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Abstract. In the theory of Hesitant Fuzzy Sets (HFS), the membership
degree of an element is characterized by a membership function which
always returns a fuzzy set. This approach enables one to express, for
example, the hesitance of several experts in the process of decision mak-
ing based on multiple attributes and multiple criteria. In this work, we
focus on the study of a class of implication functions for typical hesitant
fuzzy sets (THFS). The novelty of our proposal lies on the fact that it
is the first time that an admissible order is used to define operators on
hesitant fuzzy setting. Thus, we introduce typical hesitant fuzzy nega-
tions, typical hesitant t-norms and typical hesitant implication functions
considering an admissible order, which allows the comparison of typical
hesitant fuzzy elements with different cardinalities.

Keywords: Hesitant Fuzzy Sets · Admissible orders on THFS ·
Typical Hesitant Implication Functions · (T,N)-implication functions

1 Introduction

In situations where there are conflicts among the several experts in the process of
decision making based on multiple attributes and multiple criteria, it is common
to use Hesitant Fuzzy Sets (HFS). In the HFS theory [25], one considers, as the
membership degree of an element, a membership function which always returns
a fuzzy set expressing this hesitance. Since its introduction in 2010, relevant
research in decision making has used HFS theory, for example, the studies found
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in [12,28–30]. In particular, several weighted average and ordered weighted aver-
age (OWA)-like operators have been proposed to be used in decision making, as
we can see in [5,29,34].

A frequent issue in the context of decision making is that it is not always
possible to find a consensus between a group of experts. So, it seems more appro-
priate to consider a set of possible values taking into account everyone’s opinion.
For instance, in order to provide a membership degree for an element of the
universe, HFS can be useful to express this membership degree through a set of
typical hesitant fuzzy elements (THFE), which will consider each opinion given
by everyone in the group of experts.

On the other hand, it is common sense the importance of fuzzy implication
functions which have been widely investigated and applied in many fields, as for
example in decision making [9,17,23] and clustering [27]. In order to have a better
understanding of logical connectives, one must know their properties and main
characteristics. There are many different ways to model implication-like opera-
tors. In [6,18,19], a class of implication functions named (T,N)-implications was
investigated and in their definition it is used a t-norm and a fuzzy negation. In
this context, this work presents the definition of Typical Hesitant Implication
Functions, including the class of (T,N)-implications, and the correspondent anal-
ysis of their main properties. Besides, and important contribution of the present
work is that an admissible order on a HFS is provided allowing the comparison
of hesitant fuzzy elements with different cardinalities. This novelty corroborates
with the meaning of hesitant implication functions, providing semantic interpre-
tation for implications setting found in multi-valued fuzzy logics. Therefore, the
main properties proposed in the literature for fuzzy implications were studied
and extended to HFS, which we discuss in this paper and present the properties
of what we call Typical Hesitant (T,N)-Implication Functions (THIF).

This work is organized as follows: some preliminary and necessary concepts
are given in Sect. 2, which allow us to provide in Sect. 3 an admissible order
for the HFS elements and also allow us to introduce some operators, such as
the typical hesitant fuzzy negations and typical hesitant t-norms. Then, Sect. 4
presents typical hesitant implication functions and discusses their main proper-
ties, including an incipient study on typical hesitant (T,N)-implication functions.
Finally, Sect. 5 concludes the study.

2 Preliminaries

We start with some basic concepts of aggregation functions on the unit interval
[0, 1], and then we recall triangular norms, fuzzy negations and fuzzy implication
functions, for more details refer to [1,3,7,8,14,15].

Definition 1. A function A : [0, 1]n → [0, 1] is an n-ary aggregation func-
tion (AF) if it verifies, respectively, the isotonicity and boundary conditions, as
follows:

(A1) If xi ≤ yi for each i = 1, . . . , n, then A(x1, . . . , xn) ≤ A(y1, . . . , yn);
(A2) A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.
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Definition 2. A function A :
∞⋃

n=1
[0, 1]n → [0, 1] is an extended aggregation

function (EAF) if the following condition holds:

(A3) For each natural number n ≥ 2, A � [0, 1]n : [0, 1]n → [0, 1] is an AF and
A(x, . . . , x) = x, for each x ∈ [0, 1].

Definition 3. A function T : [0, 1]2 → [0, 1] is a t-norm if, for each x, y, z ∈
[0, 1], it satisfies:

(T1) T (x, y) = T (y, x) (commutativity);
(T2) T (x, T (y, z)) = T (T (x, y), z) (associativity);
(T3) If x ≤ y then T (x, z) ≤ T (y, z) (isotonicity);
(T4) T (x, 1) = x (neutrality of 1-element).

Observe that each t-norm is a bivariate aggregation function.

Definition 4. A function N : [0, 1] → [0, 1] is a fuzzy negation if

(N1) N(0) = 1 and N(1) = 0;
(N2) If x ≤ y then N(y) ≤ N(x), for all x, y ∈ [0, 1].

A fuzzy negation N is strict if it is continuous and N(x) < N(y) when y < x
and additionally, it is strong if it is involutive, i.e.

(N3) N(N(x)) = x,∀x ∈ [0, 1].

The most common strong fuzzy negation is NS(x) = 1 − x, also known as
the standard or Zadeh negation. Each strong fuzzy negation is strict but the
converse does not hold. For example, the negation N(x) = 1 − √

x is strict but
it is not strong.

An important notion in our work is the concept of implication functions, in
the sense of Fodor and Roubens, see [2,3,10,20]) for additional information.

Definition 5. A fuzzy implication is a function I : [0, 1]2 → [0, 1] such that, for
every x, y, z ∈ [0, 1]:

(I1) If x ≤ y then I(y, z) ≤ I(x, z) (first place antitonicity);
(I2) If y ≤ z then I(x, y) ≤ I(x, z) (second place isotonicity);
(I3) I(0, y) = 1 (left boundary);
(I4) I(x, 1) = 1 (right boundary);
(I5) I(1, 0) = 0 (corner condition).

Finally, let us recall the notions of partial ordering. Let P be a non-empty
set, we say that a partial order � on the set P is a binary relation on P which
satisfies, respectively, the reflexivity, antisymmetry and transitivity properties:

(P1) p � p, for each p ∈ P ,
(P2) If p � q and q � p, then p = q for all p, q ∈ P ,
(P3) If p � q and q � r, then p � r for all p, q, r ∈ P .

Note that we say a ≺ b when (a, b) is in a relation � but a 	= b. A set P with
a partial order � is referred to as a partially ordered set (poset) and denoted
by (P,�). If any two elements a, b are comparable in a poset (P,�), i.e. either
a � b or b � a, then the partial order � is said to be a linear (or total) order
(and then P is a chain).
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2.1 Typical Hesitant Fuzzy Sets

Hesitant Fuzzy Sets (HFS) were introduced by Torra in [24] and Torra and
Narukawa in [25]. In their work, the membership degree of an element that
belongs to a set was represented by means of a subset of [0, 1]. In the process
of decision-making, HFS can be useful to handle situations where there is inde-
cision among many possible values for the preferences over objects. Formally,
let ℘([0, 1]) be the power set of [0, 1]. A HFS A defined over U , where U is a
non-empty set, is given by:

A = {(x, μA(x))|x ∈ U}. (1)

and μA : U → ℘([0, 1]), where μA is the membership function. There is a partic-
ular case when μA(x) is finite and non-empty for each x ∈ U , and in this case
we have Typical Hesitant Fuzzy Sets (THFS).

Definition 6. [5] Let H = {X ⊆ [0, 1]|X is finite and X 	= ∅}. A THFS A
defined over U is given by Eq. (1), where μA : U → H.

Each X ∈ H is named Typical Hesitant Fuzzy Element (THFE) of H and the
cardinality of X, i.e. the number of elements of X, is referred to as #X. The ith

smallest element of a THFE X will be denoted by X(i).
Some examples of THFS are X = {0.1, 0.4, 0.7} and Y = {0.1, 0.6, 0.9} where

#X = #Y = 3. In those examples, X(1) = 0.1 and Y (2) = 0.6.

Definition 7. From every EAF A, and knowing that the least and the great-
est elements are 0H = {0} and 1H = {1}, respectively, we define the function
fA : H → [0, 1] as:

fA(X) =

⎧
⎪⎨

⎪⎩

0, if X = 0H

1, if X = 1H

k · A(X(1), . . . , X(#X)) + 1−k
2 , otherwise.

where 0 < k < 1.

For example, if A is the arithmetic average, k = 0.8 and X =
{0.1, 0.2, 0.4, 0.9} then fA(X) = 0.8 · 0.4 + 0.2

2 = 0.42.
In the literature, one can find many proposals of orders for THFE, such as

the ones found in [5,13,26,31–33]. The unique consensus among all these orders
is that all of them refine1 the following order on H:

X �H Y iff X = 0H or Y = 1H or (#X = #Y and X(i)≤Y (i),∀i = 1, . . . ,#X)
(2)

considered in [5]. However, this is very restrictive, since for two THFE to become
comparable, it is required that both have the same cardinality.

1 A partial order ≤1 on a set S refines another partial order ≤2 on S if (S,≤2) ⊆
(S,≤1), i.e. for each x, y ∈ S such that x ≤2 y we have that x ≤1 y.
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Our aim in the present work is to establish an admissible order to allow
comparisons between THFE without this restriction. The idea of admissible
order was presented in [11] for interval-valued fuzzy sets and after in [16] for
interval-valued Atanassov’s intuitionistic fuzzy sets. And in [21], the study of
admissible total orders on hesitant fuzzy sets was included as a challenge. We
acknowledge that some efforts have already been made in order to establish
an admissible ordering for hesitant fuzzy sets, as seen in [26]. However, their
proposal requires that both THFE must have the same cardinality.

In the next section, we present an admissible order in the typical hesitant
fuzzy setting, which will allow us to introduce the notion of some typical hesitant
connectives.

3 Admissible Orders for Typical Hesitant Fuzzy Elements

Take H
(m) = {X ⊆ [0, 1]|#X = m}, we start by defining an admissible ordering

for the typical hesitant fuzzy elements with cardinality m.

Definition 8. [26] A total order ≤H(m) on H
(m) is said to be admissible if for

all X,Y ∈ H
(m), we have that X ≤H(m) Y if and only if X(i) ≤ Y (i) for each

1 ≤ i ≤ m.

Example 1. (i) At first, take H
(m) for m ≥ 1, and then consider the lexicographi-

cal order (with respect to the first variable) [11]. So, we have that X ≤H(m) Y ,
if X = Y or exists an i such that X(i) is strictly less than Y (i) and for all
j < i,X(j) = Y (j). For instance, X = {0.1, 0.4, 0.7} ≤H(3) {0.1, 0.6, 0.9} = Y .

Definition 9. A total order ≤H on H is said to be admissible if, for all X,Y ∈
H, we have that X ≤H Y whenever X �H Y .

Observe that (H,≤H) is a bounded chain with the least and the greatest
elements 0H = {0} and 1H = {1}, respectively.

Remark 1. Note that for all admissible orders ≤H on H, their restriction to H
(m)

is an admissible order on H
(m).

Next, we provide a method to generate admissible order for THFE based on
an indexed family of admissible order ≤H(m) , where m ∈ N

+.

Theorem 1. Let (≤H(m))m∈N+ be family of indexed admissible orders and an

EAF operator A :
∞⋃

n=1
[0, 1]n → [0, 1]. Then, the binary relation

X ≤A
H

Y ⇔

⎧
⎪⎨

⎪⎩

fA(X) < fA(Y ), or

fA(X) = fA(Y ) and #Y < #X, or

fA(X) = fA(Y ) and #Y = #X = m and X ≤H(m) Y

(3)

is an admissible order on H.



752 M. Matzenauer et al.

Proof. It is straightforward the prove that the binary relation ≤A
H

is reflexive
and antisymmetric. In addition, the relation ≤A

H
is also a transitive relation on

H, which is shown as follows:

(i) If X ≤A
H

Y and Y ≤A
H

Z for a given X,Y,Z ∈ H, then fA(X) ≤ fA(Y ) ≤
fA(Z). In case fA(X) < fA(Y ) and fA(Y ) ≤ fA(Z) or fA(X) ≤ fA(Y ) and
fA(Y ) < fA(Z), it follows that fA(X) < fA(Z). In case fA(X) = fA(Y ) =
fA(Z), we need to consider the four situations as described below:
Case 1 :

fA(X) = fA(Y ) and #Y < #X

fA(Y ) = fA(Z) and #Z < #Y

}
⇒ fA(X) = fA(Z) and #Z < #X;

Case 2 :

fA(X) = fA(Y ) and #Y<#X

fA(Y ) = fA(Z) and #Z = #Y = mand Y≤
H
(m)Z

}
⇒fA(X) = fA(Z) and #Z<#X;

Case 3 :

fA(X) = fA(Y ) and #X = #Y = m and X≤
H
(m)Y

fA(Y ) = fA(Z) and #Z < #Y

}
⇒fA(X) = fA(Z) and #Z<#X;

Case 4 :

fA(X) = fA(Y ) and #X = #Y = m and X≤
H
(m)Y

fA(Y ) = fA(Z) and #Y = #Z = m and Y≤
H
(m)Z

}
⇒fA(X) = fA(Z) and #X = #Z = m

and X≤
H
(m)Z.

For any of the above cases, X ≤A
H

Z and, therefore, the ≤H(m)-transitivity
holds.

(ii) Besides, we also have to prove that either X ≤A
H

Y or Y ≤A
H

X. There
are three possible situations: (1) fA(X) < fA(Y ) and therefore X ≤A

H
Y . (2)

fA(Y ) < fA(X) and therefore Y ≤A
H

X. (3) fA(X) = fA(Y ) and so, we also
have three cases:

(3a) #X < #Y , so Y ≤A
H

X.
(3b) #Y < #X, so X ≤A

H
Y .

(3c) #X = #Y = m, so since ≤H(m) is admissible, then X ≤H(m) Y or
Y ≤H(m) X.

Hence, X ≤A
H

Y or Y ≤A
H

X.

(iii) Finally, let X,Y ∈ H and suppose X ≺H Y , then by Eq. (2), we have three
possibilities: (1) X = 0H, and in this case, fA(X) = 0 and fA(Y ) > k

2 and so,
fA(X) < fA(Y ), i.e. X <A

H
Y . (2) Y = 1H, which is analogous to (1). At last, (3)

(#X = #Y = m and X(i) ≤ Y (i),∀i = 1, . . . ,m) then, because A is an EAF,
we have A(X(1), . . . , X(m)) ≤ A(Y (1), . . . , Y (m)) and therefore, fA(X) ≤ fA(Y ).
Hence, X ≤H(m) Y . Therefore, Theorem 1 holds.

Example 2. Considering the THFS X = {0.1, 0.4, 0.7}, Y = {0.1, 0.6, 0.9} and
Z = {0, 1} the following EAF operators:



An Initial Study on Typical Hesitant (T,N)-Implication Functions 753

(1) A1(x1, . . . , xn) =
n∑

i=1

xi

n ;

(2) A2(x1, . . . , xn) = max{xi}1≤i≤n;

(3) A3(x1, . . . , xn) = n

√
n∏

i=1

xi.

Thus, one can easily observe the following relations:

i. X ≤A1
H

Z ≤A1
H

Y .
ii. X ≤A2

H
Y ≤A2

H
Z.

iii. Z ≤A3
H

X ≤A3
H

Y .

In the sequence, some operators are given regarding admissible ordering on H.

3.1 Typical Hesitant Fuzzy Negations

In [4,22], different definitions of Typical Hesitant Fuzzy Negations (THFN) were
provided, both using partial orders. Now we introduce the concept of 〈H,≤H〉-
negations, which consider an admissible order ≤H.

Definition 10. Let N : H → H be a function. N is said to be a THFN with
respect to an admissible order ≤H, 〈H,≤H〉-negation in short, if the following
conditions hold:

(N1) N (0H) = 1H and N (1H) = 0H.
(N2) If X ≤H Y then N (Y ) ≤H N (X).

Additionally, we state that the 〈H,≤H〉-negation N is strong if it is involutive,
i.e. if for each X ∈ H, it satisfies a third property, namely:

(N3) N (N (X)) = X.

Example 3. Consider an admissible order ≤H on the EAF A1, A2 and A3, given
in Example 2. Now take the function NS : H → H, defined as follows:

NS(X) = {1 − x|x ∈ X}

It is easy to see that NS is a 〈H,≤H〉-negation for ≤A1
H

and ≤A3
H

, but not for ≤A2
H

.

Remark 2. NS is a trivial example of a strong THFN with respect to the admis-
sible orders ≤A1

H
and ≤A3

H
.

3.2 Typical Hesitant Triangular Norms

The extension of the notion of t-norms for typical hesitant fuzzy elements was
presented in [5], taking into account the partial order proposed in that paper.
The following definition generalizes this notion by considering admissible orders
on H.
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Definition 11. Let T : H2 → H and let ≤H be an admissible order on H. T
is a typical hesitant triangular norm with respect to ≤H, or 〈H,≤H〉-t-norm in
short, if

(T 1) It is commutative: T (X,Y ) = T (Y,X);
(T 2) It is associative: T (X, T (Y,Z)) = T (T (X,Y ), Z);
(T 3) It is monotonic, i.e., if X ≤H Y then T (X,Z) ≤H T (Y,Z); and
(T 4) 1H is the neutral element: T (X,1H) = X.

Remark 3. Observe that each 〈H,≤H〉-t-norm also verifies the following prop-
erty:

(T 5) T (X,0H) = 0H, ∀X ∈ H.

In fact, T (X,0H) ≤H T (1H,0H) = 0H, for all X ∈ H.

Other additional property is reported below:

(T 6) T (X,N (X)) = 0H, ∀X ∈ H.

Example 4. Consider an admissible order ≤H on the EAF A1, A2 and A3, given
in Example 2. Now take the functions TP , TM , TL : H2 → H, defined as follows:

i. TP (X,Y ) = {x · y | x ∈ X, y ∈ Y }
ii. TM (X,Y ) = {min{x, y} | x ∈ X, y ∈ Y }
iii. TL(X,Y ) = {max{x + y − 1, 0} | x ∈ X, y ∈ Y }

It is possible to prove that TP , TM and TL are 〈H,≤H〉-t-norms for ≤A1
H

, ≤A2
H

and ≤A3
H

.

4 Typical Hesitant Implication Functions

Here we introduce the notion of 〈H,≤H〉-typical hesitant implication functions,
〈H,≤H〉-THIF in short, considering an admissible order ≤H, discussing their
main properties.

The typical hesitant fuzzy approach for a fuzzy implication is conceived as
an extension of axioms in Definition 5.

Definition 12. Let I : H2 → H and let ≤H be an admissible order. I is a typical
hesitant fuzzy implication function with respect to ≤H, 〈H,≤H〉-THIF in short,
if for each X,Y,Z ∈ H, the following properties are verified:

(I1) If X ≤H Y then I(Y,Z) ≤H I(X,Z) (first place antitonicity);
(I2) If Y ≤H Z then I(X,Y ) ≤H I(X,Z) (second place isotonicity);
(I3) I(0H,0H) = 1H (corner condition 1);
(I4) I(1H,1H) = 1H (corner condition 2); and
(I5) I(1H,0H) = 0H (corner condition 3).



An Initial Study on Typical Hesitant (T,N)-Implication Functions 755

Table 1. Typical Hesitant Implication Functions

〈H,≤H〉-THIF Restrictions

IFD(X,Y ) =

{
1H, if X ≤H Y,

max(NS(X), Y ), otherwise
NS is a 〈H,≤H〉-negation

IGD(X,Y ) =

{
1H, if X ≤H Y,

Y, otherwise
–

IWB(X,Y ) =

{
1H, ifX ≤H 1H,

Y, if X = 1H.
–

IGR(X,Y ) =

{
1H, if X ≤H Y,

0H, otherwise
–

Proposition 1. If I is an 〈H,≤H〉-THIF then it also satisfies the following
properties:

(I6a) I(0H, Y ) = 1H (left boundary);
(I6b) I(X,1H) = 1H (left and right boundary).

Proof. Straightforward.

There are other properties that some 〈H,≤H〉-THIF can verify as the listed
ones presented in the following.

(I7) I(1H,X) = X (left neutrality property);
(I8) I(X,X) = 1H (identity principle);
(I9) I(X, I(Y,Z)) = I(Y, I(X,Z)) (exchange principle);
(I10) I(X,N (Y )) = I(Y,N (X)), if N is a strong 〈H,≤H〉-negation (right con-

traposition or contrapositive symmetry w.r.t. N );
(I11) I(X,Y ) = I(N (Y ),N (X)), if N is a strong 〈H,≤H〉-negation (law of

contraposition w.r.t. N ).

See in Table 1 examples illustrating the extension of important 〈H,≤H〉-
THIF, namely: Fodor (IFD), Gödel (IGD), Weber (IWB) and Gaines-Rescher
(IGR), with respect to the admissible ≤H-order.

4.1 Obtaining 〈H,≤H〉-THIF from 〈H,≤H〉-t-norms
and 〈H,≤H〉-negations

Inspired in [6,18,19], which introduced a family of implication functions con-
structed from fuzzy negations and a triangular norm, in the following proposi-
tion we present a method to construct a 〈H,≤H〉-THIF from a H-t-norm and a
〈H,≤H〉-negation.

Theorem 2. Let T be a 〈H,≤H〉-t-norm and let N be a 〈H,≤H〉-negation. The
function IN

T : H2 → H defined by

IN
T (X,Y ) = N (T (X,N (Y ))) (4)

is a typical hesitant implication function, denoted as 〈H,≤H〉-implication.
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Proof. We have to prove that IN
T satisfies the five properties of Definition 12.

(I1) If X ≤H Y then by the monotonicity of T , we have T (X,N (Z)) ≤H

T (Y,N (Z)), and by (N1), N (T (Y,N (Z))) ≤H N (T (X,N (Z))). So,
IN

T (Y,Z) ≤H IN
T (X,Z).

(I2) If Y ≤H Z then, by (N1), N (Z) ≤H N (Y ). Therefore, by the mono-
tonicity of T , we have T (X,N (Z)) ≤H T (X,N (Y )) and N (T (X,N (Y ))) ≤H

N (T (X,N (Z))). Thus, IN
T (X,Y ) ≤H IN

T (X,Z).

(I3) IN
T (0H,0H)

Eq.(4)
= N (T (0H,N (0H)))

(N1)
= N (T (0H,1H))

(T 4)
= N (0H)

(N1)
= 1H.

(I4) IN
T (1H,1H)

Eq.(4)
= N (T (1H,N (1H)))

(N1)
= N (T (1H,0H))

(T 4)
= N (0H)

(N1)
= 1H.

(I5) IN
T (1H,0H)

Eq.(4)
= N (T (1H,N (0H)))

(N1)
= N (T (1H,1H))

(T 4)
= N (1H)

(N1)
= 0H.

Therefore, Theorem 2 is verified.

Definition 13. Let T be a 〈H,≤H〉-t-norm and let N be a 〈H,≤H〉-negation.
The function IN

T defined by Eq. (4) is called a typical hesitant (T,N)-implication
function.

Now, it is shown that a 〈H,≤H〉-t-norm can be constructed from a 〈H,≤H〉-
THIF.

Proposition 2. [6] Let N be a strong 〈H,≤H〉-negation and let T be a 〈H,≤H〉-
t-norm. Then, for each X,Y ∈ H,

T (X,Y ) = N (IN
T (X,N (Y ))).

Proof. Straightforward.

Proposition 3. Let IN
T be a typical hesitant (T,N)-implication function, let T

be a 〈H,≤H〉-t-norm and let N be a strong 〈H,≤H〉-negation, then:

(i) IN
T satisfies the left neutrality property (I7);

(ii) IN
T satisfies the exchange principle (I9);

(iii) IN
T satisfies the law of right contraposition w.r.t. N (I10);

(iv) IN
T satisfies the law of contraposition w.r.t. N (I11).

Proof. (I7) Bearing in mind that T is a 〈H,≤H〉-t-norm, then for

any X ∈ H, we have: IN
T (1H,X)

Eq. (4)
= N (T (1H,N (X)))

(T 1)/(T 4)
=

N (N (X))
(N3)
= X.

(I9) Once N is a strong 〈H,≤H〉-negation and T is a 〈H,≤H〉-t-norm, we
have

IN
T (X, IN

T (Y, Z))
Eq.(4)
= N (T (X,N (N (T (Y,N (Z))))))

(N3)
= N (T (X,T (Y,N (Z))))

(T 1)
= N (T (X,T (N (Z), Y )))

(T 2)
= N (T (T (X,N (Z)), Y ))

(T 1)
= N (T (Y, T (X,N (Z))))

(N3)
= N (T (Y,N (N (T (X,N (Z))))))

Eq.(4)
= IN

T (Y, IN
T (X,Z)).
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(I10) Due to the commutativity property of T and since N is a strong
〈H,≤H〉-negation, it follows that

IN
T (X,N (Y ))

Eq. (4)
= N (T (X,N (N (Y ))))

(N3)
= N (T (X,Y ))

(T 1)
= N (T (Y,X))

(N3)
= N (T (Y,N (N (X))))

Eq. (4)
= IN

T (Y,N (X)).

(I11) Analogously, from the commutativity of T and as N is a strong
〈H,≤H〉-negation, we have the next results

IN
T (N (Y ),N (X))

Eq. (4)
= N (T (N (Y ),N (N (X))))

(N3)
= N (T (N (Y ),X))

(T 1)
= N (T (X,N (Y )))

Eq. (4)
= IN

T (X,Y ).

Proposition 4. Let IN
T be a typical hesitant (T,N)-implication and T be a

〈H,≤H〉-t-norm satisfying T 6. Then IN
T satisfies the identity principle (I8).

Proof. Suppose that IN
T is a typical hesitant (T,N)-implication, T is a 〈H,≤H〉-

t-norm such that T (X,N (Y )) = 0H. Then, the following results are verified:

IN
T (X,X)

Eq.(4)
= N (T (X,N (X))

(T 6)
= N (0H) = 1H.

Therefore, Proposition 4 is verified.

Concluding, three examples illustrating such methodology are presented in
the following:

Example 5. Based on the methodology established in Theorem 2 and main oper-
ators presented in Examples 2 and 4, we construct new 〈H,≤H〉-implication func-
tions in the class of typical hesitant (T,N)-implication functions. Meaning that,
the next three functions INS

TP
, INS

TM
, INS

TL
: H

2 → H, respectively expressed as
follows

INS

TP
(X,Y ) = NS(TP (X,NS(Y ))),

INS

TM
(X,Y ) = NS(TM (X,NS(Y ))),

INS

TL
(X,Y ) = NS(TL(X,NS(Y )));

are 〈H,≤H〉-THIF with respect to the admissible linear ≤A1
H

-order and ≤A3
H

-
order:



758 M. Matzenauer et al.

5 Final Remarks

Regarding many extensions of multi-valued fuzzy logics, this paper introduces
the definition of the class of (T,N)-implications in the context of Typical Hesitant
Implication Functions, extending such analysis in order to consider their main
properties: left neutrality property, right boundary, law of contraposition and
its corresponding right contraposition based on 〈H,≤H〉-negations, also includ-
ing the identity and exchange principles. As another important contribution,
we investigate the conditions under which the use of admissible orders based
on aggregation operators, performed on 〈H,≤H〉-lattice, allows a comparison of
THFS with different cardinalities. Additionally, among several partial orders
defined over 〈H,≤H〉, the discussed admissible orders on 〈H,≤H〉 promote com-
parisons even between THFS with different cardinalities.

Our results in the class of 〈H,≤H〉-implication functions, named (T,N)-
implications extend the previous study presented in [19]. Thus, this novelty
methodology corroborates with the meaning of 〈H,≤H〉-implication functions,
providing semantic interpretation for implications setting found in multi-valued
fuzzy logics.

As ongoing work, we are considering to prove some other properties of
〈H,≤H〉-THIF operators as a support to generate hesitant fuzzy subsethood
measures, based on the studied class of (T,N)-implications. This study needs
to consider the discussion about how can we have any (generalized) property
of typical hesitant (T,N)-implication, for which the standard property is not
satisfied by the standard (T,N)-implication.

One can easily observe that fuzzy implications have been used in preference
computations also including ordering relations in related works, see e.g. [9]. Fol-
lowing such research approach, further work also intends to apply the present
results on typical hesitant (T,N)-implication in order to achieve new results on
hesitant-based fuzzy preferences relations.
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7) and PQ(307781/2016-0), and PqG/FAPERGS 02/2017(17/2551-0001207-0).
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