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Abstract. Analyzing human mobility with geo-location data collected
from smartphones has been a hot research topic in recent years. In this
paper, we attempt to discover daily mobile patterns using the GPS data.
In particular, we view this problem from a probabilistic perspective. A
non-parametric Bayesian modeling method, the Infinite Gaussian Mix-
ture Model (IGMM) is used to estimate the probability density of the
daily mobility. We also utilize the Kullback-Leibler (KL) divergence as
the metrics to measure the similarity of different probability distribu-
tions. Combining the IGMM and the KL divergence, we propose an
automatic clustering algorithm to discover mobility patterns for each
individual user. Finally, the effectiveness of our method is validated on
the real user data collected from different real users.

Keywords: Probabilistic model * Infinite Gaussian Mixture Model -
Kullback-Leibler divergence - Human mobility

1 Introduction

Smartphone devices are equipped with multiple sensors that can record user
behavior on the handsets. With the help of large-scale smartphone usage data,
researchers are able to study human behavior in the real world. Since location
information is one of the crucial aspects of human behaviors, investigating human
mobility from mining mobile data has drawn the attentions of many researchers.

Previous research in this filed mainly focused on discovering the significant
places or predicting the transition among the significant places [2,6,11]. How-
ever, these research neglected the data sampled at the places where one stays for
a relatively short time period, for instance, amid the transitions. As opposed to
this point of view, we suggest that these type of data is important for revealing
human mobility patterns as well. In our work, the human mobility is recorded by
the GPS modules embedded on the smartphone devices. It should be emphasized
that GPS data (longitudes and latitudes) are not evenly distributed spatially
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because one may stay longer at the significant places (i.e., a home or school)
than at the less significant places (i.e., a restaurants or road). Thus, an appro-
priate description for human mobility is to treat the location of an individual
as a set of data points randomly distributed in the space with respect to differ-
ent probabilities. Moreover, in practice, the data collecting procedure may not
be continuous all the time because the GPS module is turned off or does not
function well sometimes. As a consequence, it arises the issue of data sparsity.
These unique data characteristics prevent researchers adopting some conven-
tional methods. Therefore, in our work, we adopt a probabilistic approach to
describe the daily human mobility. As compared to conventional methods, we
believe our approach can explore more information from the original GPS data
and mitigate the impact of data sparsity.

The first step of the method is to estimate the probability density for each
day’s trajectories. For such a task, Gaussian Mixture Model [14] is a possible
solution. However, the standard Gaussian Mixture Model needs to set the num-
ber of components in advance, which is tricky to implement because the trajec-
tory data can be statistically heterogeneous and a fixed component number for
all the daily trajectories is not appropriate either. To handle this problem, we
adopt the Infinite Gaussian Mixture Model (IGMM) [13], in which the Dirich-
let process prior is used to modify the mixed weights of components. Further,
to measure the difference between different mobility probability densities, the
Kullback-Leibler (KL) divergence [9] is used. The KL divergence is an asym-
metric metric, which means the distance from distribution p to distribution ¢ is
not the same as the distance from distribution ¢ to distribution p unless they
are identical. We exploit the inequality property of the KL divergence to reveal
the subordinate relationship of one trajectory to another. Finally, we devise a
clustering algorithm using the IGMM with the KL divergence to discover the
mobility patterns existing in human mobility data. More importantly, as com-
pared to traditional methods, our clustering algorithm is automatic because it
does not require a preset of the pattern number.

The reminder of the paper is organized as follows. Section?2 surveys the
related work. Section3 addresses the problem we are tackling in this paper.
In Sect.4, the proposed method is depicted. In Sect.5 presents the conducted
experiment and its results to evaluate our method with real user data. Finally,
we conclude our paper and discuss about the future work in Sect. 6.

2 Related Work

A widespread topic is to predict human mobility with the smartphone usage
contextual information, e.g., temporal information, application usage, call logs,
WiFi status, Cell ID, etc. In [2] for instance, the researchers applied various
machine learning techniques to accomplish prediction tasks such as the next-
time slot location prediction and the next-place prediction. In particular, they
exploited how different combinations of contextual features are related to smart-
phone usage can affect the prediction accuracy. Moreover, they also compared
the predicting performances of the individual models and the generic models.
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Another frequently-used method for such tasks is to use probabilistic mod-
els. By calculating the conditional probabilities between contextual features,
[5] developed the contextual conditional models for the next-place prediction
and visit duration prediction. In [4], the researchers presented the probabilis-
tic prediction frameworks based on Kernel Density Estimation (KDE). [4] uti-
lized conditional kernels density estimation to predict the mobility events while
[12] devised different kernels for different context information types. In [11], the
authors developed a location Hierarchical Dirichlet Process (HDP) based app-
roach to model heterogeneous location habits under data sparsity.

Among the other possible approaches, [18] proposed a Hypertext Induced
Topic Search based inference model for mining interesting locations and travel
sequences using a large GPS dataset in a certain region. In [6], the authors
employed the random forests classifiers to label different places without any geo-
location information. [15] made use of nonlinear time series analysis of the arrival
time and residence time for location prediction.

In particular, for clustering user trajectories, there exists several different
methods. However, these conventional algorithms are not applicable to our objec-
tives. For example, some researchers used K-means [1] in their work, whereas K-
means can not handle the trajectories with complex shapes or noisy data because
it is based on Euclidean distance. Besides, it also needs the pre-knowledge of the
cluster numbers, which is not acquirable in many real-world cases. DBSCAN
[17], a density-based clustering techniques, can deal with data with arbitrary
shapes and does not require the number of cluster in advance. However, it still
needs to set the minimum points number and neighbourhood radius to recog-
nize the core areas and it treats the non-core data points as noise. As for the
grid searching algorithm [5], it focus on detecting the stay points within a set of
square regions, whereas it fails to reveal the mobility at a larger scale.

3 Problem Formulation

In this paper, our purpose is to discover the mobility patterns for each indi-
vidual from the GPS location data. As shown in Fig. la, the mobility for one
individual consists of many different trajectories (the data is from the MDC
dataset, the detailed data description will be in following experiments). A tra-
jectory here means that a set of GPS data points collected from the user’s
smartphone, however, we do not treat it as a sequence. We believe that one’s
daily mobility is rather regular and there are common mobility patterns shared
among different daily trajectories. Generally, one may follow the regular daily
itineraries, for instance, home-work place/school-home. Yet, on different days
the daily itineraries may not be the same, for instance, on the way to home, one
may take a detour to do shopping in a supermarket sometimes. Hence, our objec-
tive is to discover all the potential daily mobility from the data with location
information.

We extract each day’s trajectory from the all GPS trajectories from a user.
Figure 1b reveals that daily trajectories recorded by GPS data are not distributed
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Fig. 1. GPS data samples.

evenly in space. It may be caused by the data collecting procedure: some data
collecting time period is actually relatively short (less than 24 h, in fact, only
few hours sometimes), which leads to the data sparsity problem. In order to
overcome this problem and exploit as much information as possible from the
GPS data, we argue that a reasonable way to describe the daily trajectories is
to estimate the probability density of the location data. The relationship among
the trajectories can be represented by their probability densities. As a result, we
can discover all the mobility patterns for each user. The tasks in this paper will
be as follows:

— Task 1: to estimate the probability density for mobility for each day.
— Task 2: to measure the closeness between different trajectories.

— Task 3: to discover the similar mobility patterns.

— Task 4: to compare the proposed algorithm with other methods.

4 Proposed Method

4.1 Estimating Daily Trajectories Probability Density

We assume that the GPS location data points are distributed randomly spatially.
The distribution of each day also consists of unknown number of heterogeneous
sub-distributions. Therefore, one feasible method is to use mixed Gaussian mod-
els for estimating the probability density of daily mobility.

Gaussian Mixture Model. A Gaussian Mixture Model (GMM) is composed
of a fixed number K of sub-components. The probability distribution of a GMM
can be described as follows:

K
P(z) =Y mP(x|0k) (1)
k=1
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Fig. 2. The plate representation of Infinite Gaussian Mixture Model.

where, x is the observable variable, 7 is the assignment probability for each
model, with Zle 7 = 1,(0 < 7, < 1), and 0 is the internal parameters of the
base distribution.

Let z, be the latent variables for indicating categories.

K
zn, ~ Categorical (zp|m) Zznk =1 (2)
k=1
where, z, = [2n1, Zn2, --s Znk, .- Znk |, il which only one element z,; = 1. It

means &, is correspondent to 6.
If the base distribution is a Gaussian, then:

P(x|0x) = N(zlux, 43" 3)

where, p is the mean vector and Ay is the precision matrix.
Therefore, an observable sample z,, is drawn from GMM according to:

K
2~ [ N(@alvw, Ax)™* (4)

k=1

As it is illustrated above, one crucial issue of GMM is to pre-define the
number of components K. It is tricky because the probability distribution for
each day’s mobility is not identical. Thus, to define a fixed K for all mobility
GMM models is not suitable in our case.

Infinite Gaussian Mixture Model. Alternatively, we resort to the Infinite
Gaussian Mixture Model (IGMM) [13]. As compared to the finite Gaussian Mix-
ture Model, by using a Dirichlet process (DP) prior, IGMM does not need to
specify the number of components in advance. Figure2 presents the graphical
structure of the Infinite Gaussian Mixture Model.

In Fig. 2, the nodes represent the random variables and especially, the shaded
node is observable and the unshaded nodes are unobservable. The edges represent
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the conditional dependencies between variables. The variables within the plates
means that they are drawn repeatedly.
According to Fig. 2, the Dirichlet process can be depicted as:

G ~ DP(a,Go) (5)

where, G is a random measure, which consists of infinite base measures G
and A is the hyper-parameter of Gg. In our case, it is a series of Gaussian distri-
butions. And a ~ Gamma(1,1) is the concentration parameter. N is the total
samples number. 0}, is the parameters of base distribution. X} is the observable
data for 6. Zj is the latent variables that indicates the category of Xj.

Alternatively, G can be explicitly depicted as follow:

G(0) =) mido, (6)
k=1

where, 6 ~ Go()\), and § is Dirac function. 7, determines the proportion
weights of the clusters and the dg, is the prior of the 6 to determine the location
of clusters in space.

We choose the Stick-breaking process (SBP) [16] to implement the Dirichlet
process as the prior of 7. The Stick-breaking process can be described as follow:

k—1
Wk:VkH(l—l/j) kZQ (7)
j=1

where, v ~ Beta(l, a).

Since P(x|6) is Gaussian, § = {u, A}. Further, let Gy be a Gaussian-Wishart
distribution, then, py, Ax ~ Go(u, A). Therefore, similarly, drawing an observ-
able sample z,, from IGMM can be described as follow:

2o ~ [ N@nlve, A1) (8)
k=1

Variational Inference (VI) is used to solve the IGMM models. In contrast
with Gibbs sampling, a Markov chain Monte Carlo (MCMC) method, VI is
relatively faster which makes it salable to large datasets [3]. The results will be
demonstrated in the later experiments.

4.2 Measure Daily Trajectories Similarities

The Kullback-Leibler (KL) divergence is a metric to evaluate the close-
ness between two distributions. For continuous variables, the KL divergence
D1 (pllg) is the expectation of the logarithmic difference between the p and ¢
with respect to probability p and vice versa. From (9) and (10), it can be seen
that the KL divergence is non-negative and asymmetric. In many occasions, the
inequality of the KL divergence is notorious. However, in our method, we take
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advantage of this characteristic of inequality to reveal the similarities among
different trajectories instead of other symmetric metrics.

Dicrtolla) = [ " p(@) 1og(P e (9)

T

I~ E k-]

—eo (2)
Dkr(qllp) = /jo q(y) log(%)dy (10)

There is no closed form to implement the KL divergence by the definition of
(9) and (10) for Gaussian Mixture Models. Therefore, we resort to the Monte
Carlo simulation method proposed in [7]. Then, the KL divergence can be cal-
culated via:

Dictve o) = 5 3 tos(220) (1)

Dictve alls) = 3 Y- log( 420 (12)
i=1 ’

p

This method is to draw a large amount of i.i.d samples z; from distribution
p to calculate Dkr,,,. (p||q) according to (11) and Dgkr,,,.(pll¢g) — Dxr(®||q)
as n — 00. It is the same for implementing (10) by using (12). The results will
be demonstrated in the later experiments. Furthermore, if we define a repre-
sentative trajectory for a mobility pattern then we can distinguish whether a
new trajectory belong to this cluster by comparing it to the most representative
trajectory. To this end, we need to set a threshold with a lower bound and an
upper bound for the KL divergences, afterwards it can be used as the metrics to
cluster the trajectories.

4.3 Discovering Mobility Patterns

The proposed algorithm is shown in Algorithm 1 and its variables are described
in Table 1. The first step of the clustering algorithm is to calculate the probability
densities by using the Infinite Gaussian Mixture Models. At this step, we create
a list, in which the members are the probability densities of each trajectories.
Then the first cluster is created with one trajectory as its first member and it
also will be the first baseline trajectories used to compare with other trajectories.
It may be replaced by other trajectories later. Afterwards, we select another
daily trajectory in the list and calculate the KL divergences, both Dy p(q) and
D 1.(q||p)- The new trajectory is added to the current cluster if the minimum and
maximum of the KL-divergences are smaller than the lower threshold and the
upper threshold of the thresholds respectively at the same time. If the Dy, p)|q)
is smaller than Dy, (q)p), the new trajectory become the new baseline for the
current cluster. This step will be repeated until all the trajectories belonging
to the current cluster are discovered at the end of this iteration. Then all the
members of the current cluster are removed from the iteration because we assume
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that each trajectory can only be the member of one mobility pattern. At the start
of new iteration, a new cluster is created, the above steps will be repeated until
the list is empty.

Table 1. Variables description

Variable | Domain Description

D Integer Total number of data
collecting day

d {1,2,...,D} Index of data collecting day

X {X1,X2,...,X4,..., XD} Total GPS data (longitudes,
latitudes

P {P1,P>,...,P4,...,Pp} Probability density for X

M {Mi,Ms,...,My,... Mg} Total mobility patterns list

K Integer Total number of Discovered
mobility patterns

M, {Xk1, Xk2y oy Xin} Discovered mobility pattern
sub-members list

Th {Lower bound, Upper bound} | Thresholds for distinguishing
patterns

DKL {DKL(qu),DKL(qu)} KL divergences

As it can be seen that our algorithm is designed to discover the latent mobility
patterns automatically without the pre-knowledge of the number of existing
patterns.

5 Experiments and Results

5.1 Data Description

We use the Mobile Data Challenge (MDC) dataset [8,10] to validate our method.
This dataset records a comprehensive smartphone usage with fine granularity of
time. The participants of the MDC dataset are up to nearly 200 and the data
collection campaign lasted more than 18 months. This abundant information can
be used to investigate individual mobility patterns in our research. We attempt
to find the trajectories that belong to the same mobility patterns, therefor we
focus on the spatial information of the GPS records, namely, the latitudes and
longitudes, while the time-stamps of the data are not considered. In addition,
the data we use is unlabeled and without any semantic information.

5.2 Experimental Setup

For the experiments, we randomly select 20 users with sufficient data. Each user’s
is segmented by the time range of one day. Generally, the data length of each
day varies from less than 4h to 24h and most of them is less than 8 h.
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Algorithm 1. Algorithm for Discovering Mobility Pattern

Input: X
Output: M
1: P «— IGMM(X) > probability density estimation
2: Initialize:M = {My} > create the mobility patterns set
3: while P # () do
4: X =X1 > set a baseline mobility for M
5: M, = {X,} > create current pattern Mj
6: ford=2,...,D do
7 Dgr, <« (Ps, Py) > measure similarity
8: if (min(Dkr) < Thl0]) & (max(Dkr) < Th[l]) then > two patterns are
similar
9: add Py to My > add new member
10: if DKL[O] > DKL[l] then
11: Ps — Py > change the baseline mobility
12: end if
13: end if
14: end for
15: remove Py € My from P > current pattern is finished
16: create M1 > find new mobility pattern

17: add Mk_;,_l to M
18: end while
19:

return M
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5.3 Experimental Results

Probability Density Estimation. Fig.3a and Fig. 3b show the density esti-
mation results obtained by the GMM and the IGMM, respectively. It can be seen
that, compared to the GMM, the result of the IGMM is less overfitting than the
GMM. It suggests that the IGMM is not affected by the number of components
and it infers more information from the original data and it is less influenced by
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data sparsity. That is to say, on the same dataset, the computational results of

the IGMM have higher fidelity. Hence, in our approach, we chose the IGMM to
estimate probability density of daily mobility.

Measuring Daily Trajectories Similarities. As shown in Fig. 4, we select
5 daily trajectories from the data of one random user to demonstrate the KL
divergences between different trajectories. The baseline trajectory is Trajectory
1 and the rest of trajectories are chosen to make comparisons.

Table 2. KL-divergences for different trajectories.

p q Drrwllg) | Prrllp)
Trajectory 1| Trajectory 2| 7.21 2.82
Trajectory 1 | Trajectory 3| 1.28 1.83
Trajectory 1 | Trajectory 4 |19.07 1269.47
Trajectory 1 | Trajectory 5| 3.08 996.17

The combinations are shown in Fig.4 and the results are illustrated in
Table 2. Trajectory 2 is nearly a sub-part of Trajectory 1, the KL divergence
values are both small, thus Trajectory 2 and Trajectory 1 can be regarded to
belong to the same mobility pattern. Trajectory 3 is very similar to Trajectory 1
and Dy, (pl||lg) almost equals to Dk (q||p). Hence, they also are the members
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of the same mobility pattern. Trajectory 4 shares a small part with Trajectory
1 whereas generally they are very different. D1 (p|lq) and Dxr(¢||p) are both
very large. Therefore, Trajectory 4 and Trajectory 1 are different patterns. For
Trajectory 5 and Trajectory 1. D (p|lg) is small but Dy (p|lq) are very large.
So they naturally are not in the same pattern. Finally, we can say that the Kl
divergence can be used as the distance metrics to distinguish different trajectory
patterns.

Discovering Daily Mobility Patterns. We run our algorithm on the data
of the 20 users to discover their daily mobility patterns. The partial clustering
results are demonstrated in Fig. 5. It proves our method is able to find different
mobility patterns even under the condition of noise and discontinuity. Figure 6
shows that our approach is able not only to identify the different patterns in
the daily trajectories data but also to find the most representative trajectories
for each mobility pattern. Figure 7a shows the number of discovered mobility
pattern for all the user in our experiments. Figure 7b depicts the number of
members for each discovered mobility patterns for all users.

Comparing with Other Methods. In comparison with the IGMM-based
model, we utilize Kernel Density Estimation (KDE) and a set of Gaussian Mix-
ture Models with different numbers of components (GMM-n), to estimate the
daily mobility probability densities in our proposed clustering algorithm. Since
the GPS data are not labeled, which means that the ground truth is not avail-
able. In this case, we run our algorithm on all the trajectories collected from the
20 users and choose the mean log-likelihood, which indicts the reliability of the
models, as a reasonable evaluation metrics. The results in Table 3 show that our
method outperforms other conventional methods.

g0 e A

Fig. 5. Discovered mobility patterns from 3 random selected users. Different colors
represents different days. (Color figure online)
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Table 3. Overall mean log-likelihood for different models

Model Mean log-likelihood
KDE —51991.03

GMM-1 | —26078.15

GMM-2 | —38514.32

GMM-3 | —52431.62

GMM-4 | —63794.70

GMM-5 | —73508.10
Proposed | —24871.78
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6 Conclusion

In this work, we present a probabilistic approach to discover human daily mobil-
ity patterns based on GPS data collected by smartphones. In our approach,
the human daily mobility is considered as sets of probability distributions. We
argue that Infinite Gaussian Mixture Model is more appropriate than the stan-
dard Gaussian Mixture Model on this issue. Further, in order to find the similar
trajectories, we use the Kullback-Leibler divergences as the distance metrics.
Finally, we devise a novel automatic clustering algorithm combining the advan-
tages of IGMM and the KL divergence so as to discover human daily mobility
patterns. Our algorithm do not need the knowledge of the cluster number in
advance. For validation, we conducted a set of experiments to prove the effec-
tiveness of our method. For further study, we plan to use WiFi fingerprint data
and other machine learning methods to study human mobility.
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