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Abstract. As for many classifiers, decision trees predictions are natu-
rally probabilistic, with a frequentist probability distribution on labels
associated to each leaf of the tree. Those probabilities have the major
drawback of being potentially unreliable in the case where they have been
estimated from a limited number of examples. Empirical Bayes methods
enable the updating of observed probability distributions for which the
parameters of the prior distribution are estimated from the data. This
paper presents an approach of smoothing decision trees predictive binary
probabilities with an empirical Bayes method. The update of probabil-
ity distributions associated with tree leaves creates a correction concen-
trated on small-sized leaves, which improves the quality of probabilistic
tree predictions. The amplitude of these corrections is used to generate
predictive belief functions which are finally evaluated through the ensem-
blist extension of three evaluation indexes of predictive probabilities.

Keywords: Smoothing · Correction · Predictive probabilities ·
Decision trees · Bayesian empirical methods · Predictive belief
functions · Uncertain evaluation

1 Introduction

Even if the predictions provided by classifiers are generally considered in a pre-
cise or crisp form, they are often initially computed as soft predictions through
probability distributions, most probable labels being used as hard predictions
at the final predictive or decision-making step. Decision trees are basic classi-
fiers and regressors that are at the basis of many famous supervised learning
algorithms (random forest, XGBoost, etc.). Once a tree built, the proportions
of labels contained in each leaf are used to compute these predictive probabil-
ities. Small leaves, i.e. containing only a small number of examples, therefore
produce unreliable predictive probabilities since they are computed from a lim-
ited amount of data. Those unreliable leaves are usually cut in a post-pruning
step in order to avoid overfitting, but due to the complexity pruning method-
ologies often involve, users tend to choose pre-pruning strategies, i.e. set more
conservative stopping criteria, instead.

In the classic machine learning literature some work focus on classifiers pre-
dictive probabilities calibration in order to make them smoother or to correct
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some intrinsic biases typical of different predictive models [16]. These approaches
often involve the systematic application of mathematical functions requiring a
set of dedicated data at the stage of calibration and sometimes requiring heavy
computations in terms of complexity [20] or only considering a subset of the
learning data [27]. Statistical approaches such as Laplacian or additive smooth-
ing provide tools that are known to correct estimators in order to increase the
impact of classes for which only few or even no data are available. Those tech-
niques have been largely used in Natural Language Processing [12] and Machine
learning [21,23]. From a Bayesian point of view, Laplacian smoothing equates to
using a non-informative prior, such as the uniform distribution, for updating the
expection of a Dirichlet distribution. Other works based on evidential models
enable local adjustments during the learning phase of decision trees. In these
methodologies class labels estimates are carried out on small subsets of data
independently to the dataset global distribution [7].

This works aims at providing basic adjustments of decision trees outputs
based on the tree structure and the global distribution of the learning data
without involving any additional complexity. The approach presented in this
article allows the correction of classification trees predictive probabilities in the
case of binary classes. To achieve this, an empirical Bayesian method taking into
account the whole learning sample as prior knowledge is applied and results in
the adjustments of the probabilities associated with leaves relatively to their
size. Unlike Bayesian smoothing which takes benefits only from the size of sub-
samples corresponding to leaves, empirical Bayesian smoothing uses the whole
distribution of labels in regards to leaves which can be viewed as a rich piece
of information and is therefore legitimate to be incorporated in any predictive
evidential modelling. To this extent, the ranges of the resulting estimates correc-
tions are finally used to generate predictive belief functions by discounting the
leaves predictive probabilities which can be finally evaluated following extensions
of existing evaluation metrics. It should be noticed that this work is out of the
scope of learning decision trees from uncertain data as in [6,25,26]. In this paper
all the learning data are precise, it is at the prediction step that the uncertainty
is modelled by frequentist probabilities wich are smoothed and transformed into
belief functions from their correction ranges.

After recalling the necessary background in Sect. 2, the proposed approach
is described in detail in Sect. 3. Taking into account the predictive probabil-
ity adjustments amplitude enables, in Sect. 4, the formalisation of an evidential
generative model and the extension of three evaluation metrics of predictive
probabilities to the case of uncertain evidential predictions. In Sect. 6, a first set
of experiments shows the contribution of the methodology on the one hand in
a pragmatic point of view in terms of predictive performance and on the other
hand by the flexibility of decision-making it offers.

2 Basics

The learning of a decision tree corresponds to a recursive partitioning of the
attributes space aiming at separating labels as well as possible (classification) or
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to decrease their variance (regression) [1]. The learning data are thus distributed
in the different tree leaves, which are then associated with probability distribu-
tions over class variables according to the proportions of labels in the examples
they contain. In this article we restrict ourselves to the case of binary classes
noted {1, 0} or {+,−}.

Fig. 1. Predictive probabilities

Fig. 1 is an example of a decision tree in which any example younger than
65 years old will have a positive class probability estimated by P (+) = 7

10 ,
for any older example (than 65 years old) and heavier than 80 kg we will have
P (+) = 2

7 and finally for examples older than 65 years old and weighing less
than 80 kg we will predict P (+) = 1

3 . This last probability is here estimated
from only 3 examples, it is therefore natural to consider it relatively unreliable
(in comparison to the two others based on respectively 10 and 7 examples).

Various stopping criteria can be used during the learning of a decision tree
depending on the structure of the tree (leaves number, depth, etc.) or in terms
of information (impurity gain, variance). In order to avoid overfitting, pruning
strategies are generally implemented to limit the number of leaves (which reduces
variance and complexity).

2.1 Empirical Bayesian Methods

Bayesian inference is an important field of Statistics which consists in using some
prior knowledge in order to update the estimations computed on data (according
to Bayes theorem). This updates often result in predictive probabilities whose
quality directly depends on the prior information. While Bayesian priors are gen-
erally constituted of probability distributions that the user subjectively express
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about the phenomenon of interest (expert opinions are often at the basis of the
prior’s modelling), for the Bayesian empirical methods [4,22], the parameters
of these prior distributions are estimated from the data. Some authors consider
these methods as approximations of hierarchical Bayesian models [19].

Considering a sample of a binary variable y = (y1, ..., yn) ∈ {0, 1}n, for all
subset y∗ ⊆ y, a natural (and frequentist) estimate of the probability of label 1,
i.e. of p∗ = P (Y = 1|Y ∈ y∗), is its observed frequency p̃∗ = |{yi∈y∗: yi=1}|

|y∗| . This
estimator makes implicitly the assumption that the sample y∗ is large enough
to estimate the probability of label 1 by a random draw in it.

In Bayesian statistics, for the binomial model corresponding to y∗’s gener-
ation, a prior knowledge about p∗ is usually modelled in terms of probability
distribution by p∗ ∼ Beta(α, β) (flexible prior) and the model update from the
data y∗ results in a posterior distribution p∗

| y∗ ∼ Beta(α+n∗
1, β +n∗ −n∗

1) with
n∗
1 = |{yi ∈ y∗ : yi = 1}| and n∗ = |y∗|.

The Bayesian (posterior) estimator of p∗ is finally computed as its conditional
expectation given y∗:

p̂∗ = E[p∗|y∗] =
n∗
1 + α

n∗ + α + β
(1)

By doing so, p̃∗ is shifted toward its global expectation E[p̃∗] = α
α+β and this

shift’s range relies on the value of n∗.
Whereas in standard Bayesian works the prior ’s parameters are often set

by an expert according to his knowledge, i.e. subjectively, or by default in a
non-informative form as with Laplacian smoothing (p∗ ∼ Beta(1, 1) is equiv-
alent to p∗ ∼ U [0, 1]), in empirical Bayesian approaches they are estimated
from the whole sample y (by likelihood maximisation) with the hypothesis that
p ∼ Beta(α, β). One direct consequence is that the smaller the size of y∗, the
greater the amplitude of the shift of p∗ toward its global expectation on y. The
Bayesian estimator of this approach, illustrated for the number of successful
baseball shots per player in [2], is here applied to the probabilistic predictions
attached with the leaves of binary classification trees.

2.2 Evaluation of Predictive Probabilities

Even if the evaluation of a classifier is often done from precise or crisp predic-
tions by comparing them to the real class labels through different metrics (e.g.
accuracy, precision, recall, etc.) it can however be done at the level of predictive
probabilities, thus upstream. Three metrics for evaluating binary probabilistic
predictions are presented hereinafter.

Let y = (y1, ..., yn) ∈ {1, 0}n be the true labels of a given sample of size n and
p = (p1, ..., pn) = [P (Y1 = 1), ..., P (Yn = 1)] the class predictive probabilities of
label {1} according to a given predictive model M , applied to the sample x. The
Table 1 summarizes the definitions of the log-loss, the Brier score and the area
under the ROC curve (AUC). The log-loss can be interpreted as a Kullback–
Leibler divergence between p and y that takes into account p’s entropy and
is therefore called cross-entropy by some authors. The Brier score is defined



372 N. Sutton-Charani

as the mean squared difference between p and y. The log-loss and Brier score
thus measure the difference between observations and predicted probabilities,
penalizing the probabilities of the least probable labels. The ROC curve is a
standard measure of a binary classifier’s predictive power, it represents the rate
of true positives or sensibility (i.e. the proportion of positive examples that are
predicted as positive) as a function of the rate of false positives or 1−specificity
(i.e. the proportion of negative examples that are predicted as positive), we have
ROC : sensibility(1 − specificity). The AUC area under the ROC curve is a
well known indicator of the quality of probabilistic predictions.

The three metrics thus defined lie in [0, 1] and a good binary classifier will
be characterized by log-loss and Brier score values close to 0 and an AUC value
close to 1. It should be noted, however, that these three metrics are defined for
standard uncertain predictions, i.e. probabilistic predictions.

Table 1. Evaluation metrics of binary probabilistic predictions (p1, ...pn) with respect
to true labels (y1, ...yn)

Name Definition

Log-loss − 1
n

n∑

i=1

[
yi log(pi) + (1 − yi) log(1 − pi)

]

Brier score 1
n

n∑

i=1

(yi − pi)
2

AUC
1∫

0

ROC(p, y, λ)dλ

3 Empirical Bayesian Correction of Decision Trees
Predictive Probabilities

The approach presented in this paper consists in correcting the predictive prob-
abilities of a binary classification tree containing H leaves denoted l1, ..., lH with
an empirical Bayesian method. It is assumed that the proportion of label {1}
within the leaves of the tree follows a Beta(α, β) distribution (without setting a
priori the values of the parameters α and β). We can notice that the Beta distri-
bution is both a special case of the Dirichlet distribution (widely used in Bayesian
statistics) and a generalization of the uniform distribution (U[0,1] = Beta(1, 1))
which is supposed to model non-informative prior knowledge.

Once the hypothesis of the Beta law is formulated, its parameters α and β
are estimated from the set {p11, ..., p

H
1 } of label proportions {1} within the H

leaves of the considered tree. In order to penalize small leaves, we will consider
an artificial sample denoted E containing each ph

1 proportion repeated a number
of times equal to the size of the considered leaf, i.e. to the number of examples
it contains.
We have E = ( p11, ..., p

1
1

︸ ︷︷ ︸

, ..., pH
1 , ..., pH

1
︸ ︷︷ ︸

).

|l1| times |lH | times
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The estimation of the parameters α and β can then be performed on E by
likelihood maximisation following different approaches (moments, least squares,
etc.). This step makes α and β’s values take into account the leaves sizes through
an artificial weighting that is defined according to their sizes. By doing so, the
information of the tree structure is used through the leaves partitioning and
their sizes to define the prior or the empirical Bayes model. The probabilities p̃h

1

of the leaves l1, ..., lH are finally corrected according to the Eq. (1):

p̃h
1 =

nh
1

nh
� p̂h

1 =
nh
1 + α

nh + α + β
(2)

with nh and nh
1 denoting respectively the size of the leaf lh (i.e. the number of

examples it contains) and the number of examples it contains that have the label
{1}.

It should be recalled that other works [20,27] allow a calibration of the pre-
dictive probabilities by different approaches using either only the distributions
of the examples contained in the leaves independently from one another, or
the distribution of the whole learning sample but applying systematic trans-
formations based on estimations requiring many computations (often obtained
by cross-validation). The method proposed in this paper uses both the whole
distribution of the training data (once distributed in the different leaves of a
tree) and remains very simple in terms of complexity, the α and β parameters
of Eq. (2) being estimated only once for the whole sample and then used locally
on leaves according to their sizes at the prediction step. Nevertheless the range
of these probabilistic correction represent a piece of information by itself that
should be incorporated into the leaves in order to express a confidence level on
themselves. In the next section an evidential generative model based on these
correction ranges is presented.

4 Generation of Predictive Belief Functions

The uncertainty expressed in the predictive probabilities of a classifier is mainly
aleatory. It is based on the mathematical model underlying the classifier and on
frequentist estimates. The knowledge of the empirical Bayesian adjustment and
its range is a piece of information in itself that can allow epistemic uncertainty
to be incorporated into the leaves predictive probabilities. It is indeed natural
to consider unreliable the predictive probabilities that are estimated on a small
number of examples (and therefore highly adjusted).

Unlike many works on belief functions generation where uncertain data are
used in evidential likelihoods applied to parametric models [9,14] or random gen-
eration is extended to mass function [3], the context of this article is restricted
to the case of discounting leaves predictive probabilities according to the range
of their empirical Bayesian adjustment. As a first approach, we propose to gen-
erate a belief function from a predictive probability using its empirical Bayesian
correction range |p̃ − p̂| as unreliability indicator (p̃ and p̂ denoting respectively
standard frequentist and empirical Bayesian adjusted estimates of p), assigning
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its weight to ignorance and substracting it uniformly to singletons probabilities.
The resulting belief function can be viewed as a type of evidential discounted
predictive probabilities. This modeling relies on the hypothesis that the more a
predictive probability is corrected (i.e. the smaller the subsample considered),
the less reliable it is.

⎧

⎨

⎩

m({1, 0}) = |p̃ − p̂|
m({1}) = p̃ − |p̃−p̂|

2

m({0}) = 1 − p̃ − |p̃−p̂|
2

(3)

In order to make as few assumptions as possible, once the mass of ignorance is
defined, the mass of the two classes are symmetrically discounted. We can notice
that we have Bel({0}) = 1 − Pl(({1}) and Bel({1}) = 1 − Pl(({0}).

Remark: This belief function modelling can also be written in terms of
imprecise probability: p ∈ [p−, p+] with

{

p−= p̃ − |p̃−p̂|
2

p+= p̃ + |p̃−p̂|
2

(4)

The generative model (3–4) can be interpreted as a reliability modelling of the
corrected leaves predictive probabilities. The output nature of a classification
tree can thus be considered through imprecise probabilities. In the next section,
an imprecise evaluation model is presented that keeps an evidential uncertainty
level until final outputs of decision trees evaluation.

5 Imprecise Evaluation

Evidential predictions evaluation remains a challenging task, some works have
been presented based on evidential likelihood maximisation of evaluation model
parameters (error rate or accuracy) [25] but in case of a predictive belief function
the simplest evaluation solution is to convert it into standard probability with
the pignistic transform for instance. The main drawback of such practice is that
all the information contained in the uncertain modelling of the predictions is lost
but it has the pragmatic advantage of providing crisp evaluation metrics that
can be easily interpreted.

In order to keep the predictive uncertainty or imprecision provided by the
model (4) until the stage of the classifiers evaluation, it is possible to consider
the metrics defined in Table 1 in an ensemblist or intervalist perspective. Indeed,
to a set of predictive probabilities naturally corresponds a set of values taken by
these evaluation metrics. An imprecise probability [p−, p+] computed according
to the model (4) will thus be evaluated imprecisely by an interval defined as
follows:
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eval([p−, p+], y) =

[

min
p∈[p−,p+]

eval(p, y), max
p∈[p−,p+]

eval(p, y)

]

where eval is one of the metrics defined in Table 1.
This type of evaluation approach involves that, the smaller the leaves of the

evaluated decision tree, the more the probabilities associated with these leaves
will be adjusted and the more imprecise the evaluation of these trees will be
(i.e. the wider the intervals obtained). This approach is therefore a means of
propagating epistemic uncertainty about the structure of the tree into its evalu-
ation metrics. It should be noted, however, that this solution requires an effective
browse of the entire [p−, p+] interval, which implies a significant computational
cost.

6 Experiments

In this section, a set of experiments is implemented to illustrate the practi-
cal interest of the empirical Bayesian correction model presented in this paper.
Using six benchmark datasets from the UCI1 and Kaggle2 sites, 10-fold cross-
validations are carried out with, for each fold of each data set, the learning of
decision trees corresponding to different complexities on the nine other folds and
an evaluation on the fold in question using the three precise metrics defined in
Table 1. The ‘cp’ parameter (of the ‘rpart’ function in R) allows to control the
trees complexity, it represents the minimal relative information gain of each con-
sidered cut during the learning of the trees. Trees denoted ‘pruned’ are learned
with a maximum complexity (cp = 0) and then pruned according to the classical
cost-complexity criteria approach of the CART algorithm [1]. The evaluations
consist of the precise metrics computations presented in Table 1 as well as their
uncertain extensions defined in Sect. 5. These steps are repeated 150 times in
order to make the results robust to fold random generation and only the mean
evaluations of the trees predictive probabilities are represented here. The codes
used for the implementation of all the experiments presented below are available
at https://github.com/lgi2p/empiricalBayesDecisionTrees.

Table 2 represents the characteristics of the different datasets used in terms
of number of examples (n), number of attributes or predictor variables (J) and
number of class labels (K). The Tables 3, 4, 5, 6, 7 and 8 contain the mean
evaluations computed for each dataset and for each tree type, over all 150 cross-
validations performed, before and after empirical Bayesian smoothing. Figures 2
and 3 illustrate the distributions of these results with evaluation intervals for
the log-loss on the ‘banana’ dataset and for the Brier score on the ‘bankLoan’
dataset with respect to the supports of the corresponding uncertain evaluations
(only the extreme points of the uncertain metrics are represented).

The log-loss of corrected trees is almost always lower than that of original
trees. This increase in performance is clear for large trees (learnt with a low

1 https://archive.ics.uci.edu/ml/datasets.html.
2 https://www.kaggle.com/datasets.

https://github.com/lgi2p/empiricalBayesDecisionTrees
https://github.com/lgi2p/empiricalBayesDecisionTrees
https://archive.ics.uci.edu/ml/datasets.html
https://www.kaggle.com/datasets
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Table 2. Datasets dimensions

n J K

banana 5300 2 2

bankLoan 5000 12 2

banknote 1372 4 2

mammo 830 5 2

pima 768 8 2

ticTacToe 958 9 2

Table 3. Log-loss before smoothing

dataset\cp 0 0.001 0.005 0.01 0.05 pruned

banana 0.410 0.351 0.355 0.419 0.425 0.359

bankLoan 1 0.665 0.568 0.571 0.571 0.566

banknote 0.330 0.329 0.322 0.331 0.347 0.329

mammo 0.444 0.437 0.414 0.409 0.450 0.416

pima 0.886 0.884 0.742 0.655 0.565 0.630

ticTacToe 0.221 0.221 0.213 0.210 0.549 0.214

Table 4. Log-loss after smoothing

dataset\cp 0 0.001 0.005 0.01 0.05 pruned

banana 0.287 0.300 0.334 0.418 0.424 0.358

bankLoan 0.640 0.582 0.568 0.571 0.571 0.566

banknote 0.173 0.174 0.180 0.225 0.346 0.328

mammo 0.419 0.419 0.410 0.406 0.450 0.416

pima 0.557 0.557 0.545 0.541 0.564 0.630

ticTacToe 0.188 0.188 0.188 0.191 0.550 0.214

Table 5. Brier score before smoothing

dataset\cp 0 0.001 0.005 0.01 0.05 pruned

banana 0.084 0.086 0.097 0.129 0.131 0.086

bankLoan 0.229 0.204 0.190 0.192 0.192 0.189

banknote 0.040 0.040 0.043 0.057 0.098 0.041

mammo 0.130 0.130 0.125 0.123 0.140 0.126

pima 0.188 0.188 0.184 0.183 0.189 0.186

ticTacToe 0.061 0.061 0.061 0.062 0.187 0.062
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Table 6. Brier score after smoothing

dataset\cp 0 0.001 0.005 0.01 0.05 pruned

banana 0.083 0.086 0.097 0.129 0.131 0.086

bankLoan 0.219 0.198 0.190 0.192 0.192 0.189

banknote 0.040 0.040 0.042 0.057 0.098 0.041

mammo 0.129 0.129 0.125 0.123 0.140 0.126

pima 0.183 0.183 0.179 0.179 0.188 0.186

ticTacToe 0.060 0.060 0.060 0.062 0.187 0.061

Table 7. AUC before smoothing

dataset\cp 0 0.001 0.005 0.01 0.05 pruned

banana 0.946 0.936 0.920 0.872 0.867 0.937

bankLoan 0.778 0.772 0.747 0.722 0.720 0.755

banknote 0.843 0.838 0.821 0.799 0.777 0.827

mammo 0.852 0.848 0.835 0.819 0.789 0.839

pima 0.839 0.836 0.826 0.812 0.771 0.821

ticTacToe 0.861 0.858 0.850 0.838 0.758 0.846

Table 8. AUC after smoothing

dataset\cp 0 0.001 0.005 0.01 0.05 pruned

banana 0.948 0.937 0.920 0.872 0.867 0.937

bankLoan 0.781 0.773 0.747 0.722 0.720 0.755

banknote 0.845 0.840 0.822 0.799 0.777 0.827

mammo 0.854 0.850 0.836 0.819 0.789 0.838

pima 0.842 0.839 0.828 0.813 0.771 0.821

ticTacToe 0.864 0.860 0.851 0.839 0.758 0.845

Fig. 2. Precise and uncertain log-loss as a function of the complexity
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Fig. 3. Precise and uncertain Brier score as a function of the complexity

value of the hyper-parameter ‘cp’ and thus containing many leaves), slightly
less visible for small trees and very limited for pruned trees. This difference
in terms of performance gain in regards to the tree size is probably due to
the fact that the bigger the trees, the smaller are their leaves. Indeed, if the
examples of the same learning data are spread into a higher number of leaves,
their number inside the leaves have to be lower (in average). This conclusion
shows that empirical Bayesian adjustment makes sense especially for complex
models. The same phenomenon of gain in performance proportional to tree size
is globally observable for the Brier score and the AUC index but in smaller
ranges.

Other works have already illustrated the quality increase of decision trees pre-
dictions by smoothing methods [5,17,18] but none of these neither illustrated
nor explained the link between pruning and those increase ranges based on over-
fitting intuition. Moreover, using the learning sample labels distribution as prior
knowledge is a new proposal that has not yet been studied in the context of
decision trees leaves, especially in order to generate predictive belief functions
(and their evaluation counterpart). Even if it was not in the scope of this arti-
cle, some experiments have been carried on in order to compare the empirical
Bayesian smoothing with the Laplacian one, and no significant differences were
observed in terms of increase of the predictive evaluation metrics used in this
paper.

The intervals formed by the uncertain evaluations correspond roughly to the
intervals formed by the precise evaluations without and with Bayesian smooth-
ing. However, it can be seen in Fig. 2 and 3 that uncertain evaluations sometimes
exit from these natural bounds (pruned trees in Fig. 2 and large trees in Fig. 3),
thus highlighting the non-convexity of the proposed uncertain metrics for eval-
uating evidential predictions.

7 Conclusion

The empirical Bayesian correction model presented in this paper for decision
trees predictive probabilities is of interest in terms of predictive performance,
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and this interest is particularly relevant for large trees. The fact that Bayesian
corrections hardly improve the performance of small (i.e. with low complexity)
or pruned trees suggests that the Bayesian correction represents an alternative
to pruning. By shifting the predictive probabilities of small leaves to their global
averages (i.e. calculated within the total learning sample) it reduces the phe-
nomenon of overfitting.

In this paper Bayesian corrections are only performed at the predictive stage,
i.e. at the leaf level. Adopting the same approach throughout the learning process
is possible by proceeding in the same way at the purity gain computation level
(i.e. for all the considered cuts). It would be interesting to compare the approach
presented in this work with the one of [7] which pursues the same goal (penalizing
small leaves) based on an evidential extension of purity gain computation where
a mass of 1

n+1 is assigned to ignorance in the impurity measure presented in
[15] that combines variability and non-specificity computed on belief functions.
It is important to note that the approach previously mentioned is based on the
distribution of examples within the leaves individually, in case of unbalanced
learning samples they do not allow correction in the direction of the general
distribution as it is the case with the empirical Bayesian model.

The approaches of predictive belief functions generation based on the use of
evidential likelihood [9,13] also represent an interesting alternative to which it
will be important to compare oneself both in terms of predictive performances
and with respect to the underlying semantics. In the same vein, the approach
presented in this paper for the binary classification context could be extended
to the multi-class case following the approaches used in [24]. More generally, all
classifiers whose learning at the predictive stage involves frequentist probability
computations could potentially benefit from this type of Bayesian correction.
Ensemble learning approaches could be enhanced by empirical Bayesian correc-
tions at different levels. When their single classifiers are decision trees, it could
be straightforward to correct trees with the correction model presented in this
article. A global adjustment could be also be achieved at the aggregation phase
with the same type of artificial sample creation as for tree correction (leaves level
could be extended to classifiers level).

The model for generating predictive belief functions and especially the exten-
sion of evaluation metrics to the credibility context proposed in this work could
be greatly enriched by a more refined modeling of the uncertainty resulting from
the initial predictive probabilities and their corrections. For example, it would
be possible to use the distances proposed in [11] in order to make the represen-
tation of uncertain assessment metrics more complex beyond simple intervals. It
would also be desirable to directly estimate the bounds of the uncertain evalua-
tion intervals without having to browse them effectively from simulation-based
approaches such as in [8] or by optimization results such as in [10].
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