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Abstract. In many situations, classifiers predict a set of states of a class
variable because there is no information enough to point only one state.
In the data mining area, this task is known as Imprecise Classification.
Decision Trees that use imprecise probabilities, also known as Credal
Decision Trees (CDTs), have been adapted to this field. The adaptation
proposed so far uses the Imprecise Dirichlet Model (IDM), a mathemati-
cal model of imprecise probabilities that assumes prior knowledge about
the data, depending strongly on a hyperparameter. This strong depen-
dence is solved with the Non-Parametric Predictive Inference Model
(NPI-M), also based on imprecise probabilities. This model does not
make any prior assumption of the data and does not have parameters.
In this work, we propose a new adaptation of CDTs to Imprecise Classi-
fication based on the NPI-M. An experimental study carried out in this
research shows that the adaptation with NPI-M has an equivalent per-
formance than the one obtained with the adaptation based on the IDM
with the best choice of the hyperparameter. Consequently, since the NPI-
M is a non-parametric approach, it is concluded that the NPI-M is more
appropriated than the IDM to be applied to the adaptation of CDTs to
Imprecise Classification.

Keywords: Imprecise classification · Credal decision trees · IDM ·
NPI-M · Imprece probabilities

1 Introduction

Supervised classification [15] aims to predict the value of a class variable associ-
ated with an instance, described by a set of features or attributes. This prediction
usually consists of a single value.

However, in many cases, there is no information available enough to point
only one state of the class variable. In these cases, it is more informative that
the classifier predicts a set of values of the class variable, which is known as an
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imprecise prediction. Classifiers that make this type of predictions are known as
imprecise classifiers.

When it is used an imprecise classifier, a set of class values might be obtained.
It is composed of those states for which there is no another “better” one accord-
ing to a criterion, which is called dominance criterion. The set of predicted states
of the class variable is known as the set of non-dominated states.

In order to build an imprecise classifier, it is more suitable to apply models
based on imprecise probabilities, instead of the ones that use the classical proba-
bility theory. In the literature, there are many mathematical theories associated
with imprecise probabilities, such as belief functions, closed and convex sets of
probability distributions (also called credal sets), probability intervals, etc [16].

In the literature, few methods for imprecise classification have been devel-
oped. The first one of them was the Naive Credal Classifier (NCC) [10,24]. It
uses the Imprecise Dirichlet Model (IDM) [22], a mathematical model of impre-
cise probabilities that makes statistical inferences from multinomial data, and
the Naive Bayes assumption (all the attributes are independent given the class
variable) to produce an imprecise classification.

In [4], it is proposed a new adaptation of the Credal Decision Trees (CDTs)
[5], very simple and interpretable models, to Imprecise Classification. It is called
Imprecise Credal Decision Tree (ICDT). In that work, it is shown, via an exper-
imental analysis, that ICDT is a more informative method than NCC since it is
more precise. In this work, we focus on the ICDT algorithm.

The ICDT proposed so far is based on the IDM. This model satisfies several
principles which have been claimed to be desirable for inference, such as the
representation invariance principle [22]. According to it, inferences on future
events should be independent of the arrangement and labeling of the sample
space. Nevertheless, IDM assumes previous knowledge about the data through
a single hyperparameter s [22]. It is not a very desirable property because these
assumptions are not always realistic.

For the previous reason, a Non Parametric model for Predictive Inference
(NPI-M) was proposed in [8]. This model does not make any prior assumptions
about the data. In addition, NPI-M is a nonparametric approach.

Both IDM and NPI-M have been applied to Decision Trees (DT) for precise
classification in the literature [6,18,19]. When the IDM is applied to DTs, it has
been shown that the performance has a strong dependence on the s parameter
[19]. In [6], the NPI-M is shown to have always an equivalent performance to
IDM with the standard s value when both models are applied to DTs.

For the previous reasons, in this work, we propose a new adaptation of CDTs
to Imprecise Classification based on the NPI-M. It is called Imprecise Credal
Decision Tree NPI (ICDT-NPI). It is similar to the already existing adaptation,
but our proposed one is based on the NPI-M, instead of the IDM.

An extensive experimental research is carried out in this work. In it, we use
the ICDT-NPI algorithm and the ICDT with different values of the s parameter
for the IDM. This experimentation shows that, as in precise classification, the
NPI-M provides equivalent results to the IDM with the best choice of the s
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hyperparameter when both models are applied to the adaptation of CDTs to
Imprecise Classification.

This paper is arranged as follows: The Imprecise Dirichlet Model and the
Non-Parametric Predictive Inference Model are explained in Sects. 2 and 3,
respectively. Section 4 describes the dominance criteria for Imprecise Classifi-
cation used in this research. The adaptation of the Credal Decision Trees to
Imprecise Classification is exposed in Sect. 5. Section 6 describes the main evalu-
ation metrics that are used in imprecise classification. In Sect. 7, the experimental
analysis is detailed. Conclusions are given in Sect. 8.

2 The Imprecise Dirichlet Model

Let us suppose that we have a dataset D with N instances. Let X be an attribute
that takes values in {x1, · · · , xt}.

The Imprecise Dirichlet Model (IDM) [22] is subsumed into the probability
intervals theory [11]. According to this model, the variable X takes each one of
its possible values xi, 1 ≤ i ≤ t with a probability that belongs to the following
interval:

Ii =
{[

ni

N + s
,
ni + s

N + s

]}
,∀i = 1, 2, . . . , t, (1)

being ni the number of instances in D for which X = xi, ∀i = 1, 2, . . . , t and
s > 0 a given parameter of the model.

As it is shown in [1], this set of probability intervals is reachable and gives
rise to the following closed and convex set of probability distributions, also called
credal set:

PD(X) =

{
p |

t∑
i=1

p(xi) = 1, p(xi) ∈ Ii, ∀i = 1, 2, . . . , t

}
. (2)

A crucial issue is the selection of the s hyperparameter. It is easy to observe
that, if the s value is higher, then the intervals are wider. This parameter deter-
mines the speed of convergence of lower and upper probabilities as the size of
the training set is larger. In [22], the values s = 1 and s = 2 are proposed.

3 Non-parametric Predictive Inference Model

Let X be a discrete variable whose set of possible values is {x1, · · · , xT }. Let
us suppose that there is a sample of N independent and identically distributed
outcomes of X. Let ni be the number of observations for which X = xi, ∀i =
1, 2, . . . , T . Let us assume that the first t observations have been observed, where
1 ≤ t ≤ T , which implies that ni > 0, ∀i = 1, 2, · · · , t and ni = 0, ∀i =
t + 1, · · · , T . Clearly,

∑t
i=1 ni = N .

The Non-Parametric Predictive Inference Model (NPI-M) [8,9] utilizes a
probability wheel representation of the data. On it, it is used a line from the
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center of the wheel to its boundary to represent each one of the observations.
The wheel is partitioned into N slices with the same size. Each possible value
can be represented only by a single sector of the wheel. This implies that two
or more lines representing the same category must always be positioned next to
each other on the wheel. The NPI-M is based on the circular A(n) assumption
[9]. According to it, the probability that the next observation falls into any given
slice is 1

N . Thus, it must be decided which value of the X variable represents.
If two lines that represent the same category border to a slice, that slice must
be assigned to this value. Nevertheless, when a slice is bordered by two lines
that represent different values, it can be assigned to one of the two categories
associated with the slice’s bordering lines, or to any value that has not been
observed yet.

Let A ⊆ {x1, x2, . . . , xT } be a subset of the set of possible values of the X
variable. Let us denote nA =

∑
xi∈A ni the number of outcomes of X for which

its value belongs to A and rA = |{xi ∈ A | ni > 0, 1 ≤ i ≤ t}| the number of
possible values in A that have been already observed.

In order to determine the lower and upper probabilities of A, NPI-M con-
siders all the possible configurations of the wheel. The difference between both
probabilities is due to the non-observed categories. In [3], it is shown that the
lower and upper probabilities of A are obtained as follows:

P∗(A) =
nA − min(rA,

∣∣A∣∣)
N

, P ∗(A) =
nA + min(|A| , t − rA)

N
. (3)

As it can be seen, for singletons, {xi}, 1 ≤ i ≤ T , the lower and upper
probabilities are given by:

P∗ ({xi}) = max
(

ni − 1
N

, 0
)

, P ∗ ({xi}) = min
(

ni + 1
N

, 1
)

.

Hence, it is disposed of the following set of probability intervals for singletons:

I =
{

[li, ui] , li = max
(

ni − 1
N

, 0
)

, ui = min
(

ni + 1
N

, 1
)

, ∀i = 1, . . . , T

}
.

According to [11], this set of probability intervals corresponds to the following
credal set:

P(I) = {p ∈ P(X) | p(xi) ∈ [li, ui] , ∀i = 1, 2 . . . , T} . (4)

being P(X) the set of all probability distributions on the X variable, li =
max

(
ni−1
N , 0

)
, and ui = min

(
ni+1
N , 1

)
, ∀i = 1, 2, . . . , T .

In [3], it was proved that the lower and upper probabilities associated with
P(I) coincide with the lower and upper probabilities given by (3). Therefore,
the lower and upper probabilities corresponding to the NPI-M can be extracted
via the lower and upper probabilities for singletons, which produce a set of
probability intervals, and, consequently, a credal set. Nevertheless, in [3], it is
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shown that, in this set, there are probability distributions that are not compatible
with the NPI-M.

If we consider all the probability distributions belonging to P(I), it is
obtained an approximated model, called Approximate Non-Parametric Predic-
tive Inference Model (A-NPI-M) [3]. It utilizes the convex hull of the set of
probability distributions compatible with the NPI-M. In this way, when the A-
NPI-M is used, a set of difficult constraints is avoided and the exact model is
simplified. In [3], it is shown that NPI-M and A-NPI-M have a similar behav-
ior when both models are applied to CDTs. For these reasons, in this work, we
consider the A-NPI-M.

4 Dominance Criteria in Imprecise Classification

In Imprecise Classification, it is used a dominance criterion to select the states
of the class variable that are not “defeated” under that criterion by another. In
order to do it, if we have a set of probability intervals, as in this research, we
can use the bounds of the intervals.

Let ci and cj be two possible values of the class variable C. Two dominance
criteria very used are the following:

1. Let [li, ui] and [lj , uj ] be the probability intervals on how ci and cj happen,
respectively. It is said that there is stochastic dominance or strong dominance
of ci on cj if, and only if, li ≥ uj .

2. Let suppose now that the probability of the class variable C is expressed by
a non-empty credal set P. It is said that there is credal dominance of ci on
cj iff p(C = ci) ≥ p(C = cj), for all probability distribution p ∈ P.

Credal dominance is a more significant criterion than stochastic dominance
[24]. However, it is usually more difficult to verify. Under the IDM and the A-
NPI-M, both dominance criteria are equivalent [2]. Hence, with both IDM and
A-NPI-M, if we check that one state dominates stochastically to another, then
we know that there is credal dominance of the first state on the second one.
Therefore, with IDM, as well as with A-NPI-M, it is just necessary to consider
the extreme values of the intervals to know the cases of credal dominance among
the possible states of C.

5 Credal Decision Trees for Imprecise Classification

The adaptation of Credal Decision Tree algorithm (CDT) [5] to Imprecise Clas-
sification (ICDT) was proposed in [4]. It is called Imprecise Credal Decision Tree
algorithm (ICDT).

As in CDTs, in ICDT, each node corresponds to an attribute or feature
variable and there is a branch for each possible value of that attribute. When
entering a feature in a node does not provide more information about the class
variable according to a criterion, a terminal or leaf node is reached. Unlike in
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precise classification, where this leaf node is labeled with the most probable class
value, in ICDTs, the leafs nodes are empty. When a new example is required to
be classified, it is made a path from the root to a terminal node using the values
of its attributes. Whereas in precise classification the most probable class value
in that leaf node is assigned, in ICDTs, for each value of the class variable, it is
obtained a probability interval.

The most important issue of the building process of the ICDT is the split
criterion, i.e, the criterion utilized to select the attribute to split in each node.
In ICDT, the split criterion is the same as the one used in CDT.

Let us suppose that D is a partition of the training set in a certain node.
Let C be the class variable and let us suppose that {c1, . . . , ck} are its possible
values. Let X be an attribute variable and let {x1, x2, . . . , xt} be its possible
values. Let us assume that PD(C) is the credal set on D associated with C
corresponding to a model based on probability intervals1 .

The split criterion utilized in the ICDT algorithm utilizes the maximum of
the Shannon entropy [21] on PD(C):

H∗(PD(C)) = max
{
H(p) | p ∈ PD(C)

}
(5)

being H the Shannon entropy.
The maximum of entropy is a well-established measure on credal sets that

satisfies good properties and behavior [16].
Hence, the split criterion used in ICDT is the Imprecise Information Gain

(IIG) [5]. It is defined as follows:

IIG(C,X) = H∗(PD(C)) −
t∑

i=1

PD(X = xi)H∗(PD(C | X = xi)), (6)

where PD(X) is the maximum of entropy on the credal set corresponding to the
X attribute and H∗(PD(C | X = xi)) is the maximum of the entropy on the
credal set associated with the C variable and with the partition of D composed
by the instances of D that verify that X = xi.

The main difference among the CDT and ICDT algorithms resides in the
criterion utilized to classify an instance once a terminal node is reached. The
CDT algorithm assigns the most frequent class value in that leaf. Nevertheless,
the ICDT algorithm assigns a probability interval to each one of the possible
values of the class variable using the relative frequencies in the leaf node and
a model based on probability intervals. Then, a dominance criterion is used to
obtain the set of non-dominated states. In this research, the models considered
are the IDM and the A-NPI-M. Thus, since with these models stochastic and
credal dominance are equivalent and the first one is much easier to verify, we
use the stochastic dominance in this work.

The procedure to classify a new instance in the ICDT algorithm can be
summarized in Fig. 1.

1 In this work we will consider the A-NPI-M, unlike in [4], where the IDM is employed.
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Procedure Classify Instance ICDT(Built Tree T , new instance x)

1. Apply x in T to reach a leaf node.
2. Obtain the probability intervals in this terminal node for x, based on relative
frequencies using a model based on imprecise probabilities:

{[li, ui] , i = 1, · · · , k}.

3. Apply a dominance criterion to the above intervals to get a set of
non-dominated states for x: {ci1 , ci2 , · · · , cir}, with r ≤ k.

Fig. 1. Classification of a new instance in ICDT algorithm.

In this research, we compare the use of the A-NPI-M for the credal sets
associated with the class variable, in the building process of the ICDT algorithm
and to obtain the probability intervals for the class values in the terminal nodes,
with the use of the IDM with different values of the s parameter.

6 Evaluation Metrics in Imprecise Classification

An evaluation measure for Imprecise Classification should take into consideration
two points. The first one of them is if the prediction is right, i.e if the real class
value is among the predicted ones. The second point is how informative is the
predicted set of states, which is measured by its cardinality.

Several metrics only focus on one of the issues commented above, such as:

– Determinacy: It is the proportion of instances for which the classifier returns
a single class value.

– Single Accuracy: It consists of the accuracy between the instances for which
there is just one predicted state.

– Set Accuracy: It measures, on the instances for which there is more than
one predicted state, the proportion of them for which its real state is among
the predicted ones.

– Indeterminacy Size: It is the average size of the predicted states set.

As it can be observed, none of these metrics is suitable to measure the whole
performance of an imprecise classifier.

In [10], it was proposed a measure to provide a global evaluation of an impre-
cise classifier, called Discounted Accuracy measure (DACC), defined as:

DACC =
1

NTest

NTest∑
i=1

(correct)i
|Ui| , (7)
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where NTest is the number of instances of the test set; Ui is the predicted states
set for the i-th instance; |Ui| its cardinality; (correct)i is equal to 1 if Ui contains
the real class value and 0 otherwise, ∀i = 1, 2, . . . , n.

We shall denote k the number of class values.
It can be observed that DACC is an accuracy measure: it does not add any

value for the erroneous predictions and, for the correct ones, the added value
is “penalized” by the number of predicted states. The optimal value of DACC
is 1. It is achieved when there is always a single predicted state and all the
predictions are right. If the classifier always predicts all the possible values of
the class variable, the value of DACC is 1

k . This value should be lower because
in this case, the classifier is not informative.

In [4], a new metric for imprecise classification, MIC, was proposed. It penal-
izes the errors in a strict sense. When there is a correct prediction for an instance,
MIC adds a value that depends on |Ui|

k . If the prediction for an instance is incor-
rect, MIC adds a constant value, which depends on k. More specifically, MIC is
defined as follows:

MIC =
1

NTest

( ∑
i:Success

log
|Ui|
k

+
1

k − 1

∑
i:Error

log k

)
(8)

As can be seen, the optimal value of MIC is log k. It is reached when, for all
the instances, only the real class value is predicted. Besides, when a classifier
always returns as predicted states all the possible ones, i.e, when |Ui| = k,
∀i = 1, . . . , NTest, the value of MIC is equal to 0. It makes sense because, in
this case, the classifier does not give any information.

7 Experimentation

7.1 Experimental Settings

Remark that, in this experimentation, the aim is to compare the use of the A-
NPI-M versus the IDM in the ICDT algorithm, in the building process and for
the selection of non-dominated states. For the reasons explained in Sect. 5, the
stochastic dominance criterion is used. For evaluation, we use the DACC and
MIC measures, as in [4].

Within this Section, we call ICDT-IDM to the Imprecise Decision Tree with
the IDM and ICDT-NPI to the Imprecise Decision Tree with the A-NPI-M.

To compare the performance between both algorithms, as in the experi-
mentation carried out in [4], 34 known datasets have been used. They can be
downloaded from the UCI Machine Learning repository [17]. These datasets are
diverse concerning the size of the set, the number of continuous and discrete
attributes, the number of values per variable, the number of class values, etc.
The most relevant characteristics of each dataset can be seen in Table 1.

As it was done in [4], in each dataset, missing values have been replaced
with the mean value for continuous variables and with modal values for dis-
crete attributes. After that, in each database, continuous attributes have been
discretized using the Fayyad and Irani’s discretization method [13].
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Table 1. Data set description. Column “N” is the number of instances in the data
sets, column “Feat” is the number of features or attribute variables, column “Num” is
the number of numerical variables, column “Nom” is the number of nominal variables,
column “k” is the number of cases or states of the class variable (always a nominal
variable) and column “Range” is the range of states of the nominal variables of each
data set.

Data set N Feat Num Nom k Range

anneal 898 38 6 32 6 2–10

arrhythmia 452 279 206 73 16 2

audiology 226 69 0 69 24 2–6

autos 205 25 15 10 7 2–22

balance-scale 625 4 4 0 3 –

car 1728 6 0 6 4 3–4

cmc 1473 9 2 7 3 2–4

dermatology 366 34 1 33 6 2–4

ecoli 366 7 7 0 7 –

flags 194 30 2 28 8 2–13

hypothyroid 3772 30 7 23 4 2–4

iris 150 4 4 0 3 –

letter 20000 16 16 0 26 –

lymphography 146 18 3 15 4 2–8

mfeat-pixel 2000 240 0 240 10 4–6

nursery 12960 8 0 8 4 2–4

optdigits 5620 64 64 0 10 –

page-blocks 5473 10 10 0 5 –

pendigits 10992 16 16 0 10 –

postop-patient-data 90 9 0 9 3 2–4

primary-tumor 339 17 0 17 21 2–3

segment 2310 19 16 0 7 –

soybean 683 35 0 35 19 2–7

spectrometer 531 101 100 1 48 4

splice 3190 60 0 60 3 4–6

sponge 76 44 0 44 3 2–9

tae 151 5 3 2 3 2

vehicle 946 18 18 0 4 –

vowel 990 11 10 1 11 2

waveform 5000 40 40 0 3 –

wine 178 13 13 0 3 –

zoo 101 16 1 16 7 2
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We have used the Weka software [23] for this experimentation. We have
started from the implementation of the ICDT-IDM algorithm given in this soft-
ware and we have added the necessary methods to use the ICDT-NPI. For ICDT-
IDM, three values of the s parameter have been used: s = 1, s = 2 and s = 3.
The rest of the parameters used in both algorithms have been the ones given by
default in Weka. This software has been also used for the preprocessing steps
described above. We denote ICDT-IDMi to ICDT-IDM with s = i, for i = 1, 2, 3.

For each dataset, a 10-fold cross-validation procedure has been repeated 10
times.

For statistical comparisons, consistently with [12], we have used the following
tests to compare more than two classifiers on a large number of datasets with a
level of significance of α = 0.05:

– Friedman test [14]: A non-parametric test that ranks the algorithms sepa-
rately for each dataset (the best performing algorithm is assigned to the rank
1, the second-best, rank 2, and so on). The null hypothesis of the Friedman
test is that all the algorithms have equivalent performance.

– When the null hypothesis of the Friedman test is rejected, all the algorithms
are compared to each other by using the Nemenyi test [20].

For the statistical tests, the Keel software [7] has been used.

7.2 Results and Discussion

Tables 2 and 3 show, respectively, the main results corresponding to DACC and
MIC measures. Specifically, these tables allow us to see the average values, the
Friedman ranks, and the pairs of algorithms for which there are significant dif-
ferences according to Nemenyi pos-hoc. We do not show the complete results
here due to the limitations of space, they can be found in http://flanagan.ugr.
es/IPMU2020.html.

Table 2. Summary of the results for the DACC measure. Column “Nemenyi” shows
the algorithms in which the algorithm in the row performs significantly better according
to the Nemenyi test.

Algorithm Average Friedman rank Nemenyi

ICDT-NPI 0.7675 1.9118 ICDT-IDM3

ICDT-IDM1 0.7763 2.3382 ICDT-IDM3

ICDT-IDM2 0.7606 2.4853 –

ICDT-IDM3 0.7482 3.2647 –

As it can be observed, for both DACC and MIC metrics, the best average
value is obtained by ICDT-IDM1, followed by ICDT-NPI, ICDT-IDM2, and

http://flanagan.ugr.es/IPMU2020.html
http://flanagan.ugr.es/IPMU2020.html
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Table 3. Summary of the results for the MIC measure. Column “Nemenyi” shows the
algorithms in which the algorithm in the row performs significantly better according
to the Nemenyi test.

Algorithm Average Friedman rank Nemenyi

ICDT-NPI 1.3414 1.9706 ICDT-IDM3

ICDT-IDM1 1.3652 2.4412 –

ICDT-IDM2 1.3334 2.5 –

ICDT-IDM3 1.3065 3.0882 –

ICDT-IDM3. In addition, for both evaluation measures, the ICDT-NPI algo-
rithm obtains the best rank according to the Friedman test. Regarding ICDT-
IDM, the higher is the value of the s parameter, the higher is the rank. The
results of the Nemenyi post-hoc allow us to observe that the results obtained by
ICDT-NPI are significantly better than the ones obtained by ICDT-IDM with
the worst s value (s = 3) for both MIC and DACC metrics. Also, for DACC,
ICDT-IDM with s = 1 performs significantly better than ICDT-IDM with s = 3.
For both evaluation metrics, ICDT-NPI, ICDT-IDM1, and ICDT-IDM2 have an
equivalent performance.

Hence, the performance of the ICDT-IDM algorithm depends on the choice
of the s hyperparameter. Regarding ICDT-NPI, the results obtained for this
algorithm are statistically equivalent to the ones obtained by ICDT-IDM with
the best s parameter. Furthermore, ICDT-NPI performs significantly better than
ICDT-IDM with the worst value of the s hyperparameter.

For a deeper analysis, Table 4 shows the average values of Determinacy, Single
Accuracy, Set Accuracy and Indeterminacy size for each algorithm.

Table 4. Average results obtained for basic metrics by each algorithm. Best scores are
marked in bold.

Algorithm Determinacy Single accuracy Set accuracy Indeterminacy size

ICDT-NPI 0.9002 0.8237 0.9561 7.9381

ICDT-IDM1 0.9477 0.8023 0.8844 5.2955

ICDT-IDM2 0.8985 0.8119 0.9168 5.9313

ICDT-IDM3 0.8666 0.8151 0.9218 6.1346

Firstly, ICDT-IDM1 achieves the highest average Determinacy. It means that
the highest number of instances for which only one state is predicted is obtained
with ICDT-IDM1. NPI-M obtains the second-highest value in Determinacy, fol-
lowed by ICDT-IDM2 and ICDT-IDM3 for all the noise levels.

However, for the accuracy among the instances for which it is predicted just
a state of the class variable (Single Accuracy), ICDT-IDM obtains the worst
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performance with s = 1. In the ICDT-IDM algorithm, the higher is the value
of the s parameter, the better is the performance in Single Accuracy. The best
Single Accuracy is obtained with ICDT-NPI.

Regarding Set Accuracy, which measures the average number of instances for
which the real class value is between the predicted ones, the results are similar to
the ones obtained in Single Accuracy: ICDT-IDM performs better as the value
of the s parameter is higher and ICDT-NPI outperforms ICDT-IDM with the
three s values considered.

The lowest value of the Indeterminacy size, which measures the average size
of the non-dominated states, is achieved with ICDT-IDM1. Moreover, the lower
is the s value for ICDT-IDM, the lower is the indeterminacy size. The highest
average number of non-dominated states is obtained with ICDT-NPI.

Therefore, with ICDT-NPI, it is attained the best trade-off between pre-
dicting only one state and making correct predictions. This algorithm obtains
the second-highest score in Determinacy and the best one in Single Accuracy,
whereas ICDT-IDM1, which achieves the highest Determinacy, obtains the worst
results in Single Accuracy. Besides, when there is more than one predicted state,
in the ICDT algorithm, the size of the predicted states sets is larger as the value
if the s value is higher and the largest set is obtained with the ICDT-NPI algo-
rithm. Nevertheless, ICDT-NPI obtains the highest percentage of instances for
which the real class value is predicted and, in the ICDT-IDM algorithm, this
percentage is lower as the value of the s parameter is higher.

Summary of the Results: The ICDT-IDM algorithm predicts the real class
value more frequently as long as the value of the s parameter is higher. However,
if the s value is higher, then the predictions made by ICDT-IDM are less infor-
mative in the sense that the size of the predicted class values set is larger. With
ICDT-NPI, although the size of the predicted states set is, on average, larger
than with ICDT-IDM, it is achieved the best trade-off between predicting fewer
states of the class variable and making correct predictions.

The results obtained with DACC and MIC measures allow us to deduce that
ICDT-NPI performs equivalently to ICDT-IDM with the best choice of the s
parameter. Moreover, the results obtained by ICDT-NPI are significantly better
than the ones obtained by ICDT-IDM with the worst s value. Consequently, the
NPI-M is more suitable to be applied to the adaptation of CDTs to Imprecise
Classification, since the NPI-M is free of parameters.

8 Conclusions

In this work, we have dealt with the problem of Imprecise Classification. Specif-
ically, we have considered the adaptation of the Credal Decision Trees, Decision
Trees that use imprecise probabilities, to this field.
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The adaptation of Credal Decision Trees to Imprecise Classification proposed
so far was based on the Imprecise Dirichlet Model, a model based on imprecise
probabilities that assumes prior knowledge about the data through a hyperpa-
rameter s. For this reason, in this research, a new adaptation of Credal Decision
Trees to Imprecise Classification based on the Non-Parametric Predictive Infer-
ence Model has been presented. This model, which is also based on imprecise
probabilities, solves the main drawback of the Imprecise Dirichlet Model: it does
not make any prior assumption about the data; it is a non-parametric approach.

An experimental research carried out in this work has shown that the new
adaptation of Credal Decision Trees to Imprecise Classification based on the
Non-Parametric Predictive Inference Model has equivalent performance to the
Imprecise Credal Decision Tree based on the Imprecise Dirichlet Model with the
best s value. The results obtained by Imprecise Credal Decision Tree with Non-
Parametric Predictive Inference Model are also significantly better than the ones
obtained by Imprecise Credal Decision Tree with the Imprecise Dirichlet Model
with the worst s value. Although with the Non-Parametric Predictive Inference
Model the set of predicted class values is larger than with the Imprecise Dirichlet
Model, with the first model it is achieved a better trade-off between making
correct predictions and predicting fewer states of the class variable.

Therefore, taking into account that the Non-Parametric Predictive Inference
Model is free of parameters, it can be concluded that this model is more suitable
to be applied to the adaptations of Credal Decision Trees to Imprecise Classifi-
cation than the Imprecise Dirichlet Model.
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