
General Grouping Functions
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Abstract. Some aggregation functions that are not necessarily associa-
tive, namely overlap and grouping functions, have called the attention
of many researchers in the recent past. This is probably due to the fact
that they are a richer class of operators whenever one compares with
other classes of aggregation functions, such as t-norms and t-conorms,
respectively. In the present work we introduce a more general proposal for
disjunctive n-ary aggregation functions entitled general grouping func-
tions, in order to be used in problems that admit n dimensional inputs in
a more flexible manner, allowing their application in different contexts.
We present some new interesting results, like the characterization of that
operator and also provide different construction methods.

Keywords: Grouping functions · n-dimensional grouping functions ·
General grouping functions · General overlap functions

1 Introduction

Overlap functions are a kind of aggregation functions [3] that are not required
to be associative, and they were introduced by Bustince et al. in [4] to measure
the degree of overlapping between two classes or objects. Grouping functions
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are the dual notion of overlap functions. They were introduced by Bustince et
al. [5] in order to express the measure of the amount of evidence in favor of
either of two alternatives when performing pairwise comparisons [1] in decision
making based on fuzzy preference relations [6]. They have also been used as the
disjunction operator in some important problems, such as image thresholding
[17] and the construction of a class of implication functions for the generation
of fuzzy subsethood and entropy measures [13].

Overlap and grouping functions have been largely studied since they are
richer than t-norms and t-conorms [18], respectively. Regarding, for instance,
some properties like idempotency, homogeneity, and, mainly, the self-closeness
feature with respect to the convex sum and the aggregation by generalized com-
position of overlap/grouping functions [7,8,10,12]. For example, there is just one
idempotent t-conorm (namely, the maximum t-conorm) and two homogeneous
t-conorms (namely, the maximum and the probabilistic sum of t-conorms). On
the contrary, there are uncountable numbers of idempotent, as well as homoge-
nous, grouping functions [2,11]. For comparisons among properties of grouping
functions and t-conorms, see [2,5,17]

However, grouping functions are bivariate functions. Since they may be non
associative, they can only be applied in bi-dimensional problems (that is, when
just two classes or objects are considered). In order to solve this drawback,
Gómez et al. [16] introduced the concept of n-dimensional grouping functions,
with an application to fuzzy community detection.

Recently, De Miguel et al. [20] introduced general overlap functions, by relax-
ing some boundary conditions, in order to apply to an n-ary problem, namely,
fuzzy rule based classification systems, more specifically, in the determination
of the matching degree in the fuzzy reasoning method. Then, inspired on the
paper by De Miguel et al. [20], the objective of this present paper is to intro-
duce the concept of general grouping functions, providing their characterization
and different construction methods. The aim is to define the theoretical basis
of a tool that can be used to express the measure of the amount of evidence
in favor of one of multiple alternatives when performing n-ary comparisons in
multi-criteria decision making based on n-ary fuzzy heterogeneous, incomplete
preference relations [14,19,26], which we let for future work.

The paper is organized as follows. Section 2 presents some preliminary con-
cepts. In Sect. 3, we define general grouping functions, studying some properties.
In Sect. 4, we study the characterization of general grouping functions, providing
some construction methods. Section 5 is the Conclusion.

2 Preliminary Concepts

In this section, we highlight some relevant concepts used in this work.

Definition 1. A function N : [0, 1] → [0, 1] is a fuzzy negation if it holds: (N1)
N is antitonic, i.e. N(x) ≤ N(y) whenever y ≤ x and (N2) N(0) = 1 and
N(1) = 0.
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Definition 2. [3] An n-ary aggregation function is a mapping A : [0, 1]n →
[0, 1] satisfying: (A1) A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1; (A2) increas-
ingness: for each i ∈ {1, . . . , n}, if xi ≤ y then A(x1, . . . , xn) ≤
A(x1, . . . , xi−1, y, xi+1, . . . , xn).

Definition 3. An n-ary aggregation function A : [0, 1]n → [0, 1] is called con-
junctive if, for any #„x = (x1, . . . , xn) ∈ [0, 1]n, it holds that A( #„x ) ≤ min( #„x ) =
min{x1, . . . , xn}. And A is called disjunctive if, for any #„x = (x1, . . . , xn) ∈
[0, 1]n, it holds that A( #„x ) ≥ max( #„x ) = max{x1, . . . , xn}.
Definition 4. [4] A binary function O : [0, 1]2 → [0, 1] is said to be an overlap
function if it satisfies the following conditions, for all x, y, z ∈ [0, 1]:

(O1) O(x, y) = O(y, x);
(O2) O(x, y) = 0 if and only if x = 0 or y = 0;
(O3) O(x, y) = 1 if and only if x = y = 1;
(O4) if x ≤ y then O(x, z) ≤ O(y, z);
(O5) O is continuous;

Definition 5. [5] A binary function G : [0, 1]2 → [0, 1] is said to be a grouping
function if it satisfies the following conditions, for all x, y, z ∈ [0, 1]:

(G1) G(x, y) = G(y, x);
(G2) G(x, y) = 0 if and only if x = y = 0;
(G3) G(x, y) = 1 if and only if x = 1 or y = 1;
(G4) If x ≤ y then G(x, z) ≤ G(y, z);
(G5) G is continuous;

For all properties and related concepts on overlap functions and grouping
functions, see [2,5,7,9,10,21,23–25].

Definition 6. [22] A function G : [0, 1]2 → [0, 1] is a 0-grouping function if
the second condition in Definition 5 is replaced by: (G2′) If x = y = 0 then
G(x, y) = 0. Analogously, a function G : [0, 1]2 → [0, 1] is a 1-grouping function
if the third condition in Definition 5 is replaced by: (G3′) If x = 1 or y = 1 then
G(x, y) = 1.

Both notions were extended in several ways and some of them are presented
in the following definitions.

Definition 7. [15] An n-ary function G : [0, 1]n → [0, 1] is called an n-
dimensional grouping function if for all #„x = (x1, ..., xn) ∈ [0, 1]n:

1. G is commutative;
2. G( #„x ) = 0 if and only if xi = 0, for all i = 1, . . . , n;
3. G( #„x ) = 1 if and only if there exists i ∈ {1, . . . , n} with xi = 1;
4. G is increasing;
5. G is continuous.
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Definition 8. [20] A function GO : [0, 1]n → [0, 1] is said to be a general over-
lap function if it satisfies the following conditions, for all #„x = (x1, . . . , xn) ∈
[0, 1]n:

(GO1) GO is commutative;

(GO2) If
n∏

i=1

xi = 0 then GO( #„x ) = 0;

(GO3) If
n∏

i=1

xi = 1 then GO( #„x ) = 1;

(GO4) GO is increasing;
(GO5) GO is continuous.

3 General Grouping Functions

Following the ideas given in [20], we can also generalize the idea of general
grouping functions as follows.

Definition 9. A function GG : [0, 1]n → [0, 1] is called a general grouping func-
tion if the following conditions hold, for all #„x = (x1, . . . , xn) ∈ [0, 1]n:

(GG1) GG is commutative;

(GG2) If
n∑

i=1

xi = 0 then GG( #„x ) = 0;

(GG3) If there exists i ∈ {1, . . . , n} such that xi = 1 then GG( #„x ) = 1;
(GG4) GG is increasing;
(GG5) GG is continuous.

Note that (GG2) is the same of saying that 0 is an anhilator of the general
grouping function GG.

Proposition 1. If G : [0, 1]n → [0, 1] is an n-dimensional grouping function,
then G is also a general grouping function.

Proof. Straighforward. ��
From this proposition, we can conclude that the concept of general grouping

functions is a generalization of n-dimensional grouping functions, which on its
turn is a generalization of the concepts of 0-grouping functions and 1-grouping
functions.

Example 1. 1. Every grouping function G : [0, 1]2 → [0, 1] is a general grouping
function, but the converse does not hold.

2. The function GG(x, y) = min{1, 2 − (1 − x)2 − (1 − y)2} is a general grouping
function, but it is not a bidimensional grouping function, since GG(0.5, 0.5) =
1.

3. Consider G(x, y) = max{1 − (1 − x)p, 1 − (1 − y)p}, for p > 0 and SL(x, y) =
min{1, x + y}. Then, the function GGSL(x, y) = G(x, y)SL(x, y) is a general
grouping function.
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4. Take any grouping function G, and a continuous t-conorm S. Then, the gen-
eralization of the previous item is the binary general grouping function given
by: GG(x, y) = G(x, y)S(x, y)

5. Other examples are:

Prod S Luk(x1, . . . , xn) =

(

1 −
n∏

i=1

(1 − xi)

)

∗
(

min

{
n∑

i=1

xi, 1

})

GM S Luk(x1, . . . , xn) =

⎛

⎝1 − n

√
√
√
√

n∏

i=1

(1 − xi)

⎞

⎠ ∗
(

min

{
n∑

i=1

xi, 1

})

.

The generalization of the third item of Example 1 can be seen as follows.

Proposition 2. Take any grouping function G, and any t-conorm S. Then, the
binary general grouping function given by: GG(x, y) = G(x, y)S(x, y).

Proposition 3. Let F : [0, 1]n → [0, 1] be a commutative and continuous aggre-
gation function. Then the following statements hold:

(i) If F is disjunctive, then F is a general grouping function.
(ii) If F is conjunctive, then F is neither a general grouping function nor an

n-dimensional grouping function.

Proof. Consider a commutative and continuous aggregation function
F : [0, 1]n → [0, 1]. It follows that:
(i) Since F is commutative (GG1), continuous (GG5) and clearly increasing
(GG4), then it remains to prove the following:

(GG2) Suppose that
n∑

i=1

xi = 0. Then, since F is an aggregation function, it

holds that F (0, . . . , 0) = 0.
(GG3) Suppose that, for some #„x = (x1, . . . , xn) ∈ [0, 1]n, there exists i ∈
{1, . . . , n} such that xi = 1. Then, since F is disjunctive, then F ( #„x ) ≥
max{x1, . . . , 1, . . . , xn} = 1, which means that F ( #„x ) = 1.
(ii) Suppose that F is a conjunctive aggregation function and it is either a general
grouping function or an n-dimensional grouping function. Then, by either (GG3)
or (G3), if for some #„x = (x1 . . . , xn) ∈ [0, 1]n, there exists i ∈ {1, . . . , n} such
that xi = 1, then F ( #„x ) = 1. Take #„x = (1, 0 . . . , 0), it follows that F (1, 0 . . . , 0) =
1 = max{1, 0 . . . , 0} 	≤ 0 = min{1, 0 . . . , 0}, which is a contradiction with the
conjunctive property. Thus, one concludes that F is neither a general grouping
function nor an n-dimensional grouping function. ��

We say that an element a ∈ [0, 1] is a neutral element of GG if for each
x ∈ [0, 1], GG(x, a, . . . , a

︸ ︷︷ ︸
(n−1)

) = x.

Proposition 4. Let GG : [0, 1]n → [0, 1] be a general grouping function with
a neutral element a ∈ [0, 1]. Then, a = 0 if and only if GG satisfies, for all
#„x = (x1, . . . , xn) ∈ [0, 1]n, the following condition:
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(GG2′) If GG( #„x ) = 0, then
n∑

i=1

xi = 0.

Proof. (⇒) Suppose that (i) the neutral element of GG is a = 0 and (ii)
GG(x1, . . . , xn) = 0. Then, by (i), one has that, for each x1 ∈ [0, 1], it holds
that x1 = GG(x1, 0 . . . , 0). By (ii) and since GG is increasing, it follows that

x1 = GG(x1, 0 . . . , 0) ≤ GG(x1, . . . , xn) = 0.

Similarly, one shows that x2, . . . , xn = 0, that is
n∑

i=1

xi = 0.

(⇐) Suppose that GG satisfies (GG2′) and that GG(x1, . . . , xn) = 0, for

(x1, . . . , xn) ∈ [0, 1]n. Then, by (GG2′), it holds that
n∑

i=1

xi = 0. Since a is

the neutral element of GG, one has that GG(0, a, . . . , a) = 0, which means that
a = 0, by (GG2′). ��
Remark 1. Observe that the result stated by Proposition 4 does not mean that
when a general grouping function has a neutral element, then it is necessarily
equal to 0. In fact, for each a ∈ (0, 1), the function GG : [0, 1]n → [0, 1], for all
#„x = (x1 . . . , xn) ∈ [0, 1]n, defined by:

GG( #„x ) =

⎧
⎪⎪⎨

⎪⎪⎩

min{ #„x}, if max{ #„x} ≤ a

max{ #„x}, if min{ #„x} ≥ a

min{ #„x }+max{ #„x }
(
1−min{ #„x }

)
−a

1−a , if min{ #„x} < a < max{ #„x}
is a general grouping function with a as neutral element.

Proposition 5. If 0 is the neutral element of a general grouping function
GG : [0, 1]n → [0, 1] and GG is idempotent, then GG is the maximum.

Proof. Since GG is idempotent and increasing in each argument, then one
has that for all #„x = (x1, . . . , xn) ∈ [0, 1]n: (1) GG(x1, . . . , xn) ≤
GG(max( #„x ), . . . ,max( #„x )) = max{ #„x}. Then we have that xk = max{ #„x}
for some k = 1, . . . , n; so we have xk = GG(0, . . . , xk, . . . , 0) ≤
GG(x1, . . . , xk, . . . , xn) and then (2) GG(x1, . . . , xn) ≥ xk = max{ #„x}. So, from
(1) and (2) one has that GG(x1, . . . , xn) = max{ #„x}, for each #„x ∈ [0, 1]n. ��

3.1 General Grouping Functions on Lattices

Following a similar procedure described in [20] for general overlap functions on
lattices, it is possible to characterize general grouping functions. In order to do
that, first we introduce some properties and notations.

Let us denote by Gn the set of all general grouping functions. Define the
ordering relation ≤Gn ∈ Gn × Gn, for all GG1,GG2 ∈ Gn by:

GG1 ≤Gn GG2 ⇔ GG1( #„x ) ≤ GG2( #„x ), for all #„x = (x1, . . . , xn) ∈ [0, 1]n.
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The supremum and infimum of two arbitrary general grouping functions
GG1,GG2 ∈ Gn are, respectively, the general grouping functions GG1∨GG2,GG1∧
GG2 ∈ Gn, defined, for all #„x = (x1, . . . , xn) ∈ [0, 1]n by: GG1 ∨ GG2( #„x ) =
max{GG1( #„x ),GG2( #„x )} and GG1 ∧ GG2( #„x ) = min{GG1( #„x ),GG2( #„x )}.

The following result is immediate:

Theorem 1. The ordered set (Gn,≤Gn) is a lattice.

Remark 2. Note that the supremum of the lattice (Gn,≤Gn) is given, for all
#„x = (x1, . . . , xn) ∈ [0, 1]n, by:

GGsup( #„x ) =

⎧
⎨

⎩

0, if
n∑

i=1

xi = 0

1, otherwise.

On the other hand, the infimum of (Gn,≤Gn) is given, for all #„x = (x1, . . . , xn) ∈
[0, 1]n, by:

GGinf( #„x ) =

{
1, if ∃i ∈ {1, . . . , n} : xi = 1
0, otherwise.

.

However, neither GGsup nor GGinf are general grouping functions, since they
are not continuous. Thus, in the lattice (Gn,≤Gn) there is no bottom neither
top elements. Then, similarly to general overlap functions, the lattice (Gn,≤Gn)
is not complete.

4 Characterization of General Grouping Functions
and Construction Methods

In this section we provide a characterization and some constructions methods
for general grouping functions.

Theorem 2. The mapping GG : [0, 1]n → [0, 1] is a general grouping function
if and only if

GG( #„x ) =
f( #„x )

f( #„x ) + h( #„x )
(1)

for some f, h : [0, 1]n → [0, 1] the following properties hold, for all #„x ∈ [0, 1]n:

(i) f and h are commutative;
(ii) f is increasing and h is decreasing.

(iii) If
n∑

i=1

xi = 0, then f( #„x ) = 0.

(iv) If there exists i ∈ {1, . . . , n} such that xi = 1, then h( #„x ) = 0.
(v) f and h are continuous.
(vi) f( #„x ) + h( #„x ) 	= 0 for any #„x ∈ [0, 1]n.
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Proof. It follows that:
(⇒) Suppose that GG is a general grouping function, and take f( #„x ) = GG( #„x )
and h( #„x ) = 1 − f( #„x ). Then one always have f( #„x ) + h( #„x ) 	= 0, and so Equation
(1) is well defined. Also, conditions (i)–(v) trivially hold.
(⇐) Consider f, h : [0, 1]n → [0, 1] satisfying conditions (i)–(v). We will show
that GG defined according to Eq. (1) is a general grouping function. It is imme-
diate that GG is commutative (GG1) and continuous (GG5). To prove (GG2),

notice that if
n∑

i=1

xi = 0 then f( #„x ) = 0 and thus GG( #„x ) = 0. Now, let us prove

that (GG3) holds. For that, observe that if there exists i ∈ {1, . . . , n} such that
xi = 1, then h( #„x ) = 0, and, thus, it is immediate that GG( #„x ) = 1. The proof of
(GG4) is similar to [20, Theorem 3]. ��
Example 2. Observe that Theorem 2 provides a method for constructing general
grouping functions. For example, take the maximum powered by p, defined by:

maxp( #„x ) = max1≤i≤n{xp
i },

with p > 0. So, if we take the function Tmaxp
α : [0, 1]n → [0, 1], called α-

truncated maximum powered by p, given, for all #„x ∈ [0, 1]n and α ∈ (0, 1),
by:

Tmaxp
α( #„x ) =

{
0, if maxp( #„x ) ≤ α

maxp( #„x ), if maxp( #„x ) > α
(2)

then it is clear that Tmaxp
α is not continuous. However, one can consider the

function CTmaxp
α,ε : [0, 1]n → [0, 1], called the continuous truncated maximum

powered by p, for all #„x ∈ [0, 1]n, α ∈ [0, 1] and ε ∈ (0, α], which is defined by:

CTmaxp
α,ε(

#„x ) =

⎧
⎪⎨

⎪⎩

0, if maxp( #„x ) ≤ α − ε
α
ε (maxp( #„x ) − (α − ε)) , if α − ε < maxp( #„x ) < α

maxp( #„x ), if maxp( #„x ) ≥ α.

(3)

Observe that taking f = CTmaxp
α,ε, then f satisfies conditions (i)–(iii) and (v)

in Theorem 2. Now, take h( #„x ) = min1≤i≤n{1 − xi}, which satisfies conditions
(i)–(ii) and (iv)–(v) required in Theorem 2. Thus, this assures that

GG( #„x ) =
CTmaxp

α,ε(
#„x )

CTmaxp
α,ε( #„x ) + min1≤i≤n{1 − xi}

is a general grouping function.

Remark 3. Observe that the maximum powered by p is an n-dimensional group-
ing function [15] and that CTmaxp

α,ε is a general grouping function. However,
CTmaxp

α,ε is not an n-dimensional grouping function, for α − ε > 0, since
CTmaxp

α,ε(α − ε, . . . , α − ε) = 0.
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Corollary 1. Consider the functions f, h : [0, 1]n → [0, 1] and let GG : [0, 1]n →
[0, 1] be a general grouping function constructed according to Theorem 2, and
taking into account functions f and h. Then GG is idempotent if and only if, for
all x ∈ [0, 1), it holds that:

f(x, . . . , x) =
x

1 − x
h(x, . . . , x).

Proof. (⇒) If GG is idempotent, then by Theorem 2 it holds that:

GG(x, . . . , x) =
f(x, . . . , x)

f(x, . . . , x) + h(x, . . . , x)
= x.

It follows that: f(x, . . . , x) = x(f(x, . . . , x) + h(x, . . . , x))

(1 − x)f(x, . . . , x) = x h(x, . . . , x)

f(x, . . . , x) =
x

1 − x
h(x, . . . , x).

(⇐) It is immediate. ��
Example 3. Take the function αβ-truncated maximum powered by p, Tmaxp

αβ :
[0, 1]n → [0, 1], for all #„x ∈ [0, 1]n; α, β ∈ (0, 1) and α < β, defined by:

Tmaxp
αβ( #„x ) =

⎧
⎪⎨

⎪⎩

0, maxp( #„x ) ≤ α

maxp( #„x ), α < maxp( #„x ) < β

1, maxp( #„x ) ≥ β

It is clear that Tmaxp
αβ is not continuous. However, we can define its continuous

version, CTmaxp
αβ,εδ : [0, 1]n → [0, 1], for all #„x ∈ [0, 1]n; α ∈ [0, 1); β, ε, δ ∈ (0, 1];

α + ε, β − δ ∈ (0, 1) and α + ε < β − δ, as follows:

CTmaxp
αβ,εδ(

#„x ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, maxp( #„x ) ≤ α
1−(α+ε)

ε
(α − maxp( #„x )), α < maxp( #„x ) < α + ε

1 − maxp( #„x ), α + ε ≤ maxp( #„x ) ≤ β − δ

1 − (β − δ) − β−δ
δ

(β − δ − maxp( #„x )), β − δ < maxp( #„x ) < β

1, maxp( #„x ) ≥ β

Observe that CTmaxp
αβ,εδ satisfies conditions (GG1)-(GG5) from Definition 9,

and then it is a general grouping function. But, whenever α 	= 0 or β 	= 1, then
CTmaxp

αβ,εδ is not an n-dimensional grouping function, once CTmaxp
αβ,εδ(α −

ε, . . . , α − ε) = 0, for α − ε > 0, because maxp(α − ε, . . . , α − ε) = α − ε < α.

The following Theorem generalizes Example 3 providing a construction
method for general grouping functions from truncated n-dimensional grouping
functions.
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Theorem 3. Consider α ∈ [0, 1); β, ε, δ ∈ (0, 1]; α+ ε, β − δ ∈ (0, 1) and α < β,
α+ ε < β − δ. Let G be an n-dimensional grouping function, whose αβ-truncated
version is defined, for all #„x = (x1, . . . , xn) ∈ [0, 1]n, by:

TGαβ( #„x ) =

⎧
⎪⎨

⎪⎩

0, G( #„x ) ≤ α

G( #„x ), α < G( #„x ) < β

1, G( #„x ) ≥ β

Then, the continuous version of TGαβ, for all #„x = (x1, . . . , xn) ∈ [0, 1]n, is given
by:

CTGαβ,εδ( #„x ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, G( #„x ) ≤ α
1−(α+ε)

ε (α − G( #„x )), α < G( #„x ) < α + ε

1 − G( #„x ), α + ε ≤ G( #„x ) ≤ β − δ

1 − (β − δ) − β−δ
δ (β − δ − G( #„x )), β − δ < G( #„x ) < β

1, G( #„x ) ≥ β

and it is a general grouping function. Besides that, whenever α = 0 and β = 1,
then CTGαβ,εδ is an n-dimensional grouping function.

The following proposition shows a construction method of general grouping
functions that generalizes Example 1(4).

Proposition 6. Let G : [0, 1]n → [0, 1] be an n-dimensional grouping function
and let F : [0, 1]n → [0, 1] be a commutative and continuous aggregation function
such that, for all #„x = (x1, . . . , xn) ∈ [0, 1]n, if there exists i ∈ {1, . . . , n} such
that xi = 1, then F ( #„x ) = 1. Then GGGF ( #„x ) = G( #„x )F ( #„x ) is a general grouping
function.

Proof. It is immediate that GGGF is well defined, (GG1) commutative, (GG4)
increasing and (GG5) continuous, since G, F and the product operation are

commutative, increasing and continuous. To prove (GG2), whenever
n∑

i=1

xi = 0,

then by (G2), it holds that G( #„x ) = 0, and, thus, GGGF ( #„x ) = G( #„x )F ( #„x ) = 0.
For (GG3), whenever there exists i ∈ {1, . . . , n} such that xi = 1, then, by (G3),
one has that G( #„x ) = 1, and, by the property of F , it holds that F ( #„x ) = 1. It
follows that: GGGF ( #„x ) = G( #„x )F ( #„x ) = 1. ��

The following result is immediate.

Corollary 2. Let GH : [0, 1]n → [0, 1] be a general grouping function and let
F : [0, 1] → [0, 1] be a commutative and continuous aggregation function such
that, for all #„x = (x1, . . . , xn) ∈ [0, 1]n, if there exists i ∈ {1, . . . , n} such that
xi = 1, then F ( #„x ) = 1. Then GGGH,F ( #„x ) = GH( #„x )F ( #„x ) is a general grouping
function.

Note that Gn is closed with respect to some aggregation functions, as stated
by the following results, which provide construction methods of general grouping
functions.
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Theorem 4. Consider M : [0, 1]2 → [0, 1]. For any GG1,GG2 ∈ Gn, define the
mapping MGG1,GG2 : [0, 1]n → [0, 1], for all #„x ∈ [0, 1]n, by:

MGG1,GG2(
#„x ) = M(GG1( #„x ),GG2( #„x )).

Then, MGG1,GG2 ∈ Gn if and only if M is a continuous aggregation function.

Proof. It follows that:
(⇒) Suppose that MGG1,GG2 ∈ Gn. Then it is immediate that M is con-
tinuous and increasing (A2). Now consider #„x = (x1, . . . , xn) ∈ [0, 1]n and

suppose that
n∑

i=1

xi = 0. Then, by (GG2), one has that: MGG1,GG2(
#„x ) =

M(GG1( #„x ),GG2( #„x )) = 0 and GG1( #„x ) = GG2( #„x ) = 0. Thus, it holds that
M(0, 0) = 0. Now, consider #„x = (x1, . . . , xn) ∈ [0, 1]n, such that there exists
i ∈ {1, . . . , n} such that xi = 1. Then, by (GG3), one has that: MGG1,GG2(

#„x ) =
M(GG1( #„x ),GG2( #„x )) = 1 and GG1( #„x ) = GG2( #„x ) = 1. Therefore, it holds that
M(1, 1) = 1. This proves that M also satisfies (A1), and, thus, M is a continuous
aggregation function.
(⇐) Suppose that M is a continuous aggregation function. Then it is immediate
that MGG1,GG2 is (GG1) commutative, (GG4) increasing and (GG5) continuous.

For (GG2), consider #„x = (x1, . . . , xn) ∈ [0, 1]n such that
n∑

i=1

xi = 0. Then, by

(GG2), one has that GG1( #„x ) = GG2( #„x ) = 0. It follows that: MGG1,GG2(
#„x ) =

M(GG1( #„x ),GG2( #„x )) = M(0, 0) = 0, by (A1), since M is an aggregation func-
tion. Finally, for (GG3) consider that there exists i ∈ {1, . . . , n} such that xi = 1
for some #„x = (x1, . . . , xn) ∈ [0, 1]n. Then, it holds that GG1( #„x ) = GG2( #„x ) = 1.
It follows that: MGG1,GG2(

#„x ) = M(GG1( #„x ),GG2( #„x )) = M(1, 1) = 1, by (A1),
since M is an aggregation function. This proves that MGG1,GG2 ∈ Gn. ��
Example 4. In the sense of Theorem 4, Gn is closed under any bidimensional
overlap functions, grouping functions and continuous t-norms and t-conorms
[18].

Corollary 3. Consider M : [0, 1]2 → [0, 1]. For any n-dimensional grouping
functions G1,G2 : [0, 1]n → [0, 1], define the mapping MG1,G2 : [0, 1]n → [0, 1],
for all #„x = (x1, . . . , xn) ∈ [0, 1]n, by:

MG1,G2(
#„x ) = M(G1( #„x ),G2( #„x )).

Then, MG1,G2 ∈ Gn if and only if M is a continuous aggregation function.

Proof. It follows from Theorem 4, since any n-dimensional grouping function is
a general grouping function. ��

Theorem 4 can be easily extended for n-ary functions Mn : [0, 1]n → [0, 1]:

Theorem 5. Consider Mn : [0, 1]n → [0, 1]. For any GG1, . . . ,GGn ∈ Gn, define
the mapping MGG1,...,GGn

: [0, 1]n → [0, 1], for all #„x ∈ [0, 1]n, by:

MGG1,...,GGn
( #„x ) = Mn(GG1( #„x ), . . . ,GGn( #„x )).
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Then, MGG1,...,GGn
∈ Gn if and only if Mn : [0, 1]n → [0, 1] is a continuous

n-ary aggregation function.

Proof. Analogous to the proof of Theorem 4. ��
This result can be extended for n-dimensional grouping functions.

Corollary 4. Consider Mn : [0, 1]n → [0, 1] and fr any n-dimensional grouping
functions G1, . . . ,Gn define the mapping MG1,...,Gn

: [0, 1]n → [0, 1], for all #„x =
(x1, . . . , xn) ∈ [0, 1]n, by:

MG1,...,Gn
( #„x ) = Mn(G1( #„x ), . . . ,Gn( #„x )).

Then, MG1,...,Gn
is a general grouping function if and only if Mn : [0, 1]n → [0, 1]

is a continuous n-ary aggregation function.

Corollary 5. Let GG1, . . . ,GGm : [0, 1]n → [0, 1] be general grouping functions

and consider weights w1, . . . , wm ∈ [0, 1] such that
m∑

i=1

wi = 1. Then the convex

sum GG =
m∑

i=1

wiGGi is also a general grouping function.

Proof. Since the weighted sum is a continuous commutative n-ary aggregation
function, the result follows from Theorem 5. ��

It is possible to obtain general grouping functions from the generalized com-
position of general grouping functions and aggregation functions satisfying spe-
cific conditions:

Theorem 6. Let GG2 : [0, 1]n → [0, 1] be a general grouping function and let the
n-ary aggregation functions A1, . . . , An : [0, 1]n → [0, 1] be continuous, commu-
tative and disjunctive. Then, the function GG1 : [0, 1]n → [0, 1] defined, for all
#„x = (x1, . . . , xn) ∈ [0, 1]n, by: GG1( #„x ) = GG2(A1( #„x ), . . . , An( #„x )) is a general
grouping function.

Proof. Since GG2, A1, . . . , An are commutative, increasing and continuous func-
tions, then GG1 satisfies conditions (GG1), (GG4) and (GG5). So, it remains to
prove:

(GG2) Let #„x = (x1, . . . , xn) ∈ [0, 1]n be such that
n∑

i=1

xi = 0. Then, since A1

is disjunctive, we have that A1( #„x ) ≥ max( #„x ) = 0, that is A1( #„x ) = 0. Equiva-
lently, one obtains A2( #„x ), . . . , An( #„x ) = 0. Thus, since GG2 is a general grouping
function, one has that GG1( #„x ) = GG2(A1( #„x ), . . . , An( #„x )) = GG2(0, . . . , 0) = 0.
(GG3) Suppose that, for some #„x = (x1, . . . , xn) ∈ [0, 1]n, there exists i ∈
{1, . . . , n} such that xi = 1. So, since A1 is disjunctive then A1( #„x ) ≥ max( #„x ) =
1, that is A1( #„x ) = 1. Since GG2 is a general grouping function, it follows that
GG1( #„x ) = GG2(A1( #„x ), . . . , An( #„x )) = GG2(1, A2( #„x ), . . . , An( #„x )) = 1. ��

Next proposition uses the n-duality property.
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Proposition 7. Consider a continuous fuzzy negation N : [0, 1] → [0, 1] and a
general overlap function GO : [0, 1]n → [0, 1], then for all #„x = (x1, . . . , xn) ∈
[0, 1]n:

GG( #„x ) = N(GO(N(x1), . . . , N(xn))) (4)

is a general grouping function. Reciprocally, if GG : [0, 1]n → [0, 1] is a general
grouping function, then for all #„x = (x1, . . . , xn) ∈ [0, 1]n:

GO( #„x ) = N(GG(N(x1), . . . , N(xn))) (5)

is a general overlap function.

Proof. Since we have a continuous fuzzy negation and bearing in mind that gen-
eral overlap functions and general grouping functions are commutative, increas-
ing and continuous functions according to Definition 8 and Definition 9, respec-
tively, then GO and GG satisfy conditions (GO1), (GG1); (GO4), (GG4) and
(GO5), (GG5). So, it remains to prove:
(GG2) For Eq. (4), take xi = 0, for all i ∈ {1, . . . , n}. Therefore,

GG( #„x ) = N(GO(N(0), . . . , N(0))) N2= N(GO(1, . . . , 1)) GO3= N(1) N2= 0.

(GG3) If there exists a xi = 1, for some i ∈ {1, . . . , n}, then

GG( #„x ) = N(GO(N(x1), . . . , N(1), . . . , N(xn)))
N2= N(GO(N(x1), . . . , 0, . . . , N(xn)))

GO2= N(0) N2= 1.

(GO2) Similarly, for Eq. (5), take a xi = 0 for some i ∈ {1, . . . , n}. So,

GO( #„x ) = N(GG(N(x1), . . . , N(0), . . . , N(xn)))
N2= N(GG(N(x1), . . . , 1, . . . , N(xn)))
GG3= N(1) N2= 0.

(GO3) Now, consider that xi = 1, for all i ∈ {1, . . . , n}. Then,

GO( #„x ) = N(GG(N(1), . . . , N(1))) N2= N(GG(0, . . . , 0)) GG2= N(0) N2= 1.

��

5 Conclusions

In this paper, we first introduced the concept of general grouping functions and
studied some of their properties. Then we provided a characterization of general
grouping functions and some construction methods.

The theoretical developments presented here allow for a more flexible app-
roach when dealing with decision making problems with multiple alternatives.
Immediate future work is concerned with the development of an application in
multi-criteria decision making based on n-ary fuzzy heterogeneous, incomplete
preference relations.
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5. Bustince, H., Pagola, M., Mesiar, R., Hüllermeier, E., Herrera, F.: Grouping, over-
laps, and generalized bientropic functions for fuzzy modeling of pairwise compar-
isons. IEEE Trans. Fuzzy Syst. 20(3), 405–415 (2012). https://doi.org/10.1109/
TFUZZ.2011.2173581

6. Chiclana, F., Herrera, F., Herrera-Viedma, E.: Integrating multiplicative prefer-
ence relations in a multipurpose decision-making model based on fuzzy preference
relations. Fuzzy Sets Syst. 122(2), 277–291 (2001). https://doi.org/10.1016/S0165-
0114(00)00004-X

7. Dimuro, G.P., Bedregal, B.: Archimedean overlap functions: the ordinal sum and
the cancellation, idempotency and limiting properties. Fuzzy Sets Syst. 252, 39–54
(2014). https://doi.org/10.1016/j.fss.2014.04.008

8. Dimuro, G.P., Bedregal, B.: On residual implications derived from overlap func-
tions. Inf. Sci. 312, 78–88 (2015). https://doi.org/10.1016/j.ins.2015.03.049

9. Dimuro, G.P., Bedregal, B., Bustince, H., Mesiar, R., Asiain, M.J.: On additive
generators of grouping functions. In: Laurent, A., Strauss, O., Bouchon-Meunier,
B., Yager, R.R. (eds.) IPMU 2014. CCIS, vol. 444, pp. 252–261. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08852-5 26

10. Dimuro, G.P., Bedregal, B., Fernandez, J., Sesma-Sara, M., Pintor, J.M., Bustince,
H.: The law of O-conditionality for fuzzy implications constructed from overlap and
grouping functions. Int. J. Approximate Reasoning 105, 27–48 (2019). https://doi.
org/10.1016/j.ijar.2018.11.006

11. Dimuro, G.P., Bedregal, B., Santiago, R.H.N.: On (G, N)-implications derived from
grouping functions. Inf. Sci. 279, 1–17 (2014). https://doi.org/10.1016/j.ins.2014.
04.021

12. Dimuro, G.P., Bedregal, B., Bustince, H., Asiáin, M.J., Mesiar, R.: On additive
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