with states repre-
senting the continents of Africa, Europe, North America, South America, and
Oceania, as well as the individual regions of Asia, i.e. Gopt = {Africa, Europe,
North America, South America, Oceania}. This result shows again the impor-
tance that Asia appears to play in the accurate modeling of the supply networks.
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Fig. 2. Group set-dependent mean values and standard deviations of the precision,
recall, and weighted F-score (cf. Eq. (13)) obtained on the three separate test sets

After finding the best VSR-MC, we can identify the regions that, when
divided, improve our model (cf. Sect. 4.2; Step 2). Our method concludes that
our description of the licit and illicit supply networks improve if we consider five
of the eight Asian regions (i.e. Asia 1, Asia 5, Asia 6, Asia 7, and Asia 8) as indi-
vidual countries. Therefore, we redefine the optimal group set as Gopt = {Asia 2,
Asia 3, Asia 4, Africa, Europe, North America, South America, Oceania}. This
group set defines a new VSR-MC with a state space that combines the three
scales of connectivity we considered in this article. Lastly, it is important to
mention, that the cost of this new optimal VSR-MC (i.e. 0.047) is not only lower
than the one obtained when Asia is divided purely into regions (i.e. 0.054), but
also than the one obtained when Asia is divided purely into countries (i.e. 0.048).

Once the optimal scale of connectivity, given any limitations of our process,
has been found, we recalculate the Markov Chain probabilities with all available
data and use Eq. (15) to identify the states in which illicit serial codes are more
prevalent. It is important to mention that having some of the countries as states
results in the transition matrices having absorbing states; a type of state that
complicates the calculation of the limiting distributions. Therefore to calculate
the limiting distributions, we first group those countries with the “less absorbing”
countries within their region. In this context, “less absorbing” refers to countries
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whose rows in their transition matrices have the least number of zeros when
compared to all other countries within their region.

The relative differences Δπ′
sGopt,i

(cf. Eq. (15)), the number of times a serial
code is authenticated, and the benchmark relative differences (BRDs) are all
contained in Table 3.

When looking at Table 3, we notice a state with a relative difference of minus
infinity (i.e. Mongolia) and another with a relative difference of one (i.e. Tajik-
istan). This means that in those locations only illicit or only licit serial codes
were authenticated. Even though these types of results might be interesting,
they will not be investigated further, as the number of authentications in those
locations is extremely low.

Table 3 also shows that the countries that would have formed absorbing states
are locations in which serial codes are authenticated a small number of times,
specially compared to the number of authentications within the “less absorbing”
countries they are grouped with (i.e. India, Malaysia, Pakistan, and Turkey).
Henceforth, we can safely assume that the “less absorbing” countries are the
ones responsible for the relative differences obtained. Furthermore, the results
in Table 3 show that there are several states in which illicit serial codes appear
to spend more time than licit ones. These states are the ones with a negative
relative difference (cf. Eq. (15)) and are further referred to as “critical” states.
The fact that most of these critical states are countries within the regions selected
by our forward selection algorithm (cf. Sect. 4.2; Step 2), speaks in favor of our
approach.

As Table 3 shows, Turkey is the most “critical” state, as its relative difference
estimates that illicit serial codes will spend close to 1200% more time there than
their licit counterparts. This is an extreme result that needs to be investigated
further, for instance by identifying the reasons behind this outcome and/or by
finding out if Turkey is again a critical state when looking at illicit activities, such
as serial code harvesting. The critical states with the next three lowest relative
differences are Georgia, Singapore, and Syria. There the limiting distribution
values of an illicit serial code are between 200 and 300% higher than those of a
licit one. However, we can also observe that the number of authentications occur-
ring on those locations is quite low in comparison to other places. Henceforth,
a further investigation of those locations may not be of extreme importance.
In addition to the results mentioned above, there are several “critical” states
with relative difference that can still be considered high, i.e. between 20 and
50%. Within these states, Europe and China are the ones with a considerably
larger amount of authentications. Therefore, a more in depth study of these two
locations could be interesting for future related works.

It is also important to mention that a state having a relative difference close
to zero does not mean that it is free of illicit activity. For instance, Sri Lanka,
North America, and South America have relative differences of just −0.07, −0.01,
and 0, respectively, meaning that their limiting distribution values for licit and
illicit serial codes are almost the same. In other words, states whose relative
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Table 3. Number of authentications, relative limiting distribution difference Δπ′
sGopt,i

,

and benchmark relative difference (BRDs) of the states forming the optimal Variable
State Resolution-Markov Chain; the absorbing states and their realization are shown in
parentheses next to the name and realizations of their corresponding “less absorbing”
countries

sGopt,i # of Authentications Δπ′
sGopt,i

BRD

Mongolia 1 −Inf −Inf

Turkey (Jordan, Armenia) 42064 (53, 5) −11.69 −12.07

Georgia 16 −2.91 −1.72

Singapore 189 −2.51 −0.69

Syria 22 −2.41 −0.59

Europe 20621 −0.49 −1.87

Kazakhstan 114 −0.32 0.47

Pakistan (Kyrgyzstan,
Turkmenistan, Uzbekistan)

1944 (1, 1, 5) −0.32 −0.02

China 19923 −0.20 0.80

Sri Lanka 298 −0.07 0.42

North America 10991 −0.01 0.48

South America 24590 0.00 0.50

Asia 3 3606 0.25 0.51

India (Nepal, Maldives) 13669 (38, 29) 0.37 0.64

Russia 4475 0.42 0.59

Philippines 283 0.52 0.78

Bangladesh 282 0.53 0.51

Bhutan 279 0.53 −0.53

Africa 11756 0.56 0.58

Afghanistan 445 0.58 0.50

Asia 4 1815 0.65 0.73

Malaysia (Brunei) 1898 (16) 0.69 0.75

Indonesia 318 0.70 0.77

Palestinian Territories 113 0.71 0.28

Oceania 644 0.76 0.76

Israel 363 0.87 0.23

Asia 2 654 0.89 0.49

Lebanon 56 0.92 0.80

Azerbaijan 457 0.92 0.95

Iraq 32 0.98 0.91

Myanmar 92 0.99 0.98

Tajikistan 3 1.00 1.00
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differences are close to zero may have a similar rate of licit and illicit activity
and thus should be investigated further.

Lastly, we observe that some relative difference values vary significantly or do
not agree to those calculated using simple descriptive statistics (i.e. the BRDs).
For example, though China has the relative difference of a so-called “critical”
state, its BRD is clearly above zero. Similarly, North and South America have
BRDs that indicate more licit than illicit authentications, while their relative dif-
ferences estimate instead similar rates. Note that though we are aware about the
interesting results obtained for Bhutan (its BRD and its relative difference are
complete opposites), no further investigation and analysis were conducted given
its relatively small number of authentications. In general, the results obtained
in this work demonstrate that modeling the spatio-temporal information of a
supply network (as we do with our approach) leads to conclusions that are dif-
ferent from those obtained through a simple descriptive analysis. Furthermore,
since our method models the behavior of the illicit supply network as a whole,
we can argue that it is better suited at combating illicit trade than a descriptive
analysis.

6 Conclusion and Outlook

This article presents a new approach for describing illicit supply networks based
on Variable State Resolution-Markov Chain (VSR-MC) models. These type of
models stem from the idea that a location within a supply network can be
described at different scales of connectivity (e.g., countries, regions, continents).

The new method described herein is divided in two main steps. The first
step creates a series of VSR-MCs that describe the same network using different
state spaces, while the second uses a user-defined cost function to select the
VSR-MC that best describes the network. The new method is applied to a
dataset containing spatio-temporal information of licit and illicit activity. This
dataset comes from the Global Product Authentication Service of Micro Focus
International and contains information of the time and place in which licit and
illicit serial codes have been authenticated. Applying our new method to this
dataset results in Markov Chain models of the licit and illicit supply networks.
The comparison of both networks enables us to ascertain the geographic locations
in which illicit serial codes are expected to spend more time than their licit
counterparts.

Even though this article shows a promising approach for analyzing illicit sup-
ply networks, there are still a number of aspects that have to be studied in future
related works. For instance, in this article all scales of connectivity stem from
grouping the countries based on their geographic proximity. Therefore, future
works should investigate if better descriptions of the illicit supply networks can
be obtained by clustering the countries based on other measures of similarity;
such as, their number of free trade agreements, their culture, or their language.
Such a study will allow us to better identify the aspects that drive illicit sup-
ply networks. Additionally, we should also use the method described herein to
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compare networks stemming from different forms of illicit trade, such as counter-
feiting, serial code harvesting, and human trafficking. A comparison like this will
enable us to identify both similarities and differences between different types of
illicit trade. Moreover, future works should also investigate the use of nth order
and non-homogeneous Markov Chains. Finally, we must compare our method to
other approaches to better understand its advantages and limitations.
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