®

Check for
updates

Solving Dynamic Delivery Services Using
Ant Colony Optimization

Miguel S. E. Martins'®)®), Tiago Coito!®, Bernardo Firme'®,
Joaquim Viegas'®, Jodao M. C. Sousa'®, Jodo Figueiredo?®,
and Susana M. Vieiral

L IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
{miguelsemart ins,tiagoascoito,bernardo.firme,
joaquim.viegas, jmsousa,susana.vieira}@tecnico.ulisboa.pt
2 IDMEC, Universidade de Evora, Evora, Portugal
jfigQuevora.pt

Abstract. This article presents a model for courier services designed
to guide a fleet of vehicles over a dynamic set of requests. Motivation
for this problem comes from a real-world scenario in an ever-changing
environment, where the time to solve such optimization problem is con-
strained instead of endlessly searching for the optimal solution. First, a
hybrid method combining Ant Colony Optimization with Local Search is
proposed, which is used to solve a given static instance. Then, a frame-
work to handle and adapt to dynamic changes over time is defined. A new
method pairing nearest neighbourhood search with subtractive clustering
is proposed to improve initial solutions and accelerate the convergence
of the optimization algorithm. Overall, the proposed strategy presents
good results for the dynamic environment and is suitable to be applied
on real-world scenarios.

Keywords: Pickup delivery problem - Ant Colony Optimization -
Local Search - Time windows - Dynamic requests

1 Introduction

According to data on The World’s Cities in 2018 United Nations (2018), it is
clear that big cities are bound to grow both in size and number. This brings
many concerns regarding the already problematic vehicle saturation on urban
settlements. Small efficiency increases can have a big impact all-around when
applied at a larger scale. This is especially relevant for transportation companies,
whose main activity often involves driving and thus requires careful planning not
to travel on heavy traffic situations.

This work was supported by FCT, through IDMEC, under LAETA, project
UIDB/50022/2020.
© Springer Nature Switzerland AG 2020

M.-J. Lesot et al. (Eds.): IPMU 2020, CCIS 1237, pp. 327-341, 2020.
https://doi.org/10.1007/978-3-030-50146-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50146-4_25&domain=pdf
http://orcid.org/0000-0002-6285-8737
http://orcid.org/0000-0002-8927-6577
http://orcid.org/0000-0002-9562-1808
http://orcid.org/0000-0001-8451-2879
http://orcid.org/0000-0002-8030-4746
http://orcid.org/0000-0002-6569-6470
http://orcid.org/0000-0001-7961-1004
https://doi.org/10.1007/978-3-030-50146-4_25

328 M. S. E. Martins et al.

The results presented in this article culminate from the development of a
model for courier services based on the general demands of a real world sce-
nario. At its core, the problem at hand focuses on transporting goods between
two locations while efficiently handling the routing of a vehicle fleet, this is, a
Vehicle Routing Problem (VRP). Since it operates on a dynamic environment,
it is constructed to handle both changing traffic conditions and insertion of new
customer requests over time.

2 Vehicle Routing Problem

The VRP category is a combinatorial optimization and integer programming
set of problems. It deals on how to direct a fleet to serve interest points in the
most profitable way. The most common problem on combinatorial problems is
the large number of possible solutions. Many of these problems are in fact NP-
Hard, i.e., there is no guarantee the optimal result can be reached in polynomial
computation time Steiglitz (1982).

The origin of this problem can be traced to the Travelling Salesman Problem
(TSP), in Flood (1956). Here the goal is to make a single salesman find the round-
trip through each and all the cities only once. From here, a broader generalization
was made in 1959, the Vehicle Routing Problem (VRP), credited to Dantzig
(1959). The focus of the VRP shifts to finding the optimal set of routes for
a fleet of vehicles to service a given set of customers. An example comparison
between the two problems can be visualized in Fig. 1.

route 2

q e

é customer

a) One route solution for the TSP b) Three route solution for the VRP

Fig. 1. TSP and VRP example for the same set of points

Many other constraints exist to model different real-life scenarios, many often
approached as specialized sub-problems of the VRP Montoya-Torres (2015):

— Capacitated VRP (CVRP): customers have specific demands for amount
of goods and vehicles have finite capacity, which can be volume or weight;

— Time Windows: if locations must be always be visited within a time interval,
these are called hard time windows. If the visit can be outside the time interval
but the solution incurs into a penalty, they are soft time windows.

Solving Dynamic Delivery Services Using Ant Colony Optimization 329

— VRP with Pickup and Delivery (PDVRP): when there is a need to
pickup an order from a specific location and deliver it to another. A request
is then characterized by the pair pickup-delivery.

If the conditions of a problem instance remain unchanged during the whole
problem, it is called static. Otherwise it is a dynamic problem, which can entail
changes in orders, number of vehicles, travel costs, etc. The simplest approach
to a dynamic problem is to solve it as static, and restart the optimization if
the conditions change. When considering real world applicability, there might
not be enough processing time to achieve good solutions between updates. An
interesting modification is presented by Ferruci (2014), where the working span
is separated into successive time intervals of fixed length, each is solved as a
static instance. During this interval, any new requests are buffered for insertion
at the end of the time span.

2.1 Metaheuristics

Metaheuristics are a common approach when exact methods are inapplicable to
large search spaces. At their core, they are a set of general directives that can
be adapted into a big variety of problems with little changes to the inner work-
ings of the algorithm. Metaheuristics also have the advantage of exploring large
search spaces without getting trapped in local minima by allowing temporary
deterioration of the solution. However, these strategies often require long com-
putational times and a careful parameter tuning to provide good solutions. An
example of a widely used metaheuristic, and the one used for this paper, is the
Ant Colony Optimization (ACO). As many other, this metaheuristic is based a
natural behaviour, the foraging process of a colony of ants.

The ACO formulation is convenient to the VRP formulation since ants are
assumed to travel on a weighted node graph, visiting every node once and stop-
ping only when returning to the starting point. Each vertex ¢ € V in the graph
represents an interest point (be it pickup, delivery or depot). Each edge ij € C
has associated two things. The first is pheromone trail, 7;;, information left by
previous ants (the attractiveness of past visits). The second characteristic of each
edge is a cost 75, translating the effort to transverse that arc (usually distance
between nodes), called the heuristic information.

Ants construct solutions by sequentially deciding which node to visit next,
weighting pheromone trail information left by previous ants (the attractiveness
of past visits) and the heuristic information (translating the effort to transverse
that arc, usually distance between nodes). The probability of travelling trough
an edge is then given by Eq. 1.

o B8
Tij X Nij

(1)

Py =
1y IE]
Zjefeasible set Tz% X nz’j

with 7;; being the pheromone trail value and 7;; being the heuristic informa-
tion, both associated with c;;. Parameters o and 3 are ACO model parameters
intended to balance relative weight importance.

330 M. S. E. Martins et al.

Daemon actions is an optional step that includes other actions not based
on real ant behaviour, and is further explained in Sect.2.2. The last step of the
algorithm is to update pheromones, computed using Eq. 2.

nij = (1= p) X nij + p X f(Svest) (2)

where p is the evaporation coefficient (rate at which pheromone trail values

wear off) and f(spest) is a value derived from the quality of the best solution
Spest, commonly called the fitness value.

The decision process is probabilistic since moves with low attractiveness can
still be selected, even if less often. To provide a better balance between choosing
good moves and exploring less common moves, the pseudorandom proportional
rule is used, which can be defined as:

— if ¢ > qo, Eq. 1 is used (biased exploration)
~ if ¢ < go, next node is dictated by arg ma,e yx{[7i;]* x [n:;]°} (exploitation)

2.2 Local Search

Local search (LS) is intended to exploit the current solution s in search of
improvements in the immediate neighbourhood solutions. LS procedures for
VRP usually fall into the edge-exchange category. Starting from a feasible solu-
tion, new solutions are generated by deleting k edges and replacing them with
new edges. These connect the same nodes in a different ways, completing the
cycle, performing what is known as a k-exchange.

A noteworthy local search strategy for the VRP is the or-exchange or or-opt.
Instead of deleting arcs as in edge-exchange strategies, a certain chunk of size
s from the route, or slice, is separated from the rest. The neighbourhood search
space is composed by all feasible solutions after moving the slice to each position
around the original one, up to L steps in every direction. A schema for this can
be seen on Fig. 2. Note that when exchanging more than one node, the original
travel order of a slice is maintained.

customer
a) Or-exchange of one node :cusmmer b) Or-exchange of two nodes

to reinsert

Fig. 2. Or-opt local search strategy for VRP, for k = 1 and k = 2

3 Proposed Approach

The motivation for this paper is to solve a real world delivery problem. Thus,
considering the complex combinatorial challenge it represents, a metaheuristic

Solving Dynamic Delivery Services Using Ant Colony Optimization 331

algorithm is used to tackle the big solution search space. Ant Colony Optimiza-
tion is a graph based method, which is an intuitive way to formulate a VRP. To
make the algorithm more efficient, the ACO is to be paired with a Local Search
to further exploit good solutions by trying small changes and that can lead to
big improvements.

The central piece of the approach is the static solver, which optimizes an
existing solution using a hybrid Ant Colony System paired with Local Search.
The initial solution is given by an initial solution constructor module, as detailed
in Sect. 3.2.

The approach taken to solve dynamic instances is based on the presented
solution for static problems. Starting from an initial feasible solution, the static
solver is applied for a limited period of time. This intends to represent the pre-
computation of requests already known beforehand. At this point we are at the
beginning of the working span and will next repeat the same set of directives
until all requests have been serviced:

— Insert new requests buffered during previous interval into the best routes;

— Deploy the best obtained solution after the insertion to the physical vehicles;

— Predict changes to deployed route at current interval’s end-state, namely new
vehicle positions and serviced requests;

— While current interval’s end isn’t reached, optimize the end-state prediction;

— Output from the static solver the best and the latest found solutions;

— Group these two solutions with the state of the deployed route to form the
best selected routes;

— Update vehicle positions, serviced requests and distance matrix.

3.1 Mathematical Formulation

An adaptation from the well-known mathematical formulation of the VRPTW
Hasle (2007) is presented, where the goal is to service as efficiently as pos-
sible a set of customers requests R = {1,...,n}. Every request is defined by
a pickup and a delivery location, each represented by a unique graph node
out of a total 2n nodes. The full set of customers to service is given by
C = {p1,d1,p2,d2,...,pn,dn} where p, is the pickup node of request r from
the subset P = {1,3...,2n—1} C C and d, is the delivery node of request r from
subset D = {2,4...,2n} C C.

In order to service each customer request we have available k vehicles. The
depot location is split into k nodes forming the set of depot nodes W = {1, ..., k}.
The mathematical formulation is dimensioned for a graph G(N, A), where A C
N x N is the set of graph edges representing all travel possibilities between
nodes and N'=W U C represent the graph nodes. V = {1,...,k} is the set of
homogeneous vehicles. Each vehicle has a fixed hire cost of e; and a maximum
capacity given by ¢ > I;, i € {1,...,n} where [; is the load capacity demand for
customer i, i.e. how much of a vehicle’s available capacity a request will occupy.

The variable x¥; is a binary parameter that expresses if a vehicle travels

ij
directly from node i to node j. For each arc ij, it takes the value 1 if vehicle

332 M. S. E. Martins et al.

k travels directly from i to j and 0 otherwise. z¥ ; represents an arc between a

depot node and node j, serviced by vehicle k. Similarly, :cfk expresses if an arc
between a customer node 7 and the depot is serviced by vehicle k Each arc is also
defined in terms of travel time, ¢;; specific positive travel cost, c;;, for each arc
in A. The variable sf is the exact time of service at each point i by vehicle k and
[a;, b;] is the time window specified for node i. Finally, M = [mq, ma, ms, my] is
a vector composed by scaling factors, which define the priority of each term in
the objective function.

minimize
5 SRFCESTS 3 SR A
kEV (i,5)€A kev jec (3)
ms Z Z max(s; — b;,0) x” + my Z Z max(a f,O)xkj
keV (i,j)eA keV (i,j)eA
subject to
ZZmZ—zl,ViGC (4)
kev jec
Z lixfqu, VkeV (5)
(i,5)eA
Soap, =Y ak, =0, VheN, VgeN, VEeV, VneR (6)
peP deD
dap=1,VkeV (7)
jec
S oak, =Y ap,=0,VheC, VkeV (8)
i€y JEN
doak=1,VkeV 9)
iEV
(s +t”—s)<0 V(i,j) e AVkeV (10)
a; <sfVieN, VkeV (11)
af; €{0,1}, V (i,j) €A, VkeY (12)

Equation 3 defines the objective function. It is the sum of four different
terms, each multiplied a scaling factor from the vector M. The first term,
M1 ey Z(i,j)eA cij:cfj, represents the route specific travel costs. It takes into
account the sum of each cost, ¢;;, for all arcs travelled by each vehicle of the fleet,
this is where xfj = 1. The second term, m2 >y, > cc ekx’,zj, gives the cost of
hiring vehicles. This value is independent of vehicle travelled distance since such
costs are already covered in the first term. It sums the one-off cost of hiring
each vehicle in the solution by multiplying each vehicle cost ej by x’,jj, which

Solving Dynamic Delivery Services Using Ant Colony Optimization 333

represents leaving the depot. This means that for all unused vehicles there is no
travel out of the depot, making zzj = 0 and thus not considering the unused
vehicle cost in the objective function.

The third term, ms 3 ey D jjea max(sh — b;,0)zF;, considers how late
each node visit is. Deliveries have a specified time window. The start of this
time window is hard, but the ending of it is soft. This means that a location
cannot be visited before the time window starts, but can be visited after it ends.
The third term is used to penalize late arrivals, which is visiting a node after its
time window has ended. This does not make the solution unfeasible but has a
negative impact on the objective function. The third term sums how late all the
deliveries were, and due to the max operator each contribution to total lateness
is always equal or greater than zero. While this term handles the end time of a
time window, the last term handles the start.

Since deliveries can’t be made before the specified time window, if a vehi-
cle arrives earlier it must wait. This wait time is penalized in the forth term,
M4 D ey 2 (i j)ea Max(a; —s¥,0)af;. This is done similarly to the previous term,
but now looking at the difference between the arrival time and the time window
start. Both of these terms use the max operator, making this objective function
non-linear.

The constraint represented in Eq.4 assures that all customers are serviced
only once. Vehicle capacity constraint is represented by Eq. 5. Equation 6 assures
the same vehicle services both pickup and delivery nodes of the respective
request. The expression 7 defines that there is only one tour per vehicle, which
can be empty. Equation at 8 ensures that if a vehicle arrives at a costumer loca-
tion it also departs from the mentioned customer location. Equation 9 define all
tours’ ending location as the depot. For a vehicle to travel directly from 7 to
j Eq. 10 states the arrival time at customer j is such that it allows travelling
between 7 and j. Expression 11 specifies that the early limit of a time window
a; is hard and Eq. 12 denotes the xfj variable as binary. Thus, the model is non-
linear due to the non-linear maz operations in Eq. 3, quadratic terms in Eq. 10
and integrality constraints at Eq. 12.

3.2 Initial Solution Constructor

To the presented method is given as input info on the orders to solve and on
the fleet to manage. Orders are given as a list of pickup-delivery pairs, their
respective locations and time-windows. Regarding the fleet, to the method is
given the total number of vehicles, their capacity, travel speed and cost.

The initial solution constructor is then used to generate a feasible solution
from scratch, to be used as a starting point for the static solver module. Since
good starting solutions lead to faster convergence, a proposed new strategy based
on Nearest Neighbourhood Search (NNS) and subtractive clustering is presented.
Customer locations nodes are clustered, and to each clusters a single vehicle is
assigned following the NNS heuristic. A comparison between using only NNS
or clustered NNS is showed later in Table 1, which supports the decision to use
pre-clustering.

334 M. S. E. Martins et al.

To mitigate the negative effects of clustering locations, and not time avail-
ability, the maximum number of allowed vehicles is always used. This helps
reducing lateness and excessive waiting times in the initial solutions, even if at
the cost of using more vehicles. To do so, an heuristic starts with a very low
cluster influence range parameter and subtractive clustering is applied on the
midpoint of each pickup-delivery pair. Having an extremely low cluster influence
range results in each midpoint being a cluster centre, i.e, it asks for as many
vehicles as there are pickup-delivery pairs. If this parameter creates a solution
with more vehicles than allowed by the problem, the parameter is increased and
the process repeated until the maximum number of vehicles is in use.

3.3 Static Solver

The static solver combines ACO and Local Search. The overall logic can be
seen on Fig. 3. Starting from a feasible solution, module specific variables are
initialized. The pheromone trail matriz is also here generated. It is a Q x Q
matrix, where @ is the length of A/, and it is initialized uniformly at the value
T0 = 0.5.

NO

Was a new "
P Construct M&J Resetg,to Update Best Update
Initializations . Local Search solution Resetdo PESES 4 Stopping
Solutions found? initial value Solution Pheromones Criteria meet?

YES
Was a new
Appl
eaarel Local Search solution Decrease q,
Disturbance found?

Construct solutions step:

Create new ant
with empty path

Select unvisited node
according to rule

Use pseudorandom
proportional rule

Have m ants
been created?

Solutions
constructed

Fig. 3. Static solver, with the module Construct Solutions further detailed

Have all nodes
been visited?

Has one biased
ant been used?

Use greedy
rule

Pheromone limits are dynamic and depend on the quality of the current best
solution, meaning they will be updated every time a new global best solution,
Spest, 1s found. Pheromone trail matrix limits are computed according to the
following equations Gambardella (2015):

1
T, = — 13
mee p X f(sbest) ()
T = AT (14)

2Q
The ant behaviour is guided by a pseudorandom proportional rule, as
explained at Sect.2.1. One biased ant is also used each cycle, where the value of
qo is set to 1 making this ant greedily select the most attractive move.

Solving Dynamic Delivery Services Using Ant Colony Optimization 335

At each cycle, the static solver can work either with or without the local
search module. If no new solutions have been found for more than LSyt cycles,
as defined in Eq. 15, LS is used. This is done to let the algorithm use ACO to
explore the search space without the overhead of the LS as long as solution
improvements are being regularly found.

log(55)
log(1 — p)

When the iterative cycle starts, m new ants are generated using the new ant
generator module. If an improving solution is found, both spes; and pheromone
matrix limits are updated. After all ants are computed, the local search method
is applied to the most promising ants on the top ant fitness list from current
iteration (size specified by top_ants_number) until no improvement is found, and
are compared with the global best ant, spest.

If no best solution was found up to this point on the current cycle, a dis-
turbance is induced on spes; ant, and to the disturbed solution s, the local
search method is applied. The number of new solutions generated by the distur-
bance method is given by perturbed_ants_number times. Every s,e, is saved on
exchange_memory to avoid applying a local search on equal solutions and save
valuable computational time. The disturbance introduced can either be a shift,
where a pickup delivery pair is moved from on vehicle to another, or a switch,
where one pair of each vehicle switch places.

When eventually the time limit is surpassed for the static solver module, it
stops running iteratively and outputs the best found solution as result.

LSiimit = (15)

3.4 Dynamic Solver

To handle the dynamic changes over time, the working horizon is divided into
successive intervals of length timess. During each interval, the working condi-
tions (time and distances matrix) will remain unchanged and any new requests
appearing during this interval will be buffered, i.e., saved for later insertion.
When the end of the interval is reached, time and distance matrix are updated
and new requests inserted in the already existing routes. This way, during the
length of the interval, the problem instance does not change and the static solver
method can be applied.

!

Least
—| Cost

Deployment
best. Simulation [predicted Static Solver [pest j
solution solution theoretical 1

H Insertion (t) solution

buffered : new requests
requests

Fig. 4. Cycle of the dynamic solver

336 M. S. E. Martins et al.

After running the static solver to generate a solution from scratch, with the
currently known locations, an iterative cycle as represented on Fig. 4 is entered.
Denoting the start of the interval as T', the best solutions obtained in the previous
optimization interval serve as input to the least cost insertion module, which
adds any new requests buffered during the previous cycle and outputs the best
found solution. This is the solution to be deployed to the physical vehicles,
Sdeployed, at time T”, which would start to travel immediately accordingly to this
route, ignoring any previous orders. Simultaneously to this vehicle deployment,
another module called end-state simulator predicts where the vehicles will be at
the end of the current time interval. This predicted route, $*, is used as input
to the static solver, which will try to find improvements to this solution for
tss — (T — T) minutes.

When the end of the time interval T is reached, the static solver module
is stopped. The best solution from the static solver, now $pes:, is grouped with
the previously deployed solution, $pes¢, and together they serve as input to next
cycle’s least cost insertion model, at T . All requests made available between T'
and T are now introduced into the routes. The cycle is repeated until no more
requests need to be serviced.

When solving dynamic instances, some changes are needed in the static solver
module to account for requests that have already been partially serviced, this is,
whose pickup has already been serviced in the real world and thus is irreversibly
tied to a vehicle. This means that the new ant module must also account for
vehicle history when constructing the feasible node list. When generating new
solutions with the local search strategy, any time a feasibility check is done it
needs to also take into account nodes outside the current planned route but
which are on the vehicle history.

To account for changes between the predicted end-state environment and the
real environment at T”, another module is needed to check if at the interval’s end
the predicted state matches the real state and fix anything needed accordingly.
The module vehicle position update is responsible for predicting where the state
of the system will be at the end of the interval. It works by letting the vehicles
follow their current routes until the time of end of interval, using new generated
distance and times matrices. For the time being, to these new distance and times
matrices random noise is added using the module vehicle noise. The wehicle
position update is also used to re-calculate a predicted route at the end of the
time interval, this time with the correct distance and times matrices.

4 Results

On the following section the obtained results are detailed. Before reporting on
static and case study performance, parameter tuning and algorithm modifica-
tions from previous sections are justified.

The static benchmarks tested are part of the 100 customer group PDPTW
instances available at SINTEF (2016). How pickup/delivery locations are dis-
tributed geographically can be seen in the file name prefix: lc files are clustered

Solving Dynamic Delivery Services Using Ant Colony Optimization 337

geographically; Ir are randomly distributed; lcr mix previous two. Also, file pre-
fixes ending in 1 have short and overlapped time windows and have many vehi-
cles available, while files ending in 2 have long and spaced time windows and
few available vehicles.

4.1 Initial Solution Construction

To compare implementing the construction method with and without pre-
clustering the customer nodes, Table 1 was generated. Average values of 20 min
runs are presented for both options, showing the following values with and with-
out clustering: fitness of initial solution; time until solution with no lateness;
best solution fitness after 20 min. The best values in each case are highlighted in
bold.

Table 1. Comparing initial solution construction using Nearest Neighbourhood Search
with and without pre-clustering with the best values for each comparison in bold

File name | Strategy | Initial Fitness | Time (min) | Final Fitness
Ic101 Normal 188.58 0 182.89
Clustering | 190.49 0 182.89
1c201 Normal 9.97E+09 8.04 437.11
Clustering | 5.53E+09 2.41 310.02
Ir101 Normal 7.08E409 2.54 348.73
Clustering | 9.67E4+09 2.82 355.91
Ir202 Normal 182.89 0 182.90
Clustering | 190.49 0 182.90
ler101 Normal 8.66E+09 6.42 421.25
Clustering | 3.98E+09 2.19 309.89
ler201 Normal 7.33E4+09 3.57 367.03
Clustering | 1.06E+10 2.60 359.92

Comparing the approach with and without clustering, no consistent improve-
ment can be found for initial fitness and time until a solution with no lateness.
However there is almost always a clear fitness improvement after running for
20 min. Pre-clustering the requests and then applying a NNS to each cluster will
be the strategy used in all other sections.

4.2 Static Solver Modifications

On Table 2 we can see different runs for various modifications of the parameter
qo. It was noted that a high ¢y value is especially valuable at the start of the
algorithm, but might negatively impact the search for better solutions once we
are closer to the optimal solution. With this in mind, the idea of iteratively
decreasing qg value with each iteration where a new solution isn’t found is tested

338 M. S. E. Martins et al.

in the problem at hand. For this formulation, the best combination found was
using qo = 0.9 initially and decreasing it by 20% each iteration with no better
solution found.

Next, in Table3, we see a comparison between having or not a biased ant
in each cycle, this is, single ant with gy = 1 independently of previous gy val-
ues of decreasing factor. Since this change has a positive impact on the used
formulation, it was used for all the following tests.

4.3 Static Instances

Table 4 presents the average values for the error tables per type of file. Clustered
data behaves differently from the others files as it manages to always reach the
optimal number of vehicles for type 2 files. While for type 1 it does not reach
the optimal value for all of them, it reaches a lower distance than the given by
the optimal. For the other two the conclusions are similar, with average vehicle
number error of 2 or less. Distance does fall below the optimal value as with the
clustered files, but instead has an average error around 20%.

Table 2. Different tests done on the pseu- Table 3. Test runs with and without
dorandom proportional rule parameter, qo biased ant
File ID | go | Multiplier | Vehicles | Total Distance File |Vehicles Distance
18 0 _ 24 1960.55 Normal|Biased ant|Normal |Biased ant
0.9 |- 24 1849.61 Ir101 (23.33 |20.70 1875.33 |1775.71
0.9 0.9 23 1995.27 Ir109 [13.33 |13.20 1463.15 |1376.57
0.9]0.8 23 1878.41 1r205 |4.00 3.60 1224.59 |1190.37
0805 24 1895.69 Irc10114.33 |13.20 1728.43 |1679.72
23 o |- 15 1440.08 1rc102/6.00 |5.20 1756.58/1763.81
0.9 |- 15 1450.43
0.9 0.9 16 1555.86
0908 14 1338.17
0.8 0.5 14 1417.95

Table 4. Average distance from optimal solutions for static solver

File | Vehicle Distance

Mean | % Best | % Mean % Best %
lcl 0.31 3.46 0.22 | 1.39 —41.49 | —4.06 | —23.79 | —2.00
lc2 |0 0 0 o 5.38 0.91 0.96 0.16
Ir 0.18 1.83 0.12 | 1.31 —19.44 | —1.72 | —12.14 | —0.98

Irl 1.39 12.99 | 0.67 | 6.57 | 131.87 | 11.33 | 58.50 4.99
Ir2 | 1.05 40.54 | 0.55 | 21.96 | 329.41 | 35.31 | 168.63 | 18.15
Ir 1.23 26.17 | 0.61 | 13.93 | 226.34 |22.80 | 111.17 | 11.29
lerl | 2 16.62 | 1.5 12.42 | 161.70 | 7.34 98.89 2.84
ler2 | 1.35 38.51 | 1 29.16 | 371.76 | 28.86 | 226.77 | 15.66
lc 1.68 28.93 | 1.25 | 21.83 | 266.73 | 17.86 | 162.83 | 9.07

Solving Dynamic Delivery Services Using Ant Colony Optimization 339

4.4 Dynamic Case Study

The presented case study is based on food service distribution centres and its
most common design constraints. For this example, real customer requests from a
typical day of a distribution company are detailed regarding real order hour and
location. This specific example models the distribution services of one restaurant.

All pickups happen at the depot location, the restaurant, and it is assumed
that after a customer makes an order, the delivery time window starts in 45 min
and lasts for 15 min. For this implementation, the distance between real world
locations is computed using the Haversine formula. However, the created model
can work with any matrix giving the distances and travel times between nodes,
for example given by the Google Maps Distance Matriz API.

First, the data is processed by the static solver module for 30 min, similarly to
the approach on the static benchmarks. This will give a solution to be considered
as the optimal when performing any dynamic tests. The case study data is similar
to the benchmarks in size, with 47 requests to service. In terms of scheduling
horizon, the case study matches the type 2 files. Visualization of a solution found
can be seen on Fig.5 a).

For the static run, 2 vehicles were able to service all requests without lateness
for a total of 51.4km travelled. For the dynamic solution, with a ts;,;, = 15min
and a t;p0r, = 45 min the solution obtained is represented in Fig.5 b). It uses 4
vehicles instead of 2 and has a total travelled distance of 68.6 km.

a) b)

Latitude
Latitude

3T s f ‘ & [vehicle 1
i = vehicle 2

vehicle 3
= ===vehicle 4

— — —vehicle 1 2 L=
vehicle 2

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Longitude Longitude

Fig. 5. Comparison of static and dynamic solutions for the case study

5 Conclusions

The main objective was accomplished by defining an algorithm able to solve the
original problem. Further, the proposed approach is suitable for implementation

340 M. S. E. Martins et al.

in a real world environment, being able to deal with the tight time windows
available to solve such heavily constrained problems. Considering the bench-
mark problems where the data is not clustered, the proposed approach does not
match the competition when comparing with other multi-vehicle pickup delivery
problems, except on a few instances. However under the case study presented,
the proposed approach is able to give satisfactory solutions within the given
time constraints, generating solutions without any delays in the delivery time
windows.

In general, the proposed approach shows a good performance in the valida-
tion benchmarks. The introduction of the initial clustering step improved the
overall results of the proposed approach, only little improvements are needed
to consider them competitive with other approaches from the state of the art.
The developed strategy for initial solution construction seems very promising
and worth exploring further. The hybrid approach improves the solution qual-
ity, with the inevitable cost of extra computational time mainly due to the LS
module.

5.1 Future Work

The proposed model can be improved by adding the ability to handle differ-
ent types of vehicles and more advanced waiting strategies. A first attempt to
improve the algorithm would be to further improve the Local Search method,
namely adding more diversity to different types of solution disturbance. As for
the dynamic approach, it would be mandatory for a model applied to a real case
to refuse new requests if they will badly influence the already accepted routes.

References

Bianchi, L.: Ant colony optimization and local search for the probabilistic traveling
salesman problem: a case study in stochastic combinatorial optimization. Ph.D. the-
sis (2006)

Braekers, K., Ramaekers, K., Nieuwenhuyse, [.V.: The vehicle routing problem: state
of the art classification and review. Comput. Ind. Eng. 99, 300-313 (2016)

Dantzig, G.B., Ramser, J.H.: The truck dispatching problem stable. 6(1), 80-91 (1959)

Ferrucci, F., Bock, S.: Real-time control of express pickup and delivery processes in a
dynamic environment. Transp. Res. Part B: Methodol. 63, 1-14 (2014)

Flood, M.M.: The traveling-salesman problem. Oper. Res. 4, 61-75 (1956)

Gambardella, L.M.: Coupling ant colony system with local search. Ph.D. thesis (2015)

Hasle, G., Lie, K.-A., Quak, E.: Geometric modelling, numerical simulation, and opti-
mization: applied mathematics. SINTEF (2007)

Johnson, D.S.,; Mcgeoch, L.A.: The traveling salesman problem: a case study in local
optimization. In: Local Search in Combinatorial Optimization, pp. 215-310 (1997)
Li, H., Lim, A.: A Metaheuristic for the Pickup and Delivery Problem with Time

Windows (2001)

Mitrovié-Minié, S., Krishnamurti, R., Laporte, G.: Double-horizon based heuristics for
the dynamic pickup and delivery problem with time windows. Transp. Res. Part B:
Methodol. 38(8), 669-685 (2004)

Solving Dynamic Delivery Services Using Ant Colony Optimization 341

Montoya-Torres, J.R., Lépez, J., Nieto, S., Felizzola, H., Herazo-Padilla, N.: A literature
review on the vehicle routing problem with multiple depots. Comput. Ind. Eng. 79,
115-129 (2015)

SINTEF Applied Mathematics: Transportation Optimization Portal - TOP (2008).
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/

Steiglitz, K., Papadimitrou, C.H.: Combinatorial Optimization: Algorithms and Com-
plexity. Dover Publications, Mineola (1982)

United Nations: The World’s Cities in 2018 - Data Booklet. Department of Economics
and Special Affaris, Population Division (2018)

https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/

	Solving Dynamic Delivery Services Using Ant Colony Optimization
	1 Introduction
	2 Vehicle Routing Problem
	2.1 Metaheuristics
	2.2 Local Search

	3 Proposed Approach
	3.1 Mathematical Formulation
	3.2 Initial Solution Constructor
	3.3 Static Solver
	3.4 Dynamic Solver

	4 Results
	4.1 Initial Solution Construction
	4.2 Static Solver Modifications
	4.3 Static Instances
	4.4 Dynamic Case Study

	5 Conclusions
	5.1 Future Work

	References

