
General-Purpose Automated Machine
Learning for Transportation: A Case

Study of Auto-sklearn for Traffic
Forecasting

Juan S. Angarita-Zapata1(B) , Antonio D. Masegosa1,2 ,
and Isaac Triguero3

1 DeustoTech, Faculty of Engineering, University of Deusto,
Av. Universidades, 24, 48007 Bilbao, Spain
{js.angarita,ad.masegosa}@deusto.es

2 IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
3 Computational Optimisation and Learning (COL) Lab,

School of Computer Science, University of Nottingham, Nottingham, UK
Isaac.Triguero@nottingham.ac.uk

Abstract. Currently, there are no guidelines to determine what are the
most suitable machine learning pipelines (i.e. the workflow from data pre-
processing to model selection and validation) to approach Traffic Fore-
casting (TF) problems. Although automated machine learning (AutoML)
has proved to be successful dealing with the model selection problem in
other applications areas, only a few papers have explored the perfor-
mance of general-purpose AutoML methods, purely based on optimisa-
tion, when tackling TF. In this paper, we provide a thorough exploration
of the benefits of Auto-sklearn for TF, as a general-purpose AutoML
method that follows a hybrid search strategy combining optimisation
with meta-learning and ensemble learning. Particularly, we focus on how
well Auto-sklearn is able to recommend competitive machine learning
pipelines to forecast traffic, modelled as a TF multi-class imbalanced
classification problem, along different time horizons at two spatial scales
(point and road segment) and two environments (freeway and urban).
Concretely, we test the following scenarios: I) a hybrid search strategy
with the three components (optimisation, meta-learning, ensemble learn-
ing), II) a strategy based on meta-learning and ensemble learning, and
III) a strategy based on the estimation of the best performing pipeline
from those suggested by the meta-learning. Experimental results show
that the meta-learning component of Auto-sklearn does not work prop-
erly on TF problems, and on the other hand, that the optimisation does
not contribute too much to the final performance of predictions.

Keywords: Traffic Forecasting · Transportation · Supervised
learning · Machine learning · Automated machine learning ·
Computational intelligence

c© Springer Nature Switzerland AG 2020
M.-J. Lesot et al. (Eds.): IPMU 2020, CCIS 1238, pp. 728–744, 2020.
https://doi.org/10.1007/978-3-030-50143-3_57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50143-3_57&domain=pdf
http://orcid.org/0000-0002-3104-9179
http://orcid.org/0000-0001-7759-9072
http://orcid.org/0000-0002-0150-0651
https://doi.org/10.1007/978-3-030-50143-3_57


General-Purpose AutoML for Transportation: A Case Study of Auto-sklearn 729

1 Introduction

A well-established strategy to tackle congestion is the design, development and
implementation of TF systems. TF can be defined as the prediction of near-
future traffic conditions (e.g. travel time) [16]. The recent emergence of telecom-
munications technologies integrated into transportation infrastructure generates
vast volumes of traffic data. This unprecedented data availability and growing
computational capacities have incremented the use of Machine Learning (ML)
to address TF. From a ML perspective, TF is focused on building a predictive
model using historical data to make predictions of traffic measures based on new
and unseen data.

In spite of the aforementioned progress, different ML algorithms and prepro-
cessing approaches may be more appropriate for different kinds of traffic data.
Determining the best pipeline (sequence of data preprocessing techniques and
a learning algorithm) for making traffic predictions is not a trivial task. In the
ML area, this challenge is known as the Model Selection Problem (MSP) and
Automated Machine Learning (AutoML) has been one of the most successful
approaches addressing it so far. AutoML aims at automatically finding the best
combination of preprocessing techniques, ML algorithm and hyperparameters
that maximise a performance measure on given data without being specialized
in the problem domain where this data comes from. The search strategy to find
the mentioned combination can be based either on a “pure” optimisation process
that tests different promising combinations from a predefined base of preprocess-
ing and learning algorithms [10]; or it can be based on a hybrid search where the
optimisation is complemented with learning strategies such as meta-learning [3].
In the latter case, the learning approach is in charge of systematically observing
how different ML pipelines perform on a wide range of tasks to take advantage
of this experience to learn new tasks faster [14]. Roughly speaking, it can be
seen as using ML for designing ML algorithms.

AutoML methods have successfully approached the MSP in other areas
[8,18], however, it has hardly been explored in TF [1]. In the latter area, the
current progress is focused only on AutoML methods designed purely on opti-
misation approaches; thus, leaving aside the study of AutoML methods that
have hybrid search strategies. Having this idea in mind, the contribution of this
paper is to study the benefits in terms of performance and computational cost
of hybrid AutoML for TF. We use Auto-sklearn [3], a state-of-the-art hybrid
AutoML method whose search strategy of pipelines uses bayesian optimisation,
meta-learning and ensemble learning. To accomplish this objective, we use as
a benchmark a multi-class imbalanced classification problem for different time
horizons and for freeway and urban environments. Under these traffic forecasting
settings, we explore the performance of the Auto-sklearn’s components through
three scenarios: I) a hybrid search strategy that uses its three components (opti-
misation, meta-learning, ensemble learning), II) a meta-learning strategy com-
bined with ensemble learning, and III) a strategy based on the estimation of the
best performing pipeline from those suggested by the meta-learning.



730 J. S. Angarita-Zapata et al.

The rest of this paper is structured as follows. Sections 2 and 3 present back-
ground and related work about AutoML methods in TF. Section 4 exposes the
methodology followed in this paper. Then, Sect. 5 analyzes the main results
obtained. Finally, conclusions are discussed in Sect. 6.

2 Background

This section reviews literature related to AutoML in the context of TF. We
start presenting the foundations of general-purpose AutoML methods and finally,
Sect. 2.2 reviews Auto-sklearn, the state-of-the-art hybrid AutoML method used
in this research.

2.1 Automated Machine Learning

According to [18], a ML pipeline P can be defined as a combination of algorithms
A that transforms input data X into target values Y . Let A be defined as

A = {Apreprocessing ∪ Afeature ∪ Aalgorithm} (1)

wherein Apreprocessing is a subset of preprocessing techniques, Afeature a subset
of feature engineering methods, and Aalgorithm a ML algorithm with configu-
ration of hyperparameters λi ∈ Λ. In order to build a ML pipeline with this
structure, human effort and high computational capacities are needed because
there is no pipeline that can achieve good performance on every learning problem
[6,17]. This usually is done by means of a trial and error approach in an iterative
manner, which causes that the success of ML comes at a great price [17].

AutoML is an emerging sub-area in ML that seeks to automatise the ML
workflow from data preprocessing to model validation [5]. It allows reducing
human bias and improving computational costs by making the construction of
ML applications more efficient. The process consists of identifying the most
promising combination PAi,λi that satisfies a given performance metric or con-
dition when PAi,λi is trained on training data D

(i)
train and evaluated on test data

D
(i)
test.

Current literature [5,18] reports a variety of general-purpose AutoML meth-
ods. According to Chen et al. [17], there are two types of taxonomies that can cat-
egorise these methods. First, a “what” taxonomy that determines which stages of
a ML pipeline are going to be automated (e.g., data preprocessing and algorithm
selection, algorithm selection and hyperparameters, or even the entire pipeline).
Within this taxonomy, the most common case is the CASH [13] (Combined
Algorithm Selection and Hyperparameter) problem wherein AutoML is focused
on finding the best combination of ML algorithm and its hyperparameters set-
ting, leaving the data preprocessing up to the human user. In this paper, we are
focused on the automation of fixed-size ML pipelines composed of data prepro-
cessing techniques and a classifier algorithm with their respective hyperparam-
eters configurations.



General-Purpose AutoML for Transportation: A Case Study of Auto-sklearn 731

In contrast, the second taxonomy proposed by [17] classifies how the automa-
tion process to find the most promising pipeline is done. On the one hand, some
AutoML methods use only an optimisation strategy wherein the ML pipeline
is built testing multiple possible combinations from a predefined search space
of preprocessing methods, ML algorithms and hyperparameters configurations.
From this perspective, the ML pipeline building problem consists of finding a
pipeline structure PA,λ that minimises a cross-validation loss function

PA∗,λ∗ = argmin
A(i)∈A,λ(i)∈Λ

1
K

k∑

i=1

γ
(
PA(i),λ(i) ,Dtrain,Dtest

)
(2)

As shown in Eq. 2, this search process can be considered as a black-box opti-
misation problem that is not easily solvable as the search space can be large and
complex. This equation is usually non-smooth and derivative-free, and conver-
gence speed is a critical problem for building ML pipelines. Some methods to
solve this equation are grid search, random search, bayesian optimisation and
sequential Model-Based Optimisation.

On the other hand, regarding the second taxonomy proposed by [17], there
are other AutoML methods that use the aforementioned optimisation in combi-
nation with learning strategies to constitute a hybrid search strategy with the
purpose of reducing computational costs. In this case, the focus is on apply-
ing a ML algorithm at the meta-level to learn meta-knowledge that guides the
AutoML process; this approach is known as meta-learning [7,14]. Meta-learning
is the data-driven task of systematically observing how different learning algo-
rithms or pipelines perform on different learning tasks and then learning from
this experience to warm-start the optimisation process in a new and unknown
ML task. This warm-start consists of promising pipelines that are used by the
optimisation as starting points to be evaluated in the first place before trying
pipelines extracted from a predefined search space.

Meta-learning can extract meta-knowledge using three different strategies
[14]. First, there is the “Learning from prior evaluations” strategy wherein a
set of known-previous learning tasks tj ∈ T , a set of configurations λi ∈ Λ
(e.g., hyperparameter settings), and a set of all prior evaluations Pi,j coming
from applying the configurations Λ over the tasks T , have to be given. Having
this knowledge, the objective is to train a meta-learner L able to recommend
promising hyperparameters configurations λi for an unseen and new task tnew.
In contrast, the second approach is known as “Learning from task properties”. It
is based on characterising the known-previous learning tasks tj ∈ T using meta-
features mj ∈ M (e.g, number of instances and features, class imbalance), then
extracting the configurations λi ∈ Λ of the learners associated with these prior
tasks, and finally collecting the performance Pi,j of the trained models given the
meta-features mj and the configurations λi. Having this meta-knowledge, the
objective is to train a meta-leaner L that predicts the performance of pipelines
or recommend them for an unseen and new task tasknew.

Lastly, the third approach is “Learning from prior models”. In this case, the
focus is on training a meta-learner given the parameters mj ∈ M (e.g. model



732 J. S. Angarita-Zapata et al.

parameters, features) of prior learnt models, their configurations λi, and the
performance Pi,j of these learners over the previous and known tasks. Then,
the objective is to train a meta-learner L that transfers trained models to save
computational costs at the moment of approaching a new task tnew.

Within this paper, we focus on Auto-sklearn, the AutoML method with a
hybrid search strategy that includes optimisation and meta-learning based on
the approach “Learning from task properties”. This method is presented with
more details in the following section.

2.2 Auto-sklearn

Auto-sklearn is an AutoML method that uses meta-learning, bayesian optimisa-
tion and ensemble selection to find promising ML pipelines composed of prepro-
cessing methods and ML classifiers. Here we provide a brief description of the
method. The interested reader is referred to [3] for further details.

In an off-line phase, for a repository of 121 data-sets, bayesian optimisation
is used to determine an optimised ML pipeline with high performance on every
data-set. These pipelines are generated from a search space of 15 classifiers, 14
feature preprocessing methods, and 4 data preprocessing methods. Then, for
each data-set, a set of 38 meta-features is extracted to characterise every set of
data; these meta-features include simple, information-theoretic and statistical
information such as statistics about the number of data points, features, the
number of classes, data skewness, the entropy of the targets, among others.
Later on, instead of storing the 121 data-sets, their meta-features and the ML
pipelines are saved in a meta-knowledge base wherein each instance contains the
set of meta-features describing every data-set and the optimised pipeline that
works well on it.

In the online phase, that is, when a new data-set Dnew is given, Auto-sklearn
computes its meta-features, ranks all the data-sets stored in the meta-knowledge
base (stored in the form of meta-features and not the data itself) by their L1 dis-
tance w.r.t. Dnew, and selects the stored ML pipelines for the k nearest data-sets
(by default k = 25). The assumption is that these selected pipelines are likely
to perform quite well in Dnew as they performed well on data-sets with similar
meta-features (pipelines closer to the first position of the ranking would expect
higher performance on Dnew). This selection of K most promising pipelines is
used then to seed the bayesian optimisation component as a warm-start app-
roach, which boosts the performance of the optimisation. In addition to the
recommendations done by the meta-learning component, the bayesian optimisa-
tion process (under a time budget constraint) generates and tests new pipeline
structures from the same aforementioned search space. In the final step of Auto-
sklearn’s workflow, the best pipelines identified during the bayesian search pro-
cess are used to construct an ensemble. This automated ensemble construction
avoids to commit itself to a single hyper-parameter setting, and it is more robust
than only using the best pipeline found with the optimisation component.



General-Purpose AutoML for Transportation: A Case Study of Auto-sklearn 733

3 Related Work

Within the most representative AutoML methods are Auto-WEKA [13], Auto-
sklearn [3], TPOT [10], ATM [12], and ML-Plan [9]. In the case of the first two
methods, they are focused on the construction of fixed ML pipelines in which
the pipeline structure is a linear sequence of data preprocessing and algorithm
learning. The other methods work by building pipeline structures that can be
more complex and diverse. In the case of Auto-WEKA, TPOT, ATM and ML-
Plan, they use an optimisation approach to find pipeline structures; meanwhile,
Auto-sklearn is the state-of-the-art method to generate ML pipelines using a
hybrid search strategy. As a common denominator, all these AutoML methods
are agnostic w.r.t. the problem domains in which they have been applied; in this
sense, they are general-purpose methods that have shown competitive perfor-
mance in different applications areas [5].

In the transportation area, to the best authors’ knowledge, only three papers
have used AutoML methods for TF [1,2,15]. The first research carried out by
Vlahogianni et al. [15] proposed a meta-modelling technique that, based on sur-
rogate modelling and a genetic algorithm with an island model, optimises both
the algorithm selection and the hyper-parameter setting. The AutoML task is
performed from an algorithms base of three ML methods (Neural Network, Sup-
port Vector Machine and Radial Base Function) that forecast average speed in
a time horizon of 5 min, using a regression approach. After that, Angarita et
al. in [1] and [2] used Auto-WEKA, an AutoML method that applies sequential
model-based bayesian optimisation [4] to find optimal ML pipelines. Both papers
compared the performance of Auto-WEKA w.r.t. the general approach, which
consists of selecting by trial and error the best of a set of algorithms to predict
traffic. In the case of [2], the paper was centred in forecasting traffic LoS at a
fixed freeway location through multiple time horizons. On the other hand, in
[1], the authors were focused on predicting traffic speed on a subset of families
of TF regression problems focused on making predictions at the point and the
road segment levels within the freeway and urban environments.

The main differences between this research and the three aforementioned
papers lay on the typology of AutoML method used and the addressed TF
problems. Whereas the previous three focused on “pure” AutoML optimization
approaches, in this research, we centre on a hybrid strategy based on meta-
Learning, optimization and ensemble learning with the purpose of evaluating
the benefits that the former has on TF within three scenarios: by its own (with-
out optimization and ensemble learning), in combination solely with ensemble
learning, and integrated to optimization plus ensemble learning.

4 Methodology

This research seeks to keep exploring the benefits that meta-learning within
AutoML of hybrid search strategies can bring to TF. To accomplish such pur-
pose, we analyse to what extent Auto-sklearn, the state-of-the-art AutoML



734 J. S. Angarita-Zapata et al.

Table 1. Data-sets

Type Data-sets # Instances # Attributes # Instances per class Imbalance ratios

Type I Fw T+CD in

time horizons of

5, 15, 30, 45,

60min

[10927-9906] 13 A = 4533, B = 3640

C = 893, D = 850

IR (A/D) = 5,07

IR (A/B) = 1,24

IR (A/C) = 5,33

Fw TS+CD in

time horizons of

5, 15, 30, 45,

60min

[10927-9906] 28 A = 5983, B = 4580,

C = 363

IR (A/B) = 1,30

IR (A/C) = 16,48

Type II Fw T+CD in

time horizons of

5, 15, 30, 45,

60min

[10927-9906] 13 A = 4533, B = 4023,

C = 136

IR (A/B) = 1,12

IR (A/C) = 3,33

Fw TS+CD in

time horizons of

5, 15, 30, 45,

60min

[10927-9906] 28 B = 7782, C = 2125,

A = 101

IR (B/C) = 3,66

IR (B/A) = 7,63

Type I Ub T+CD in

time horizons of

15, 30, 45, 60min

[2684-2634] 13 A = 1337, B = 1188,

C = 111

IR (A/B) = 1,12

IR (A/C) = 12,04

Ub TS+CD in

time horizons of

15, 30, 45, 60min

[2684-2634] 28 B = 1659, A = 691,

C = 33

IR (B/A) = 2,40

IR (B/C) = 4

Type II Ub T+CD in

time horizons of

15, 30, 45, 60min

[2684-2634] 13 A = 1337

B = 1299

IR (A/B) = 1,02

Ub TS+CD in

time horizons of

15, 30, 45, 60min

[2684-2634] 28 B = 1561

A = 1122

IR (B/A) = 1,39

method for this category of search strategies, is able to recommend competitive
ML pipelines for TF. In this context, the following parts of these sections are
devoted to giving more details about the data-sets used for the experimentation
(Sect. 4.1); and the experimental set-up of this study (Sect. 4.2).

4.1 Data-Sets

For experimentation, we considered two TF environments: freeway and urban.
For the freeway environment, the data was collected from the Caltrans Perfor-
mance Measurement System1 whereas for the urban one, the data was collected
from the Madrid Open Data Portal2. In both cases, the traffic measure used
was thee months of speed in aggregation times of 5 and 15 min, respectively. For
more details about the raw data used to generate the data-sets employed in this
research, the interested reader is referred to [1].

Concretely, we approach two types of TF classification problems with two
problem instances for each of them. In both problems, the objective is to predict

1 http://pems.dot.ca.gov.
2 https://datos.madrid.es/portal/site/egob/.

http://pems.dot.ca.gov
https://datos.madrid.es/portal/site/egob/


General-Purpose AutoML for Transportation: A Case Study of Auto-sklearn 735

a categorical measure named LoS as a multi-class classification problem based
on continuous traffic speed. LoS is used to categorise the quality levels of traffic
through letters from A to E in a gradual way3 [11].

The first TF problem corresponds to the prediction of LoS at a target location
in a freeway environment. The first instance of this problem is based only on
past traffic speed data of the target location (temporal data, T); meanwhile, the
second instance considers historical traffic data coming from the target location
and from four downstream positions (temporal and spatial, TS). It is important
to clarify that these two instances of the first TF problem are correlated because
they share the same target location.

The second kind of TF problem is focused on forecasting LoS within an urban
context independent of the freeway data described above. Repeatedly, the two
correlated instances of this problem are: predict LoS for a single target location
considering exclusively historical data of this spot, and forecasting LoS taking
into account past traffic speed of the target location together with other four
downstream positions.

For the two TF problems described above, we generated 36 data-sets (20
for freeway data and 16 for urban data). In the freeway case, the time horizons
wherein LoS is predicted are 5, 15, 30, 45, and 60 min using data granular-
ity of 5 min (granularity means how often and how long the traffic measure is
aggregated). Unlike the previous one, for the urban TF problem, the forecast-
ing time steps are 15, 30, 45, and 60 min with data granularity of 15 min. To
better identify the data-sets, they are named following the next structure: Con-
text InputData TimeHorizon.

Attributes of the freeway and urban data-sets where the input is composed
of only temporal traffic data from the target location and calendar data are: 1)
Day of the week; Minute of the day, 2) Traffic speed of the objective spot at
past 5, 10, 15, 20, 25, 30, 35, 40, 45 min for freeway and 15, 30, 45, 60, 75, 90,
105, 120, 135 min for urban, and 3) LoS in the target location. In the case of the
freeway and urban data-sets where the input consists of historical speed taken
from the target location and from four downstream detectors, the attributes are
the same mentioned above for the target location and include also attributes of
traffic speed of the four downstream locations at the same past times.

Table 1 presents a summary of the 36 data-sets that includes the number
of instances, the number of attributes, the number of instances per class and
the Imbalance Ratios (IRs) of each data-set. The IR is calculated by dividing
the number of instances of the majority class over the instances of each of all
the other classes. IR values show that the generated data-sets have a different
imbalance degree. Some data-sets do not contain all the possible classes because
on some occasions some of the classes had an extremely low presence (e.g. 20
samples) which introduced noise in the results. Samples of these classes where
tagged as classes of the closest label with the lowest number of samples. More-
over, the differences between freeway and urban data-sets of Type I and Type II

3 Category A indicates light to moderate traffic, whereas a category E means extended
delays.



736 J. S. Angarita-Zapata et al.

are their class distributions. Within each type, the class distribution is the same
for all time horizons. In this sense, we can explore the capacity of Auto-sklearn
when approaching different degrees of imbalanced data-sets.

4.2 Experimental Set-Up

Considering the traffic forecasting setting presented, we explore the performance
of the Auto-sklearn’s components through three scenarios using the data-sets
presented above. First, a default scenario in which the hybrid search strategy of
the AutoML method uses its three components to find pipelines. In this case,
we considered three execution times for Auto-sklearn (ET): 15, 60 and 120 min.
They correspond to the time that the bayesian optimisation can take to find
the best pipelines and their hyper-parameter configuration for a given data-set.
For assessing the performance of this scenario, the data-sets are partitioned in
training (80%) and test (20%), keeping the chronological order of the data.

In the second scenario, we probe an alternative approach in which the rec-
ommendations done via meta-learning are combined in two ensembles based on
weighted-voting without using the optimisation process. First, we extract the 25
best ML pipelines (default value used by Auto-sklearn) suggested by the meta-
learning component, which then are combined in the weighted-voting ensemble
named MetaEns25. To test this ensemble, the data-sets are partitioned in the
same way as Auto-sklearn, such as was described above. For the second ensem-
ble, we extract the complete list of 121 ML pipelines that can be suggested by
the meta-learning component and choose again 25 best pipelines, based on their
validation error, to generate the ensemble MetaEn25-121. In this case, we do the
following procedure: the data-sets are partitioned in training (60%), validation
(20%) and test (20%). To select the 25 best pipelines, these are trained on the
training set and their performance is assessed on the validation set. Then, the
ensemble is built with the 25 pipelines with the best validation error. Finally, the
ensemble is trained on training+validation partitions (same number of instances
as previous strategies, that is, 80%) and validated on the test set.

Lastly, for the third test scenario, we consider the meta-learning component
in isolation. We follow a similar approach to that of MetaEn25-121, that is,
we split the data-sets in training (60%), validation (20%) and test (20%). This
means that for every data-set, we train the 121 pipelines suggested by meta-
learning on the training set and based on their error on the validation set, we
choose the best pipeline. The latter is then trained on training+validation (that
is, over an 80% of the instances) and assessed over the test set.

To evaluate the experimental set-up presented, we use the metric G-measure
(mGM) that is applied for multi-class imbalanced data in classification problems.

Its calculation is expressed as mGM = M

√∏M
i=1 specificityi · recalli where M is

the total number of classes.



General-Purpose AutoML for Transportation: A Case Study of Auto-sklearn 737

T
a
b
le

2
.

M
ea

n
m
G
M

va
lu

es
a
n
d

th
ei

r
st

a
n
d
a
rd

d
ev

ia
ti

o
n
s

(i
n

b
ra

ck
et

s)
o
b
ta

in
ed

b
y

th
e

th
re

e
A

u
to

-s
k
le

a
rn

’s
E

T
,
tw

o
w

ei
g
h
te

d
-v

o
ti

n
g

en
se

m
b
le

s
a
n
d

th
e

B
es

tP
ip

e
V

a
l
a
p
p
ro

a
ch

.

T
y
p
e

D
a
ta

-s
e
t

B
e
st
P
ip
e
V
a
l
M

e
ta

E
n
2
5

M
e
ta

E
n
2
5
-1
2
1
A
u
to

S
1
5
E
T

A
u
to

S
6
0
E
T

A
u
to

S
1
2
0
E
T

W
in
n
e
r

F
re
e
w
a
y
T
y
p
e
I

T
+
C
D

5
0
.7

0
(
0
.0

0
)

0
.6
7
(0

.0
0
)
0
.6
7
(0

.0
0
)

0
.6
7
(0

.0
1
)

0
.6
8
(0

.0
1
)

0
.6
7
(0

.0
1
)

(P
ip
e
5
,
2
.4
)
-
(0

.9
,
2
.0
,
1
1
.6
)

T
+
C
D

1
5

0
.4

8
(
0
.0

1
)

0
.4
1
(0

.0
1
)
0
.4
3
(0

.0
1
)

0
.3
2
(0

.0
1
)

0
.3
5
(0

.0
2
)

0
.3
4
(0

.0
1
)

(P
ip
e
1
1
4
,
5
.2
)
-
(0

.9
,
2
.0
,
1
1
.6
)

T
+
C
D

3
0

0
.2

9
(
0
.0

0
)

0
.2
4
(0

.0
1
)
0
.2
5
(0

.0
1
)

0
.2
2
(0

.0
1
)

0
.2
2
(0

.0
1
)

0
.2
2
(0

.0
2
)

(P
ip
e
1
1
4
,
5
.2
)
-
(0

.9
,
2
.0
,
1
1
.6
)

T
+
C
D

4
5

0
.8

5
(
0
.0

1
)

0
.1
7
(0

.0
1
)
0
.1
5
(0

.0
0
)

0
.1
7
(0

.0
1
)

0
.1
6
(0

.0
1
)

0
.1
8
(0

.0
0
)

(P
ip
e
6
7
,
2
.8
)
-
(0

.8
,
2
.0
,
1
1
.6
)

T
+
C
D

6
0

0
.8

4
(
0
.0

0
)

0
.1
8
(0

.0
1
)
0
.1
8
(0

.0
1
)

0
.1
9
(0

.0
1
)

0
.1
9
(0

.0
0
)

0
.1
9
(0

.0
1
)

(P
ip
e
6
7
,
2
.8
)
-
(0

.8
,
2
.0
,
1
1
.6
)

T
S
+
C
D

5
0
.7

1
(
0
.0

0
)

0
.7
0
(0

.0
0
)
0
.7
0
(0

.0
0
)

0
.5
4
(0

.0
4
)

0
.6
0
(0

.0
5
)

0
.6
1
(0

.0
8
)

(P
ip
e
7
2
,
2
.8
)
-
(1

.1
,
1
.9
,
1
1
.1
)

T
S
+
C
D

1
5
0
.5

0
(
0
.0

1
)

0
.4
7
(0

.0
1
)
0
.4
8
(0

.0
1
)

0
.3
6
(0

.0
3
)

0
.2
6
(0

.1
4
)

0
.3
1
(0

.0
8
)

(P
ip
e
6
7
,
2
.7
)
-
(1

.1
,
1
.9
,
1
1
.1
)

T
S
+
C
D

3
0
0
.4

5
(
0
.0

0
)

0
.0
0
(0

.0
0
)
0
.0
0
(0

.0
0
)

0
.0
0
(0

.0
0
)

0
.0
0
(0

.0
0
)

0
.0
0
(0

.0
0
)

(P
ip
e
7
2
,
3
.2
)
-
(1

.6
,
1
.9
,
1
1
.1
)

T
S
+
C
D

4
5
0
.3

5
(
0
.0

0
)

0
.0
0
(0

.0
0
)
0
.1
7
(0

.3
0
)

0
.0
0
(0

.0
0
)

0
.0
0
(0

.0
0
)

0
.0
0
(0

.0
0
)

(P
ip
e
7
2
,
3
.2
)
-
(1

.6
,
1
.9
,
1
1
.1
)

T
S
+
C
D

6
0
0
.0
0
(0

.0
0
)

0
.0
0
(0

.0
0
)
0
.0
0
(0

.0
0
)

0
.0
0
(0

.0
0
)

0
.0
0
(0

.0
0
)

0
.0
0
(0

.0
0
)

–

F
re
e
w
a
y
T
y
p
e
II

T
+
C
D

5
0
.9

7
(
0
.0

0
)

0
.8
7
(0

.0
0
)
0
.8
8
(0

.0
0
)

0
.8
7
(0

.0
0
)

0
.8
8
(0

.0
0
)

0
.8
8
(0

.0
0
)

(P
ip
e
7
7
,
3
.0
)
-
(1

.2
,
1
.8
,
1
1
.5
)

T
+
C
D

1
5

0
.9

6
(
0
.0

0
)

0
.7
6
(0

.0
0
)
0
.7
6
(0

.0
0
)

0
.7
5
(0

.0
1
)

0
.7
5
(0

.0
1
)

0
.7
6
(0

.0
1
)

(P
ip
e
2
3
,
1
–
8
)
-
(1

.2
,
1
.8
,
1
1
.5
)

T
+
C
D

3
0

0
.9

4
(
0
.0

0
)

0
.6
6
(0

.0
0
)
0
.6
6
(0

.0
0
)

0
.6
7
(0

.0
0
)

0
.6
7
(0

.0
1
)

0
.6
7
(0

.0
1
)

(P
ip
e
5
8
,
2
.4
)
-
(1

.2
,
1
.8
,
1
1
.5
)

T
+
C
D

4
5

0
.6
0
(0

.0
0
)

0
.6
1
(0

.0
0
)
0
.6

1
(
0
.0

0
)

0
.6
0
(0

.0
0
)

0
.6
1
(0

.0
0
)

0
.6
1
(0

.0
0
)

M
e
ta

E
n
s2

5
-1
2
1

T
+
C
D

6
0

0
.5
6
(0

.0
0
)

0
.5
7
(0

.0
0
)
0
.5
7
(0

.0
0
)

0
.5

8
(
0
.0

0
)

0
.5
8
(0

.0
0
)

0
.5
7
(0

.0
0
)

A
u
to

S
1
5
E
T

T
S
+
C
D

5
0
.9

1
(
0
.0

0
)

0
.6
5
(0

.0
0
)
0
.6
6
(0

.0
1
)

0
.6
6
(0

.0
1
)

0
.6
5
(0

.0
2
)

0
.6
5
(0

.0
1
)

(P
ip
e
2
,
1
.0
)
-
(0

.9
,
1
.9
,
1
0
.9
)

T
S
+
C
D

1
5
0
.4

7
(
0
.0

0
)

0
.4
1
(0

.0
0
)
0
.4
2
(0

.0
0
)

0
.4
1
(0

.0
3
)

0
.4
2
(0

.0
1
)

0
.4
2
(0

.0
2
)

(P
ip
e
4
1
,
2
.2
)
-
(0

.9
,
1
.9
,
1
1
.0
)

T
S
+
C
D

3
0
0
.4

6
(
0
.0

0
)

0
.3
1
(0

.0
0
)
0
.3
4
(0

.0
0
)

0
.3
2
(0

.0
2
)

0
.3
2
(0

.0
1
)

0
.3
1
(0

.0
2
)

(P
ip
e
8
4
,
3
.5
)
-
(0

.9
,
1
.9
,
1
1
.0
)

T
S
+
C
D

4
5
0
.4

4
(
0
.0

0
)

0
.2
5
(0

.0
0
)
0
.3
9
(0

.2
5
)

0
.2
7
(0

.0
1
)

0
.2
8
(0

.0
3
)

0
.2
9
(0

.0
1
)

(P
ip
e
8
4
,
3
.4
)
-
(0

.9
,
1
.9
,
1
1
.0
)

T
S
+
C
D

6
0
0
.4

1
(
0
.0

0
)

0
.2
2
(0

.0
0
)
0
.2
3
(0

.0
1
)

0
.2
7
(0

.0
2
)

0
.2
5
(0

.0
2
)

0
.2
7
(0

.0
2
)

(P
ip
e
8
3
,
3
.4
)
-
(0

.9
,
1
.9
,
1
1
.0
)

(
co

n
ti
n
u
ed

)



738 J. S. Angarita-Zapata et al.

T
a
b
le

2
.
(c
o
n
ti
n
u
ed

)

T
y
p
e

D
a
ta

-s
e
t

B
e
st
P
ip
e
V
a
l
M

e
ta

E
n
2
5

M
e
ta

E
n
2
5
-1
2
1
A
u
to

S
1
5
E
T

A
u
to

S
6
0
E
T

A
u
to

S
1
2
0
E
T

W
in
n
e
r

U
rb

a
n

T
y
p
e
I

T
+
C
D

1
5

0
.7

8
(
0
.0

3
)

0
.2
4
(0

.0
0
)
0
.2
4
(0

.0
0
)

0
.3
2
(0

.1
7
)

0
.3
3
(0

.1
1
)

0
.3
5
(0

.0
7
)

(P
ip
e
4
,
1
.3
)
-
(0

.8
,
2
.0
,
1
1
.7
)

T
+
C
D

3
0

0
.7

0
(
0
.0

0
)

0
.1
5
(0

.0
2
)
0
.2
0
(0

.0
2
)

0
.2
5
(0

.0
9
)

0
.1
5
(0

.1
4
)

0
.1
2
(0

.1
0
)

(P
ip
e
8
5
,
3
.3
)
-
(0

.8
,
2
.0
,
1
1
.7
)

T
+
C
D

4
5

0
.7
1
(0

.0
1
)

0
.1
2
(0

.0
7
)
0
.1
8
(0

.0
2
)

0
.3
0
(0

.0
5
)

0
.2
9
(0

.0
6
)

0
.2
1
(0

.0
5
)

(P
ip
e
1
0
1
,
4
-1
)
-
(0

.9
,
2
.0
,
1
1
.7
)

T
+
C
D

6
0

0
.4

0
(
0
.0

3
)

0
.1
9
(0

.0
0
)
0
.2
1
(0

.0
2
)

0
.2
3
(0

.0
6
)

0
.2
7
(0

.0
6
)

0
.2
6
(0

.0
2
)

(P
ip
e
1
0
8
,
4
.3
)
-
(0

.9
,
2
.0
,
1
1
.7
)

T
S
+
C
D

1
5
0
.8

8
(
0
.0

1
)

0
.5
4
(0

.0
0
)
0
.5
5
(0

.0
1
)

0
.5
6
(0

.0
3
)

0
.5
4
(0

.0
1
)

0
.5
3
(0

.0
2
)

(P
ip
e
1
0
7
,
4
.3
)
-
(1

.1
.
1
.9
,
1
1
.9
)

T
S
+
C
D

3
0
0
.6

7
(
0
.0

1
)

0
.5
0
(0

.0
1
)
0
.5
3
(0

.0
2
)

0
.5
6
(0

.0
3
)

0
.5
8
(0

.0
4
)

0
.5
4
(0

.0
5
)

(P
ip
e
9
4
,
3
.7
)
-
(1

.1
,
1
.9
,
1
1
.8
)

T
S
+
C
D

4
5
0
.6

9
(
0
.0

1
)

0
.4
7
(0

.0
0
)
0
.5
1
(0

.0
1
)

0
.5
6
(0

.0
2
)

0
.5
7
(0

.0
2
)

0
.5
6
(0

.0
1
)

(P
ip
e
9
8
,
4
.0
)
-
(1

.1
,
1
.9
,
1
1
.8
)

T
S
+
C
D

6
0
0
.7

0
(
0
.0

0
)

0
.5
0
(0

.0
0
)
0
.5
4
(0

.0
1
)

0
.5
7
(0

.0
2
)

0
.6
1
(0

.0
4
)

0
.5
8
(0

.0
3
)

(P
ip
e
7
3
,
2
.8
)
-
(1

.1
,
1
.9
,
1
1
.9
)

U
rb

a
n

T
y
p
e
II

T
+
C
D

1
5

0
.9

1
(
0
.0

1
)

0
.6
9
(0

.0
1
)
0
.6
9
(0

.0
1
)

0
.6
9
(0

.0
0
)

0
.6
9
(0

.0
1
)

0
.6
8
(0

.0
1
)

(P
ip
e
1
,
0
.3
)
-
(0

.3
,
1
.3
,
1
2
.6
)

T
+
C
D

3
0

0
.9

2
(
0
.0

1
)

0
.6
6
(0

.0
0
)
0
.6
8
(0

.0
1
)

0
.6
8
(0

.0
1
)

0
.6
8
(0

.0
1
)

0
.6
9
(0

.0
1
)

(P
ip
e
4
8
,
2
.4
)
-
(0

.3
,
1
.3
,
1
2
.6
)

T
+
C
D

4
5

0
.7

9
(
0
.0

1
)

0
.6
9
(0

.0
0
)
0
.7
0
(0

.0
1
)

0
.6
9
(0

.0
)

0
.6
9
(0

.0
1
)

0
.6
8
(0

.0
1
)

(P
ip
e
3
9
,
1
.9
)
-
(0

.3
,
1
.3
,
1
2
.6
)

T
+
C
D

6
0

0
.8

9
(
0
.0

0
)

0
.6
8
(0

.0
0
)
0
.6
8
(0

.0
1
)

0
.6
9
(0

.0
1
3
)

0
.6
9
(0

.0
0
)

0
.7
0
(0

.0
1
)

(P
ip
e
1
8
,
1
.0
)
-
(0

.3
,
1
.3
,
1
2
.6
)

T
S
+
C
D

1
5
0
.9

2
(
0
.0

0
)

0
.6
6
(0

.0
0
)
0
.6
6
(0

.0
0
)

0
.6
6
(0

.0
0
)

0
.6
7
(0

.0
1
)

0
.6
7
(0

.0
1
)

(P
ip
e
1
0
9
,
5
.0
)
-
(0

.5
,
1
.2
,
1
2
.3
)

T
S
+
C
D

3
0
0
.9

1
(
0
.0

0
)

0
.6
4
(0

.0
1
)
0
.6
4
(0

.0
1
)

0
.6
2
(0

.0
0
)

0
.6
4
(0

.0
1
)

0
.6
4
(0

.0
1
)

(P
ip
e
1
0
9
,
5
.1
)
-
(0

.6
,
1
.2
,
1
2
.4
)

T
S
+
C
D

4
5
0
.9

0
(
0
.0

1
)

0
.6
4
(0

.0
1
)
0
.6
3
(0

.0
1
)

0
.6
2
(0

.0
1
)

0
.6
2
(0

.1
5
)

0
.6
4
(0

.0
1
)

(P
ip
e
1
0
9
,
5
.1
)
-
(0

.6
,
1
.2
,
1
2
.4
)

T
S
+
C
D

6
0
0
.9

2
(
0
.0

0
)

0
.6
7
(0

.0
1
)
0
.7
0
(0

.0
1
)

0
.6
3
(0

.0
1
)

0
.6
5
(0

.0
3
)

0
.6
8
(0

.0
2
)

(P
ip
e
2
,
0
.6
)
-
(0

.6
,
1
.2
,
1
2
.4
)



General-Purpose AutoML for Transportation: A Case Study of Auto-sklearn 739

5 Results

This section presents the results obtained with the experimental set-up proposed
in the previous section. Table 2 shows the mean mGM values obtained by the
three execution times (ET) of Auto-sklearn (AutoS ET), the two voting ensem-
bles (MetaEns25 and MetaEn25-121) and the best pipeline in validation from the
meta-learning component (BestPipe Val). These mGM values were calculated
by carrying out five repetitions for each approach on every data-set. mGM val-
ues in bold indicate the best result achieved in every data-set. Besides, the last
column of Table 2 shows which is the winner approach in terms of performance
on each data-set.

In the cases wherein the best performing is obtained by the BestP ipe V al
approach, we indicate the following information: the first pair between brackets
indicates the ranking position of the winner pipeline according to the similarity
metric used by Auto-sklearn, and the difference between the value of this metric
and the one from the pipeline in the first position of the ranking, whereas in
the second tuple between brackets, the value of the metric for the pipelines in
positions 1, 25 and 121 (this information appears in the same order in the column
named “Winner” of Table 2). In this way, we can observe whether there is a
positive correlation between the ranking positions and the actual performance of
the pipelines. The assumption of Auto-sklearn is that pipelines closer to position
1 (distances near 0) are likely to perform better on the input data.

From Table 2, the following highlights can be extracted regarding the
behaviour of the methods AutoML methods compared. The BestPipe Val com-
ponent is by far the best performing approach when making traffic predictions.
Concretely, it is able to suggest the best pipeline in 33 out of 36 data-sets, per-
forming even better than the longer ET (120 min) of Auto-sklearn. However,
these results also show that the distance measure in which Auto-sklearn is based
it is not well correlated with performance as we explain below.

If we check carefully the winner pipelines in the last column of Table 2, only in
5 cases (data-sets: Fw TS+CD 5 - Type II, Ub T+CD 15 - Type I, Ub T+CD 15
- Type II, Ub T+CD 60 - Type II, Ub TS+CD 60 - Type II) the pipelines are
located in a position higher than 25. As it was stated in Sect. 2.1, this is the
default value that Auto-sklearn uses to recommend the 25 pipelines that are
more likely to perform well on the input data. Such recommendation is made
by the similarity metric that compares the meta-features of the input data-sets
against the meta-features stored in the meta-knowledge base. Considering such
comparison, the similarity metric chooses the best pipelines found in the off-line
Auto-sklearn’s phase for each of the 25 most similar data-sets w.r.t. the one at
hand. Based on results of Table 2, the meta-features used for the comparison
are not working properly and they are providing information to the similarity
metric that makes it leaving out competitive pipelines located beyond position
25. In conclusion, the majority of pipelines in the column winner of Table 2
are associated to data-sets, that with the current Auto-sklearn’s meta-features
comparison, are no being categorised as similar w.r.t the TF data-sets.



740 J. S. Angarita-Zapata et al.

T
a
b
le

3
.
E

x
ec

u
ti

o
n

ti
m

es
in

m
in

u
te

s
o
f
th

e
B

es
tP

ip
e

V
a
l
a
p
p
ro

a
ch

a
n
d

th
e

tw
o

w
ei

g
h
te

d
v
o
ti

n
g

en
se

m
b
le

s.
V

a
lu

es
in

b
o
ld

in
d
ic

a
te

s
a
n

ex
ec

u
ti

o
n

ti
m

e
th

a
t

is
b
et

w
ee

n
6
0

a
n
d

1
2
0

m
in

w
h
ic

h
a
re

th
e

tw
o

lo
n
g
er

ex
ec

u
ti

o
n

ti
m

es
o
f
A

u
to

-s
k
le

a
rn

T
y
p
e

D
a
ta

-s
e
ts

B
e
st
P
ip

e
V
a
l

M
e
ta

E
n
s2

5
M

e
ta

E
n
s2

5
-1

2
1

T
y
p
e

B
e
st
P
ip

e
V
a
l

M
e
ta

E
n
s2

5
M

e
ta

E
n
s2

5
-1

2
1

F
re

e
w
a
y

T
y
p
e
I

T
+
C
D

5
9

1
6

F
re

e
w
a
y

ty
p
e
II

9
1

5

T
+
C
D

1
5

9
0

2
5

7
6

8
0

1
7

5
2

T
+
C
D

3
0

8
6

2
6

7
7

8
3

1
8

4
5

T
+
C
D

4
5

8
2

1
0

8
1

9

T
+
C
D

6
0

8
1

1
0

8
1

6

T
S
+
C
D

5
3
3

4
2
2

1
2
9

2
5

2
2

T
S
+
C
D

1
5

3
8

4
2
3

3
1

8
2
3

T
S
+
C
D

3
0

3
6

7
3
0

3
5

5
3
8

T
S
+
C
D

4
5

3
9

7
2
3

3
7

6
2
8

T
S
+
C
D

6
0

4
0

7
2
2

3
7

5
5

U
rb

a
n

T
y
p
e
I

T
+
C
D

1
5

1
1

7
1
3

U
rb

a
n

ty
p
e
II

1
0

2
7

T
+
C
D

3
0

1
5

7
1
2

7
3

7

T
+
C
D

4
5

1
6

2
9

9
2

6

T
+
C
D

6
0

1
6

2
1
2

7
2

6

T
S
+
C
D

1
5

4
6

7
4
3

3
8

1
5

2
0

T
S
+
C
D

3
0

4
6

7
4
3

4
0

1
6

2
4

T
S
+
C
D

4
5

4
7

7
3
0

3
8

1
5

2
7

T
S
+
C
D

6
0

4
6

7
2
8

3
5

1
7

2
2



General-Purpose AutoML for Transportation: A Case Study of Auto-sklearn 741

For the default scenario in which Auto-sklearn uses its three components to
find competitive pipelines, longer ET are supposed to improve the final results
of predictions. However, the improvements only rank from 0.01 to 0.07, approx-
imately, in the best of the cases (e.g., Fw TS+CD 5 - Type I). This could be
due to the fact that the meta-learning component is suggesting low-performance
pipelines for the warm-start process of the optimisation component. Opposite to
this tendency are data-sets Fw TS +CD 15 - Type I, Fw T +CD 15 - Type II
and Ub TS + CD 15 - Type I wherein the best mGM value is found by an ET
shorter than 120m ET. We observed that this worsening is due to the over-fitting
produced by the hyperparameters tuning of Auto-sklearn on the recommended
pipelines. This result indicates that it is necessary to introduce mechanisms in
the hybrid search strategy of AutoML to deal with over-fitting, especially when
execution times of the optimisation are higher.

Regarding the performance of the two ensembles approaches based on
weighted-voting (MetaEns25 and MetaEns25-121), the results of MetaEns25-121
are quite similar w.r.t. the results obtained when the optimisation component
is taken into account. Concretely, in data-sets of freeway Types I-II and urban
Type II, the MetaEns25-121 is able to outperform Auto-sklearn in multiple cases.
In particular, in the data-sets Fw TS + CD 45 - Type II, Fw TS + CD 45 -
Type I and Fw TS+CD 5 - Type I the performance of MetaEns25-121 is better
than any of the Auto-sklearn’s ET. This can be explained because this latter
ensemble is built using already optimised pipelines located beyond position 25
of the ranking, and as it was stated before, in those positions are competitive
pipelines whose performance is boosted by the ensemble without the need of
doing optimisation. For the case of MetaEns25, its performance is lower than
MetaEns25-121 and the three ET of Auto-sklearn. However, it is interesting to
note that these ensembles are not better than the best pipeline suggested via
meta-learning; in this sense, it would be interesting to explore why the ensembles
obtains a performance worse than the best pipeline in isolation.

As the computational cost is a key factor in AutoML, Table 3 shows the
execution times in minutes that the BestPipe Val and the two meta-ensembles
took to make predictions on every data-set. As can be seen, in the majority of
the cases, the three approaches spent less than 60 min, which is the second longer
ET of Auto-sklearn.

Finally, additional results that are observed regardless of what approach is
the one with the highest mGM values are discussed below. In the cases of data-
sets freeway Types I-II and urban Type I, as the time horizon of predictions
increases, the performance of all approaches decreases. For these data-sets, the
ones that have a time horizon of five minutes are the TF problems in which
the six approaches perform better. Besides, in data-sets Fw TS + CD 30 and
Fw TS + CD 60, most of them have problems predicting the minorities classes
and therefore their mGM values in these cases are equal to zero.

Regarding urban data-set of Type I with only temporal traffic data (T), the
three ET of Auto-sklearn and the two ensembles have the lowest performance.
This is due to the fact that these data-sets have the highest IRs (IR(A/B) = 1.12



742 J. S. Angarita-Zapata et al.

IR(A/C) = 12.04). This demonstrates that Auto-sklearn does not incorporate
in its inner structure mechanisms to deal with high imbalanced classification
data-sets. Meanwhile, in the case of urban data-sets of Type I with spatial and
temporal data (TS) and all urban data-sets of Type II, the performance of the
six approaches is quite acceptable and homogeneous across them. This behaviour
can be argued as these 12 data-sets are the most balanced of the 36 data-sets
(IR(B/A) = 2.40, IR(B/C) = 4.98; IR(A/B) = 1.02, IR(B/A) = 1.39).

6 Conclusions

In this paper, we studied the benefits in terms of performance and computational
cost of hybrid AutoML for TF. We use Auto-sklearn, a state-of-the-art hybrid
AutoML method whose search strategy of pipelines uses bayesian optimisation,
meta-learning and ensemble learning. We focused on how well Auto-sklearn is
able to recommend competitive ML pipelines to forecast traffic, modelled as a
multi-class imbalanced classification problem, along different time horizons in
urban and freeway environments.

From the results, we drew interesting conclusions. A simple approach based
on estimating the best pipeline from Auto-sklearn’s meta-learning component
is able to suggest competitive pipelines that perform better than the results
obtained by the three ET of Auto-sklearn considered and the two weighted-
voting ensembles. However, these winner pipelines usually were not included in
the 25 suggestions done by default by the Auto-sklearn’s meta-learning compo-
nent. Instead, they were located in lower positions, which could lead to thinking
that the meta-features and the similarity metric in charge of recommending
pipelines are not performing as expected for these data-sets. As a result, the
ranking positions are not directly related to the performance that the pipelines
could have on the TF data-sets.

Another interesting conclusion is that the optimisation component is not
adding too much to the final mGM values. Higher execution times for Auto-
sklearn not always lead to better results as we can expect; this was also corrob-
orated by previous research that approached the use of Auto-WEKA (another
AutoML method) for TF [1,2]. In spite of this, the performance of the optimisa-
tion process could be improved if the ranking recommended by the meta-learning
component was re-organized using the validation error of these pipelines on the
input data. Thus, the optimisation would only be fed by pipelines that already
are corroborated for having high performance on the data-set at hand. How-
ever, caution needs to be taken to check the computational cost consumed when
calculating the validation error of the 121 pipelines in the meta-knowledge base.

Further research lines that we aim to explore in the future are: I) improving
the synergy between meta-learning and ensemble learning; II) determining the
TF problems in which the optimisation is strictly necessary to improve the results
obtained via meta-learning.



General-Purpose AutoML for Transportation: A Case Study of Auto-sklearn 743

Acknowledgments. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the grant agreement No.
815069 and the Marie Sklodoska-Curie grant agreement No. 665959.

References

1. Angarita-Zapata, J.S., Masegosa, A.D., Triguero, I.: Evaluating automated
machine learning on supervised regression traffic forecasting problems. In: Llanes
Santiago, O., Cruz Corona, C., Silva Neto, A.J., Verdegay, J.L. (eds.) Computa-
tional Intelligence in Emerging Technologies for Engineering Applications. SCI,
vol. 872, pp. 187–204. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
34409-2 11

2. Angarita-Zapata, J.S., Triguero, I., Masegosa, A.D.: A preliminary study on auto-
matic algorithm selection for short-term traffic forecasting. In: Del Ser, J., Osaba,
E., Bilbao, M.N., Sanchez-Medina, J.J., Vecchio, M., Yang, X.-S. (eds.) IDC 2018.
SCI, vol. 798, pp. 204–214. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-99626-4 18

3. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.:
Efficient and robust automated machine learning. In: Cortes, C., Lawrence, N.D.,
Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Pro-
cessing Systems, pp. 2962–2970. Curran Associates, Inc. (2015)

4. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3 40

5. Hutter, F., Kotthoff, L., Vanschoren, J. (eds.): Automated Machine Learning:
Methods, Systems, Challenges. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-05318-5

6. Kerschke, P., Hoos, H., Neumann, F., Trautmann, H.: Automated algorithm selec-
tion: survey and perspectives. CoRR (2018)

7. Lemke, C., Budka, M., Gabrys, B.: Metalearning: a survey of trends and technolo-
gies. Artif. Intell. Rev. 44(1), 117–130 (2013). https://doi.org/10.1007/s10462-013-
9406-y

8. Luo, G.: A review of automatic selection methods for machine learning algorithms
and hyper-parameter values. Netw. Model. Anal. Health Inform. Bioinform. 5(1),
18 (2016). https://doi.org/10.1007/s13721-016-0125-6

9. Mohr, F., Wever, M., Hüllermeier, E.: ML-Plan: automated machine learning via
hierarchical planning. Mach. Learn. 107(8), 1495–1515 (2018). https://doi.org/10.
1007/s10994-018-5735-z

10. Olson, R.S., Bartley, N., Urbanowicz, R.J., Moore, J.H.: Evaluation of a tree-
based pipeline optimization tool for automating data science. In: Proceedings of
the Genetic and Evolutionary Computation Conference 2016, pp. 485–492 (2016)

11. Skycomp, I.B.M.: Major High- way Performance Ratings and Bottleneck Inventory.
Maryland State Highway Administration, the Baltimore Metropolitan Council and
Maryland Transportation Authority, State of Maryland (2009)

12. Swearingen, T., Drevo, W., Cyphers, B., Cuesta-Infante, A., Ross, A., Veeramacha-
neni, K.: ATM: a distributed, collaborative, scalable system for automated machine
learning. In: 2017 IEEE International Conference on Big Data, pp. 151–162 (2017)

https://doi.org/10.1007/978-3-030-34409-2_11
https://doi.org/10.1007/978-3-030-34409-2_11
https://doi.org/10.1007/978-3-319-99626-4_18
https://doi.org/10.1007/978-3-319-99626-4_18
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1007/s10462-013-9406-y
https://doi.org/10.1007/s10462-013-9406-y
https://doi.org/10.1007/s13721-016-0125-6
https://doi.org/10.1007/s10994-018-5735-z
https://doi.org/10.1007/s10994-018-5735-z


744 J. S. Angarita-Zapata et al.

13. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA. In: Pro-
ceedings of the 19th International Conference on Knowledge Discovery and Data
Mining, pp. 847–855 (2013)

14. Vanschoren, J.: Meta-learning: a survey. arXiv preprint arXiv:1810.03548 (2018)
15. Vlahogianni, E.I.: Optimization of traffic forecasting: intelligent surro-

gate modeling. Transp. Res. Part C Emerg. Technol. 55, 14–23 (2015).
http://www.sciencedirect.com/science/article/pii/S0968090X15000959. Engineer-
ing and Applied Sciences Optimization (OPT-i) - Professor Matthew G. Karlaftis
Memorial Issue

16. Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C.: Short-term traffic forecasting:
where we are and where we’re going. Transp. Res. Part C: Emerg. Technol. 43,
3–19 (2014)

17. Yao, Q., et al.: Taking human out of learning applications: a survey on automated
machine learning. CoRR (2018)

18. Zöller, M.A., Huber, M.F.: Survey on automated machine learning. CoRR (2019)

http://arxiv.org/abs/1810.03548
http://www.sciencedirect.com/science/article/pii/S0968090X15000959

	General-Purpose Automated Machine Learning for Transportation: A Case Study of Auto-sklearn for Traffic Forecasting
	1 Introduction
	2 Background
	2.1 Automated Machine Learning
	2.2 Auto-sklearn

	3 Related Work
	4 Methodology
	4.1 Data-Sets
	4.2 Experimental Set-Up

	5 Results
	6 Conclusions
	References




