
A Bidirectional Subsethood Based
Fuzzy Measure for Aggregation

of Interval-Valued Data

Shaily Kabir(B) and Christian Wagner

School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK
{shaily.kabir,christian.wagner}@nottingham.ac.uk

Abstract. Recent advances in the literature have leveraged the fuzzy
integral (FI), a powerful multi-source aggregation operator, where a fuzzy
measure (FM) is used to capture the worth of all combinations of sub-
sets of sources. While in most applications, the FM is defined either by
experts or numerically derived through optimization, these approaches
are only viable if additional information on the sources is available. When
such information is unavailable, as is commonly the case when sources
are unknown a priori (e.g., in crowdsourcing), prior work has proposed
the extraction of valuable insight (captured within FMs) directly from
the evidence or input data by analyzing properties such as specificity
or agreement amongst sources. Here, existing agreement-based FMs use
established measures of similarity such as Jaccard and Dice to estimate
the source agreement. Recently, a new similarity measure based on bidi-
rectional subsethood was put forward to compare evidence, minimizing
limitations such as aliasing (where different inputs result in the same sim-
ilarity output) present in traditional similarity measures. In this paper,
we build on this new similarity measure to develop a new instance of the
agreement-based FM for interval-valued data. The proposed FM is pur-
posely designed to support aggregation, and unlike previous agreement
FMs, it degrades gracefully to an average operator for cases where no
overlap between sources exists. We validate that it respects all require-
ments of a FM and explore its impact when used in conjunction with
the Choquet FI for data fusion as part of both synthetic and real-world
datasets, showing empirically that it generates robust and qualitatively
superior outputs for the cases considered.

Keywords: Data aggregation · Fuzzy measures · Fuzzy integrals ·
Subsethood · Similarity measure · Interval-valued data

1 Introduction

Data aggregation from multiple sources has become more prevalent in many
applications including sensor fusion [8], and crowdsourcing [20]. In such aggre-
gation contexts, the fuzzy integral (FI) which is specified in respect to a fuzzy
measure (FM) [9] is often used to capture the importance of information arising
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from different combinations of sources. Generally, FMs are defined by experts
or generated through algorithms, such as the Sugeno λ-measure [19] and the
Decomposable measure [7] which leverage the ‘worth’ of the singletons (individ-
ual sources), a.k.a. the densities. Another approach to generating FMs is opti-
mization based on tuning an FM in respect to the behaviour of an aggregation
function such as the FI and training data [2,4]. If training data or information
on the densities is limited or missing, specifying a FM is a challenging task, even
though such a situation arises often, for example in aggregating crowdsourced
data. To deal with this, Wagner and Anderson [21] first extracted FMs directly
from the input data (the evidence) by analyzing and extracting key properties
such as agreement, and specificity. Later, Havens et al. [11,12] introduced more
data-driven FMs which refined the established agreement FM in particular to
leveraging a generic similarity measure (SM) to extract the property of ‘agree-
ment’ amongst evidence from combinations of sources. This paper focuses on a
recently introduced SM – bidirectional subsethood based SM [14,15] which has
been shown to address a number of limitations in common existing SMs such as
Jaccard [13] and Dice [6], and explores the impact of its use in conjunction with
agreement-based FMs.

So far, three agreement-based FMs have been proposed—the FM of Agree-
ment (AG) [21], the FM of Generalized Accord (GenA) [12], and the Additive
Measure of Agreement (AA) [11]. The AG FM captures the source agreement
by using the intersection operation which considers only the overlap amongst
multi-source data without tracking changes in their cardinality/size. This lim-
itation of the intersection operation causes the AG FM to generate the same
agreement and thus worth for very different subsets of sources. Figure 1 shows
such a situation for interval-valued data with the AG FM. On the other hand,
the use of the Jaccard or Dice SM with the GenA and AA FMs to estimate
the source agreement makes the resulting FM susceptible to limitations of these
measures, in particular aliasing–returning the same similarity for very different
sets of intervals [14,15]. Figure 2 presents such a case where the GenA and AA
FMs produce identical agreement values and thus worth for different sets.

(a) Scenario 1 (b) Scenario 2

Fig. 1. Example highlighting the behaviour of AG FM [21], where U2 and U3 capture
the union of the intersections of all of two and three source combinations as per (8).
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(a) Interval-valued set h (b) Interval-valued set r

Fig. 2. Two different interval-valued sets h = [h1, h2] and r = [r1, r2] with equal
Jaccard similarity of 0.33 and Dice similarity of 0.50 respectively. Clearly, the intervals
within h and r do not appear to be in equal agreement to each other.

Given this context, this paper focuses on developing a new instance of an
agreement FM to avoid the limitations of the existing ones. The proposed FM
leverages the bidirectional subsethood based SM [14,15] to minimize aliasing in
the inter-source agreement and worth calculation. The proposed FM is designed
following the concept of the GenA FM [12], and considers both cases where
sources are overlapping (some agreement) or non-overlapping (no agreement).
When sources are non-overlapping, the proposed FM in combination with the FI
gracefully degrades to an average operator, whereas existing agreement FMs are
not designed to deal with such cases. Beyond developing this FM, this paper also
demonstrates its behaviour against the existing agreement FMs in aggregating
interval datasets when used in combination with the Choquet FI (CFI) [5].

The paper is structured as follows: Sect. 2 reviews FMs and FIs along with
a brief discussion of subsethood and the bidirectional subsethood based SM
[14,15]. Section 3 discusses existing agreement FMs. Section 4 develops a new
instance of the agreement-based FM exploiting the bidirectional subsethood
based SM. Section 5 demonstrates the behaviour of the proposed FM against
the existing agreement FMs in aggregating interval-valued datasets when used
with an FI for both synthetic and real-world datasets. Finally, Sect. 6 concludes
the paper with suggestions and future work (Table 1).

Table 1. Acronyms and notation

FM Fuzzy Measure FI Fuzzy Integral

CFI Choquet Fuzzy Integral SFI Sugeno Fuzzy Integral

SM Similarity Measure AG Fuzzy Measure of Agreement

GenA Fuzzy Measure of
Generalized Accord

AA Additive Measure of Agreement

ASh Proposed Agreement Fuzzy
Measure

gAG AG gGenA GenA

gAA AA gASh ASh

Sh Subsethood SSh
Bidirectional Subsethood based SM

a Crisp set a Interval {a ⊆ R : a = [a−, a+], a− ≤ a+}
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2 Background

This section initially reviews FMs and FIs and then provides a short discussion
on subsethood and the new bidirectional subsethood based SM [14,15].

2.1 Fuzzy Measures

FMs are defined as a hierarchical weighting structures (lattices) that capture
the worth of all subsets in a set of sources, including that of the singletons, also
referred to as the densities. Mathematically, an FM, g defined on a finite set of
sources, X = {x1, ..., xn} is a function g : 2X → [0, 1] satisfying the properties
[9]:

(P1) g(∅) = 0 and g(X) = 1 (Boundedness)
(P2) If a ⊆ b ⊆ X then g(a) ⊆ g(b) ⊆ g(X) (Monotonicity)

Here, g(a) is the worth of a subset a of X. Property (P1) states that the worth
of empty set (∅) is 0 and the worth of universal set (X) is 1. We note that the
worth of the universal set is not always required to be 1, but this convention is
adopted here. Property (P2) shows the monotonicity of g, stating that if a is a
subset of b (a ⊂ b), the worth of a is smaller or equal to the worth of b. There is
a third property of continuous FMs, which is not applicable to discrete FMs, as
used in this paper and most practical applications.

In practice, the FMs are defined in various ways, such as expert-defined, or
derived by algorithms or optimization based on existing data and in conjunction
with an aggregation functions such as the FI; for more details, please see [11,22].
This paper focuses only on algorithmically derived FMs leveraging the evidence
data arising from multiple sources. Section 3 reviews such FMs that are derived
on the concept of source agreement.

2.2 Fuzzy Integrals

FIs have been efficiently used as powerful non-linear aggregation operators in
evidence fusion [3,9]. They aggregate multi-source data (evidence) by combining
it with the worth information of all subsets of sources (captured by an FM). Two
well-known FIs are the Sugeno FI (SFI) [19] and the Choquet FI (CFI) [5]. In
practice, discrete SFI and CFI are commonly used [17] and in this paper, we
focus on the discrete CFI as it is most popular for evidence aggregation.

Let h : X → [0,∞) be a real-valued function that presents the evidence from
a source. The discrete CFI is defined as

∫
CFI

h ◦ g = CFIg(h) =
n∑

i=1

h(xπ(i))[g(Ai) − g(Ai−1)], (1)

where π is a permutation of X arranged like h(xπ(1)) ≥ h(xπ(2)) ≥ ... ≥ h(xπ(n)).
Ai = {xπ(1), xπ(2), ..., xπ(i)} is a subset of sources. g is the FM where g(Ai) is
the worth of the subset Ai with g(A0) = 0.
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In most cases, the multi-source data h is provided in a numeric form. However,
in some applications h is better represented by interval-valued or fuzzy set-valued
data. Considering this, FIs have been generalized for non-numeric evidence [1,
10,16]. Let h : X → I(R) be a set of interval-valued data where I(R) is the
set of all closed intervals over the real numbers and hi = h(xi) = [h−

i , h+
i ] be

the ith interval (where h−
i and h+

i are the left and right endpoints respectively).
Following the notation in [12], the CFI on h is defined as

∫
CFI

h ◦ g = CFIg(h) = [CFIg(h−), CFIg(h+)], (2)

where the output CFIg(h) is itself interval-valued [7]. In other words, the CFI
for interval-valued data is computed by applying the CFI for the numeric case
of the left and right interval endpoints separately. Please see [11,12,21] for more
detail about the interval aggregation using the FM and the CFI.

2.3 Subsethood

The subsethood between two sets a and b is a relation, indicating the degree to
which a is a subset of b [18]. It is defined as

Sh (a, b) =
|a ∩ b|

|a| , (3)

where |a ∩ b| is the cardinality of the intersection of a and b, and |a| is the
cardinality of a. It is always bounded on the interval [0, 1], where 1 means that
a is a subset of b (a ⊆ b) and 0 means that a and b are disjoint (a 
⊂ b).

Similarly, the degree of subsethood of two intervals a and b can be defined as

Sh

(
a, b

)
=

∣∣a ∩ b
∣∣∣∣a∣∣ , (4)

where
∣∣a ∩ b

∣∣ is the size of the intersection between a and b and |a| 
= 0.

2.4 Bidirectional Subsethood Based Similarity Measure

A new SM was introduced in [14,15] which uses the reciprocal subsethoods of
intervals to capture their similarity. This measure for two intervals a and b is,

SSh

(
a, b

)
= �

(
Sh(a, b), Sh(b, a)

)
, (5)

where � is a t-norm. We can rewrite (5) using the definition of Sh at (4) as

SSh

(
a, b

)
= �

( |a ∩ b|
|a| ,

|a ∩ b|
|b|

)
. (6)
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3 Existing Agreement Fuzzy Measures

Here, we briefly recapture the AG [21], GenA [12], and AA [11] FMs with respect
to a set of intervals h = {h1, h2, ..., hn} arising from n individual sources.

3.1 Fuzzy Measure of Agreement

Wagner and Anderson [21] proposed the AG FM by extracting it from the
interval-valued data with no prior knowledge about sources. The AG FM is
defined as

g̃AG
(
Ai

)
=

⎧⎨
⎩

0 for i = 0, 1 (7a)
i∑

K=2

∣∣ŪK

(
Ā

)
i

∣∣ zK for i = [2 : n] (7b)

where Ai = {hπ(1), hπ(2)..., hπ(i)} is the permuted set of intervals with A0 = ∅,
zi = i

n and |.| refers to the cardinality/size of the interval. Here, UK(Ai) unites
the intersections of the K-tuples in Ai ⊆ h as defined in (8) [11,12].

UK(Ai) =
i−K+1⋃
k1=1

i−K+2⋃
k2=k1+1

...

i⋃
kK=kK−1+1

(hπ(k1) ∩ hπ(k2) ∩ ... ∩ hπ(kK)) (8)

Further, the g̃AG(Ai) is normalized by g̃AG(h) to satisfy the property of the
FM, i.e., gAG(Ai) = g̃AG(Ai)

g̃AG(h)
.

3.2 Additive Measure of Agreement

Havens et al. [11] proposed the AA FM in order to alleviate the asymmetry
issue of agreement FMs. This FM utilizes the SMs for determining the source
agreement. The AA FM is expressed in (9).

g̃AA(Ai) = g̃AA(Ai−1) +
n∑

j=1
j �=i

Sp(hj , hπ(i)), i = [n], p ≥ 0 (9)

where p is a tuning parameter and S is the SM. Further, g̃AA(Āi) is normalized
by g̃AA(Ān) like gAA(Ai) = g̃AA(Ai)

g̃AA(An)
.

3.3 Fuzzy Measure of Generalized Accord

Havens et al. [12] proposed the GenA FM leveraging a generic SM to estimate
the agreement (accord) of subsets of sources. The GenA FM is defined as

gGen
(
Ai

)
=

⎧⎨
⎩

0 for i = 0, 1 (10a)

αh̄

i∑
K=2

SK

(
Āi

)
for i = [2 : n] (10b)
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where Ai = {hπ(1), hπ(2)...., hπ(i)} is the permuted set of intervals with A0 = ∅,
and SK(Ai) is defined in (11).

SK(Ai) =
(

n

K

)−1 ∑i−K

k1=1

∑i−K+1

k2=
k1+1

...
∑i

kK=
kK−1+1

S({hπ(k1), hπ(k2), ..., hπ(kK)})

(11)
Here,

(
n
K

)
is the number of possible K-tuples in h and S is the SM. The quantity

SK(Ai) is the sum of similarities of the K-tuples in Ai ⊆ h, weighted by
(

n
K

)−1.
Further, the constant αh is defined in (12) so that gGenA(h) = 1.

αh =

(
n∑

K=2

SK(Ān)

)−1

(12)

In [11,12], the GenA and AA FMs are explored in respect to the popular SMs
(within (11) and (9)). As detailed in [14,15], we note however that Jaccard
or Dice SMs are liable to aliasing, thus making the GenA and AA FMs to
generate the same worth for very different subsets of sources which in turn
affects the quality of the overall aggregation. To avoid this, in the next section, we
leverage the recently introduced bidirectional subsethood based SM (minimizing
aliasing), designing a new instance of the GenA FM.

4 A New Instance of the Agreement Fuzzy Measure
Based on Bidirectional Subsethood

Here, we develop a new instance of agreement FM following the concept of the
GenA FM and exploit the new bidirectional subsethood based SM for computing
the source agreement. As the new SM minimizes aliasing, it helps the proposed
FM avoid generating the same agreement and worth for different subsets of
sources. This section first defines the subsethood for a set of intervals. Then, the
new SM at (5) is revisited to enable it to compute similarity for a set of intervals.
Finally, the new instance of agreement FM involving the new SM is introduced.

4.1 Defining Subsethood for a Set of Intervals

The subsethood of an interval, hr as regards to a set of intervals Ai ⊆ h is
defined as a mean of its subsethood to each interval ht in Ai. It is expressed as

Sh(hr, Ai) =
1

|Ai|
∑

ht∈Ai

Sh(hr, ht) =
1

|Ai|
∑

ht∈Ai

|hr ∩ ht|
|hr|

, (13)

where Sh(hr, Ai) → [0, 1] such that Sh(hr, Ai) = 1 when hr ⊂ ht, for all ht ∈ Ai

and Sh(hr, Ai) = 0 when hr 
⊂ ht for any of ht ∈ Ai.
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4.2 Defining Bidirectional Subsethood Based Similarity Measure
for a Set of Intervals

The bidirectional subsethood based SM, SSh
for h is the t-norm (�) of their

reciprocal subsethoods, i.e.,

SSh

(
h
)

= �
(
Sh(h1, {h2, ..., hn}), ..., Sh(hn, {h1, ..., hn−1})

)
= �

(
Sh(h1, h\h1), ..., Sh(hn, h\hn)

) (14)

where h\hi is the nonempty subset of intervals excluding hi, i ∈ {1, ..., n}. In this
paper, we use the minimum t-norm (�) as it is the most common in practice.

4.3 Bidirectional Subsethood Based Agreement Fuzzy Measure

Consider again the set of n intervals, h. For any nonempty subset Ai ∈ h,
1 ≤ i ≤ n, the new FM, g̃ASh using the new SM (14) is defined as follows (which
is later normalized to a proper FM, gASh):

g̃ASh(A0) = 0, (15a)

g̃ASh(A1) =
(

n

1

)−1

×
1∑

k1=1

SSh

(
hk1 , hk1

)
=

1
n

, (15b)

g̃ASh(Ai) = i × g̃ASh(A1) +
(

n

2

)−1 i−1∑
k1=1

i∑
k2=k1+1

SSh

(
hk1 , hk2

)
+ ... (15c)

+
(

n

i

)−1

SSh

(
h1, ..., hi

)
,

where A0 = ∅, A1 is a singleton subset, and Ai is a non-singleton subset with
i sources, 1 < i ≤ n.

(
n
K

)
is total number of K-tuples in the set, h, where

1 ≤ K ≤ n. (15a) is the worth of A0, which is always 0. (15b) is the worth of A1,
which is the similarity of 1, weighted by

(
n
1

)−1. (15c) is the worth of Ai, which is
the sum of the similarities of all K -tuples in Ai, 1 ≤ K ≤ i, weighted by

(
n
K

)−1.

Remark 1. (15b) captures the worth of singleton subsets (A1) which is, g̃ASh(A1)
= 1

n , where n = |h|. For a non-singleton subset consisting of all disagreeing
sources, the inclusion of the worth of the singleton subsets in (15c) enables it to
generate the worth information for this set.

Following [11,12], (15c) is rewritten as follows,

g̃ASh(Ai) =
i

n
+

i∑
K=2

[(
n

K

)−1

ZK(Ai)

]
, i ≥ 1, (16)

where the first part of (16) is the sum of the worth of all singletons in Ai. The
other part gives summation of the similarities of all K -tuples in Ai (K ≥ 2),
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weighted by
(

n
K

)−1. ZK(Ai) captures the cumulative similarity for all K -tuples
in Ai (K ≥ 2) using (14) and is defined in (17).

ZK

(
Ai

)
=

∑i−K+1

k1=1

∑i−K+2

k2=
k1+1

...
∑i

kK=
kK−1+1

�
(
Sh(hk1 , Ai\hk1), ..., Sh(hkK , Ai\hkK )

)

(17)

Finally, g̃ASh(Ai) is normalized by g̃ASh(h) in (18) so that gASh(Ai) ≤ 1 and
gASh(h) = 1, which maintains the bounded property of the FM.

gASh(Ai) =
g̃ASh(Ai)
g̃ASh(h)

, 1 ≤ i ≤ n. (18)

In the following Example 1 demonstrates that unlike the gGenA and gAA

FMs, the new instance agreement FM, gASh avoids generating the same agree-
ment and worth for different sets of sources. In addition, Example 2 presents
the interval aggregation using the gASh FM and the CFI.

Example 1: Consider two interval-valued datasets, h and r, as shown in Fig. 3.
Their corresponding FM lattices using the gASh , gAG, gGenA, and gAA FMs are
also shown in Fig. 3 (we skip showing the FM values for ∅ and h). Due to aliasing
of the Jaccard SM, both gGenA and gAA FMs generate the same FM lattices for
these sets whereas the gASh and gAG FMs generate distinct FM lattice.

(a) Interval-valued set h (b) Interval-valued set r

(c) FM lattice for h (d) FM lattice r

Fig. 3. Example showing avoidance of generating same FM lattice for different subsets
of sources by the gASh FM. Any subset {h1, h2} or {r1, r2} is presented as {1, 2}.
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Example 2: Consider the interval-valued dataset, r in Fig. 3(b) and its corre-
sponding gASh FM lattice in Fig. 3(d). Using (1), the aggregation of left interval
endpoints is, CFIg(h−) = 3 × [gASh({1}) − gASh({∅})] + 1 × [gASh({1, 3}) −
gASh({1})] + 0 × [gASh({1, 2, 3}) − gASh({1, 3})] = 3 × [0.22 − 0] + 1 × [0.54 −
0.22]+0× [1−0.54] = 0.98. Similarly, the aggregation of right interval endpoints
is, CFIg(h+) = 10×[0.22−0]+6×[0.54−0.22]+3×[1−0.54] = 5.5. Finally, using
(2) the interval aggregation is, CFIg(h) = [CFIg(h−), CFIg(h+)] = [0.98, 5.5].

5 Demonstration

This section demonstrates the behaviour of the new FM against the AG, GenA,
and AA FMs for two synthetic datasets and a real-world example. For conve-
nience, the new instance of agreement FM is denoted as ASh and the CFI is used
throughout. Further, the Jaccard SM is used for the GenA and AA FMs, and
AV G represents the arithmetic mean of the left and right endpoints of the intervals
respectively. In all experiments, we follow the assumption that no worth informa-
tion of sources is available (e.g. as in crowdsourcing). If there was such information,
it could be captured and a meta-measure could be created (see [21]).

(a) Interval-valued set-I (b) Interval-valued set-II

(c) Interval-valued set-III (d) Interval-valued set-IV

Fig. 4. Comparison of aggregation results from the CFI with the ASh, AG, GenA and
AA FMs for four different interval-sets.
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5.1 Demonstration with Synthetic Dataset-1

Figure 4 shows four examples of synthetic datasets together with aggregated
results based on the CFI using the ASh, AG, GenA, and AA FMs.

(1) The interval-valued set-I shown in Fig. 4(a) consists of three smaller inter-
vals h4, h5, and h6 that agree completely and three larger intervals h1, h2 and
h3 agreeing to a certain degree. The aggregation results (Fig. 4(a)) show that
the AG FM gives importance only to the subset of larger intervals, whereas the
GenA and AA FMs are influenced by the subset of smaller intervals as they agree
totally. However, the ASh FM not only gives more importance to the subset of
smaller intervals having a complete agreement, but also considers other subsets,
{h1, h3} and {h2, h3} with agreement to a certain degree.

(2) For the interval-valued set-II shown in Fig. 4(b), there are three intervals
h1, h2 and h3 having higher agreement than three other intervals h4, h5 and h6.
Here, the AG FM is greatly influenced by the subset {h1, h2, h3}, whereas the
GenA, AA, and ASh FMs show more balanced aggregation by considering the
two subsets ({h1, h2, h3} and {h4, h5, h6}) when used with the CFI.

(3) The interval-valued set-III shown in Fig. 4(c) includes three intervals agree
to each other completely and the other three wholly disagrees. Here, the AG,
GenA and AA FMs are completely influenced by the subset of agreed intervals,
i.e., {h4, h5, h6}. Like other FMs, the ASh FM shows the influence of the subset
{h4, h5, h6}, concurrently, it also considers disagreed singletons, {h1, h2, h3}.

(4) The interval-valued set-IV shown in Fig. 4(d) consists of five intervals where
all intervals are completely non-overlapped. At this situation, the AG, GenA,
and AA FMs are not designed to generate the worth information for the sub-
sets of sources and hence do not provide aggregation when combined with the
CFI. Contrarily, the ASh FM, by its construction, assigns worth to all single-
tons, which is later normalized by g̃ASh(h). Even though there is no agreement
amongst the sources regarding their intervals, the ASh FM still can estimate
the worth of other subsets by utilizing the worth of singletons. Table 2 shows
the normalized worth of all subsets of intervals for the dataset-IV (in Fig. 4(d))
using the ASh FM, where all intervals are in complete disagreement. Intuitively,
when there is no overlap between intervals and all intervals are unique, then all
sources should be treated with an equal worth and the aggregation should be
equal to the average. In Fig. 4(d), only the ASh FM with the CFI generates the
aggregation results accordingly (i.e., performs like an average operator).

5.2 Demonstration with Synthetic Dataset-2

Here, we investigate how the FMs in combination with the CFI behave in pro-
ducing the aggregation result when the overlap between intervals are gradually
decreased. Five different sets of two intervals h1 and h2 are considered in Fig. 5(a)
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Table 2. The normalized worth of subsets of intervals using the ASh FM (gASh)

|{Ai}| = 1 |{Ai}| = 2 |{Ai}| = 3

gASh({h1})=0.2 gASh({h1, h2})=0.4 gASh({h1, h2, h3})=0.6

gASh({h2})=0.2 gASh({h1, h3})=0.4 gASh({h1, h2, h4})=0.6

gASh({h3})=0.2 gASh({h1, h4})=0.4 gASh({h1, h2, h5})=0.6

gASh({h4})=0.2 gASh({h1, h5})=0.4 gASh({h1, h3, h4})=0.6

gASh({h5})=0.2 gASh({h2, h3})=0.4 gASh({h1, h3, h5})=0.6

gASh({h2, h4})=0.4 gASh({h1, h4, h5})=0.6

gASh({h2, h5})=0.4 gASh({h2, h3, h4})=0.6

gASh({h3, h4})=0.4 gASh({h2, h3, h5})=0.6

gASh({h3, h5})=0.4 gASh({h2, h4, h5})=0.6

gASh({h4, h5})=0.4 gASh({h3, h4, h5})=0.6

|{Ai}| = 4 |{Ai}| = 5

gASh({h1, h2, h3, h4})=0.8 gASh({h2, h3, h4, h5})=1.0

gASh({h1, h2, h3, h5})=0.8

gASh({h1, h2, h4, h5})=0.8

gASh({h1, h3, h4, h5})=0.8

gASh({h2, h3, h4, h5})=0.8

with 100%, 75%, 50%, 25%, and 0% overlap respectively. Note that h1 is set to
[0, 1] in all five sets, while h2 is altered depending on the % of overlap. Figure 5(b)
shows that all FMs (used with the CFI) aggregates the intervals equally (i.e.,
[0, 1]) when 100% overlap exists. However, despite degrading overlap, the AG
and GenA FMs continue to show the same aggregation (i.e., [0, 1]), whereas the
AA and ASh FMs follow the overlap degradation and aggregate the intervals
accordingly. Finally, when the intervals are in complete disagreement (i.e., 0%
overlap), the ASh FM with the CFI performs like an average operator, whereas
the other FMs do not support aggregation.

5.3 A Real-World Example

This experiment uses the outcome of different ageing methods (Pubic Symphysis
(PS ), Auricular Surface (AS ), Ectocranial Suture-Vault (ESV ), and Ectocra-
nial Suture-Lateral Anterior(ESLA)) to estimate the age-at-death of an indi-
vidual skeleton [3] which is useful for forensic and biological anthropologists.
Each of them provides an estimated age range for the individual skeleton. Con-
sidering the worth information of the aging methods are unknown, here our
aim is to fuse their estimated age range directly to get a combined view of the
skeletal age-at-death. In this aggregation experiment, the more intuitive aggre-
gation outcome is likely to be a narrow age range capturing the actual age-at-
death. Figure 6 presents the estimated age range of each aging methods for three
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(a) Sets of interval-valued data (b) Aggregation results

Fig. 5. (a) Five sets of interval-valued data with degrading interval-overlap (b) Aggre-
gation results of the AG, GenA, AA and ASh FMs with the CFI for Fig. 5(a).

(a) Skeletal Dataset-1 (b) Skeletal Dataset-2 (c) Skeletal Dataset-3

Fig. 6. Aggregation of estimated age range of four different ageing methods using the
agreement FMs with the CFI. The vertical line shows chronological age-at-death.

individual skeletons together with their true chronological age-at-death. Figure 6
also shows the aggregation results for all agreement FMs when used with the
CFI. The results reveal that the gASh FM specifies the age range more nar-
rowly (while also capturing the true chronological age-at-death) compared to
other agreement-based FMs. While this is only one example and not an exten-
sive study, it demonstrates the interesting potential robustness in aggregation
outcome of the proposed agreement FM.

6 Conclusions

As the agreement calculation of agreement FMs are affected by the limitations
of popular SMs, this paper has developed a new instance of an evidence-driven
agreement FM for interval-valued datasets building on the structure of GenA
FM, and leveraging a recently introduced SM [14,15] to provide better capture
of the inter-source agreement and worth estimation. Further, the proposed FM
is designed to deal with cases where no agreement exists amongst the evidence
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arising from sources. Here, in combination with the CFI, it gracefully degrades
to an average operator, whereas existing agreement FMs are not designed to
deal with such instances. The behaviour of this FM has been compared with
existing agreement FMs by aggregating both synthetic and real interval-valued
data in combination with the CFI, showing that it provides robust and qualita-
tively superior outcomes in agreement-based data aggregation. In future, we will
experiment with this new instance of agreement FM in combination with the
FI for aggregating fuzzy set-valued data. In addition, we will extend this FM to
address the asymmetry issue noted in [11].
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