
Dempster-Shafer Theory: How Constraint
Programming Can Help

Alexandros Kaltsounidis(&) and Isambo Karali(&)

Department of Informatics and Telecommunications,
National and Kapodistrian University of Athens, Athens, Greece

{A.Kaltsounidis,izambo}@di.uoa.gr

Abstract. Dealing with uncertainty has always been a challenging topic in the
area of knowledge representation. Nowadays, as the internet provides a vast
platform for knowledge exploitation, the need becomes even more imminent.
The kind of uncertainty encountered in most of these cases as well as its dis-
tributed nature make Dempster-Shafer (D-S) Theory to be an appropriate
framework for its representation. However, we have to face the drawback of the
computation burden of Dempster’s rule of combination due to its combinatorial
behavior. Constraint Programming (CP) has proved to be an efficient tool in
cases where results have to satisfy some specified properties and pruning of the
computation space can be achieved. As D-S theory measures’ computation
fulfills this requirement, CP seems a promising framework to employ for this
purpose. In this paper, we present our approach to use CP to compute the belief
and plausibility measures of D-S Theory and Dempster’s rule of combination as
well as the results of the effort. As it was expected, the results are quite
promising and in many cases impressive.

Keywords: Dempster-Shafer theory � Uncertainty � Constraint Programming �
ECLiPSe prolog

1 Introduction

In the area of Knowledge Representation there are many frameworks whose purpose is
to model the raw information available so as to create a meaningful and useful inference.
Unfortunately, knowledge is not always expressed if terms of indisputable facts. It can
be either uncertain or vague or both. Uncertainty may be the product of incomplete or
unreliable knowledge and it raises a significant confusion as to how it should be treated.
A lot of research has been done in the area and different approaches have been sug-
gested. Efforts combine results from computer science, statistics, game theory and
philosophy [1]. These include, but are not limited to, probability, possibility theory [2],
probabilistic reasoning such as Bayesian Networks [3], Non-monotonic reasoning [4]
and Dempster-Shafer (D-S) theory [1, 5–7]. In case of imprecise or vague information,
its modeling has been somehow interrelated with Fuzzy Sets and Fuzzy Logic [8, 9].

The Internet, the World Wide Web (WWW) and the ongoing evolution of the
Semantic Web (SW) [10], provide an enormous information store for knowledge
extraction and exploitation. The need for an efficient framework able to reason under

© Springer Nature Switzerland AG 2020
M.-J. Lesot et al. (Eds.): IPMU 2020, CCIS 1238, pp. 354–367, 2020.
https://doi.org/10.1007/978-3-030-50143-3_27

http://orcid.org/0000-0001-9430-5304
http://orcid.org/0000-0001-6675-8373
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50143-3_27&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50143-3_27&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50143-3_27&domain=pdf
https://doi.org/10.1007/978-3-030-50143-3_27

uncertainty is more urgent than ever. Apart from the above mentioned problems,
frequently missing information, the size of the available data and its distributed nature
provide some special characteristics. As an example, consider the case of the online
traveling sites which provide information about hotels and a user’s need to be provided
with some accommodation suggestion according to some personal criteria. Hotel
information is distributed among the sites, information is stored heterogeneously and
some of it may be missing from some sites. Regarding dealing with the uncertainty in
the Web, a detailed discussion can be found in [11].

Dempster-Shafer (D-S) theory, also referred to as the theory of belief functions or
evidence theory is able to deal with ignorance and missing information (i.e. epistemic
uncertainty). It is a generalization of the Bayesian theory of subjective probabilities and
as such it allows for a greater degree of flexibility. For compositionality purposes, it
also offers a rule for combining evidence from different independent sources [12]. The
Theory has already been adopted in WWW or SW environments even as a tool for
inexact knowledge modelling [13–17]. Some criticism has been done regarding when
to use Dempster’s Rule of Combination, as it might produce counter intuitive results in
some cases [18, 19]. However, the Theory is widely used, especially in practical
situations relative to data fusion [20]. According to [21], whether Dempster’s rule of
combination is appropriate depends on the problem’s characteristics. Although D-S
theory is a valuable framework for handling uncertainty with the current traits of
knowledge representation, the computation of Dempster’s rule puts a significant barrier
to the theory being used more in practice because of its high complexity. It has been
proved that computing Dempster’s rule of combination is a #P-complete problem [22]
and so it cannot be performed in an acceptable time when the data grow significantly,
although methods of computing Dempster’s rule in a more efficient way have been
proposed [23]. To overcome this obstacle of complexity, many researchers have
resorted to approximation algorithms [23–27]. In general, their efforts fall into two
categories. The first one contains algorithms that make use of Monte Carlo, or similar
random methodologies, to compute a solution [23]. The second category [24–27]
consists of algorithms which alter the input data, in order to create an easier to compute
problem. This is carried out by disregarding facts that have little evidence.

In order to avoid losing accuracy and be able to use Dempster’s Rule of Combi-
nation as is, our approach to the complexity of the rule is to use Constraint Pro-
gramming for its computation. Constraint programming (CP) [28] is a programming
paradigm where relationships between the variables of the problem’s computational
space are stated in the form of constraints. In the case of Dempster’s Rule of Com-
bination, we utilize constraints to compute only the combinations that have a non-
empty intersection (we can extract the normalization factor out of these). CP is also
used to avoid evaluating redundant combinations, when computing belief and plausi-
bility of a specific set by setting constrains on subset and non-empty intersection
relationships, respectively. In order to evaluate the method, we employed ECLiPSe
Prolog [29] using its set constraints solver [30, 31]. We created a program that performs
Dempster’s rule of combination on any number of mass functions using constraints and
we compared it with a generate-and-test implementation. The latter evaluates every
possible focal point combination. For comparison reasons, both programs ran on a
number of random test cases that we created by using a variable number of: i) mass

Dempster-Shafer Theory 355

functions, ii) focal points per mass function, and iii) elements of the Universe. The
constrain-and-generate program outperformed the generate-and-test one in the tests.
As expected, the time the constraint program needed was relative to the number of
combinations which have a non-empty intersection, whereas the generate-and-test
program’s time was related to the total number of combinations. When computing the
belief (or plausibility) for a set A, the time needed by the constraint program was
relative to the number of combinations whose intersection is a subset of (or intersects
with) A. Thus, for the constraint-and-generate method no redundant sets are generated.

It is worth mentioning that Constraint Systems (CS), the formalism that models
constraint problems, and D-S theory have already been related since many years ago.
CS have been employed to model the uncertainty expressed by belief functions in a
variety of early works, for instance [32]. In addition, recently, Constraint Satisfaction
Problems (CSPs) have been extended with uncertainty. In [33], a unifying CSP
extension based on the D-S theory is presented that supports uncertainty, soft and
prioritized constraints and preferences over the solutions.

In this paper, we present our approach in using CP to reduce the computation time
for D-S theory measures, namely belief and plausibility, as well as Dempster’s rule of
combination and summarize our results. The paper is structured as follows. The nec-
essary background on D-S theory will be recalled in Sect. 2. In Sect. 3 the complexity
of Dempster’s rule as well as related work will be discussed. A brief description of
Constraint Programming and Logic Programming will be given in Sect. 4, as constraint
programming within logic programming is used in our prototype implementation. Our
approach, its implementation and test results will be presented in Sect. 5. Section 6 will
then conclude this paper.

2 Dempster Shafer Theory

Dempster-Shafer (D-S) Theory is a framework designed for reasoning under uncer-
tainty, which allows to combine evidence from different independent sources. The latter
is achieved by Dempster’s rule of combination. This rule produces common shared
belief between multiple sources and distributes non-shared belief through a normal-
ization factor. Dempster’s rule of combination is a powerful and useful tool and one of
the reasons why the D-S theory has been so widely spread in many areas in computer
science, from artificial intelligence to databases as it allows the Theory to deal with
distributed sources.

D-S theory considers a universe, U, of mutually exclusive events. A basic mass
function, m, assigns subjective probabilities to subsets of U. Then, on top of m, belief
and plausibility functions are defined for any subset of U assigning lower and upper
likelihoods to each of them. Composition of different mass functions on the same
universe is achieved using Dempster’s Rule of Combination considering independent
sources. More formally, these measures are defined as follows.

356 A. Kaltsounidis and I. Karali

2.1 Formal Definition

Let U be the Universe, i.e. the set containing all possible states of a system under
consideration. The power set 2U of U, is the set of all subsets of U, including the empty
set Ø.

Mass Function: A mass function (also called basic probability assignment or basic
belief assignment) is the most fundamental function for assigning degrees of belief to a
set of one or more hypotheses. Formally, a mass function m is a function from 2U to
½0; 1�: m : 2U �!½0; 1� with the following properties:

1. The mass of the empty set is equal to zero mð£Þ ¼ 0, and
2. The masses of the elements of the power set must sum to a total of one.P

A22U
mðAÞ ¼ 1

Belief Function: The belief (also known as support) of a set A 2 2U , denoted by belðAÞ
expresses the total amount of belief committed to A and is defined as:

belðAÞ ¼
X

B�A

mðBÞ; 8A�U:

Plausibility Function: The plausibility for a set A 2 2U , denoted by plðAÞ expresses the
amount of belief not committed to the complement of A and thus declares how plau-
sible A is. It is computed as:

plðAÞ ¼
X

B\A6¼£

mðBÞ; 8A�U:

Dempster’s Rule of Combination: The theory of evidence also handles the problem of
how to combine evidence from different independent sources.

Let m1;m2; . . .;mn be mass functions defined over the same Universe U. Then
using Dempster’s rule of combination we can compute a new mass function that
incorporates the evidence of m1;m2; . . .;mn. We use � to denote the operator of
Dempster’s rule of combination. Then the combination of m1;m2; . . .;mn is called the
joint mass m1;2;::;n � m1 � m2 � . . .� mn and is defined as:

m1 � m2 � . . .� mn ¼ �n
i¼1

miðAÞ ¼ 1
1�K

P

B1;::;Bnj \ n
i¼1Bi¼A

m1ðB1Þ � . . . � mnðBnÞ; 8A�U;A 6¼ £

where,

K ¼
X

B1;::;Bnj \ n
i¼1Bi¼£

m1ðB1Þ � . . . � mnðBnÞ:

Dempster-Shafer Theory 357

Here, K is a normalization constant that accounts for the products of mass values
corresponding to the empty intersections of focal points. It can be considered as a
measure of conflict between the mass functions.

3 Complexity of Dempster’s Rule of Combination
– Approximation Algorithms

Dempster’s Rule of Combination has exponential complexity. In [22], it was shown
that evaluating the rule is a #P-complete problem.

To handle the complexity problem, many have resorted to approximation algo-
rithms to compute the rule. An approximation algorithm is an efficient algorithm that
finds approximate solutions for the desired problem with provable guarantees on the
distance of the evaluated solution to the exact one. Towards this, a lot of work has been
done into trying to reduce the size of input (i.e. the number of focal points of each mass
function), with some of the most well-known methods being the Bayesian approxi-
mation [24], the k-l-x method [25], the summarization method [26], and the D1
Approximation [27]. There has also been effort into developing algorithms to directly
compute an approximate value for Dempster’s rule’s result using Monte Carlo models
and/or Markov Chain models [23].

When a lot of information is available, i.e. the size of the problem is big, we can
resort to approximation algorithms, as a loss of accuracy can be tolerated, for the sake
of a significant reduction in time needed for the computation. On the other hand, when
we have only a few sources of evidence to combine, and/or a small number of focal
points per mass function, an approximation can be deceptive, thus we have to compute
the exact solution.

To give a better understanding of the problem, we can summarize it as follows.
Given a frame of discernment U of size |U|, a mass function m can have up to
2|U| (2|U| − 1 to be precise, as the empty set cannot be a focal point) focal points. Given
a mass function m, the computation of the belief, or the plausibility function for m is
linear to the number of focal points of m (as computation of sums). Note, however, that
the combination of two mass functions through Dempster’s rule of combination
requires the computation of up to 22|U| intersections. To generalize, let n be the number

of mass functions m1; . . .;mn, the computation of the joint mass m1;...;n ¼ �n
i¼11

mi needs

up to 2n jUj intersections to be computed. Thus the worst case complexity of Dempster’s
rule is Oð2n jUjÞ. To be precise, say we know the number of focal elements of each mass
function, i.e. let q1,…,qn- be the number of focal points of each mass function
m1; . . .;mn respectively, then the complexity of the rule of combination is HðQÞ, where
Q is the product Q ¼ q1 � q2 � . . . � qn.

358 A. Kaltsounidis and I. Karali

When Constraint Programming is involved while computing Dempster’s rule of
combination, we consider only the number of combinations that result in a desired non-
empty set. Let A be a set and QA the number of combinations whose intersection is a
subset of A, then a method utilizing Constraint Programming would need time pro-
portional to QA, where obviously QA < Q, where Q as above.

In the following section we shall give a short description of constraint programming
as well as logic programming to allow a better understanding of the approach that we
follow.

4 Constraint Programming and Logic Programming

Constraint Programming (CP) [28] is a powerful paradigm that can be used to solve a
variety of problems referred to as Constraint Satisfaction Problems (CSP). In CP a
declarative description of the problem is given by the programmer and a constraint
solver is used to find an acceptable solution to it. More precisely, a CSP can be
described as a set of Variables, each associated with a domain of values, and a set of
Constraints over subsets of these Variables. A solution to the problem is an assignment
of values to the Variables so that all Constraints are satisfied. Constraint Programming
uses constraint propagation to reduce the search space allowing for solving the problem
faster. However, the time that the constraint propagation process needs must be taken
into account. We are concerned with CSPs where Variables are sets of integers. It is
shown in [34] that a CSP with Set Variables with at least one binary constraint (i.e. a
constraint that involves two Variables) has exponential complexity.

Logic Programming [35], as the name suggests is based on the idea “that logic can
be used as a programming language”. A logic program (i.e. a program written in a logic
programming language) is a sequence of sentences in logical form, each of which
expresses a fact or a rule for a given domain. More precisely, a logic program consists
of clauses named Horn Clauses. Horn clauses can have the form of a fact, e.g. likes
(mary,john), denoting that “mary likes john”, or a rule, e.g. parent(x,y)^male(x)!
father(x,y), denoting that for any unknown individuals x and y, in case x is parent of
y and x is male then x is father of y. Horn clauses can also have the form of a goal, e.g.
father(x,mary)!. In this case, the goal is said to be satisfied if there is an individual
x that is father of mary. In particular, Prolog [36] is a practical logic programming
language based on Horn clauses.

Constraint Programming can be hosted by a Logic Programming language. Then it
is referred to as Constraint Logic Programming [37, 38].

We will be working with ECLiPSe Prolog, a software system implementing Prolog
that also offers libraries for Constraint Programming. We will be using ECLiPSe’s ic
library that supports finite domain constraints, as well as the ic_sets library which
implements constraints over the domain of finite sets of integers and cooperates with ic.

Dempster-Shafer Theory 359

The constraint propagation algorithm that ECLiPSe’s solver uses for Set Variables has
a complexity O(ld + (e − l)dd′), where l is the number of inclusion constraints, e the
number of total constraints, d the sum of cardinalities of the largest domain bounds and
d’ their difference [30]. More about ECLiPSe Prolog can be found in [29].

5 Constraint Programming for Computing Dempster’s Rule
of Combination

To face the complexity problem that Dempster’s Rule of Combination introduces, we
use Constraint Programming to perform the computation. The idea behind using CP is
to reduce the number of computations needed to evaluate the Rule to the ones that are
absolutely necessary. Constraint Logic Programming (CLP) has been chosen for the
sake of simplicity and prototype experimentation. The Complexity of the Rule is
directly related to the number of focal points each mass function has, as we have to
evaluate all combinations of focal points. Each combination of focal points might either
intersect to a set or not. By using Constraint Programming, we enumerate only those
combinations of focal points whose intersection is not empty. We know beforehand that
this method does not improve the computational class of the Rule, as in worst case, all
combinations intersect, but nevertheless it might reduce the number of computations
needed, and thus the time needed, to compute Dempster’s Rule of Combination.

In addition, we use Constraint Programming to compute belief/plausibility for a
given set. Recall that belief of a set A�U, where U is the Universe, is the sum of the
mass values of all subsets of A. When computing the belief of a set A, given mass
functions m1; . . .;mn, we use constraints so that only the desired combinations of focal
points, i.e. those that intersect to a subset of A, are created. In the general case, we need
also to compute the normalization constant, K, in order to normalize the value, which
means that every intersecting combination (or every non-intersecting combination) will
have to be evaluated anyway, and thus the number of combinations to be evaluated is
not reduced. However, even in the special case where we know that K = 0, that is there
is no conflict between the different sources of evidence, we trust that constraints will be
proved useful for computing the belief of a set A.

5.1 Implementation

We implemented both algorithms, i.e. the generate-and-test and the constrain-and-
generate, in ECLiPSe Prolog, so that we accomplish a more fair time comparison. The
generate-and-test algorithm evaluates every possible combination of focal points and,
then, the unnecessary results are discarded. The constrain-and-generate one exploits
CP and constraints are set in order to generate only combinations with the desired
properties. In the following figures, the fundamental predicates for both algorithms are
presented (Figs. 1 and 2).

360 A. Kaltsounidis and I. Karali

The predicate compute/3 is used to compute every combination of focal points
whose intersection is a non-empty subset of Hyper for both the generate-and-test and
the constrain-and-generate algorithms. This predicate is called while computing the
belief/plausibility of a desired set, as well as the joint mass.

5.2 Test Results

In order to compare both methods and examine whether the use of Constraint Pro-
gramming reduces the time needed for the computation we created a number of random
test cases on which we ran both programs. When creating random sets, we experi-
mented with different values of the following parameters: i) the cardinality of Universe,
ii) the number of mass functions, and iii) the number of focal points per mass function
(for simplicity this is the same for every mass function). Both methods were run on
each test case and the time needed for the execution was recorded.

The values of many parameters were highly influenced from values used in [8].
A Universe of size jUj ¼ 20 was assumed as a basis for most of the tests. As focal
points are created at random, choosing a small Universe results in mass functions
sharing the same focal points (high “density”), whereas picking a large Universe will
result in mass functions with different focal points (low “density”). We found that the
value jUj ¼ 20 keeps a good balance between a “sparse” and a “dense” case.

Fig. 1. generate-and-test

Fig. 2. constrain-and-generate

Dempster-Shafer Theory 361

In the following, the first part is concerned with comparing the two methods for
evaluating Dempster’s Rule of Combination for every possible set so as to compute the
joint mass. Next, we focus on computing belief for a specific set.

Computing the Joint Mass
To demonstrate the time gain of the constrain-and-generate algorithm as discussed in
Sect. 3, we created a number of random test cases with fixed parameters and recorded
the number of combinations that intersect and time needed for the computation for both
the generate-and-test, and the constrain-and-generate algorithms. Notice that the time
needed for the constrain-and-generate algorithm is proportional to the number of
intersecting combinations. On the other hand, the generate-and-test algorithm always
evaluates all possible combinations and its run-time is unrelated to the number of
intersecting combinations, but depends on the total number of possible combinations.
Some sample test cases are presented below (Figs. 3, 4, 5 and Tables 1, 2).

Table 1. |U| = 20, number of focal points per
mass function = 3

Number of
mass
functions

generate-
and-test
(s)

constrain-
and-generate
(s)

10 0.58 0.22
11 1.77 1.28
12 5.39 0.52
13 8.45 0.20
14 21.55 0.66
15 113.41 0.86

0

50

100

150

10 11 12 13 14 15

Ti
m

e
(s

)

Number of mass func ons
generate-and-test

constrain-and-generate

Fig. 3. |U| = 20, number of focal points per
mass function = 3

Table 2. |U| = 20, number of mass
functions = 10

Number of
focal points
per mass
function

generate-
and-test
(s)

constrain-
and-
generate
(s)

3 0.58 0.22
4 7.94 4.97
5 66.70 8.23
6 249.36 56.89

0

100

200

300

3 4 5 6

Ti
m

e
(s

)

Number of focal points per mass
func�on

generate-and-test
constrain-and-generate

Fig. 4. |U| = 20, number of mass functions = 10

362 A. Kaltsounidis and I. Karali

Table 3 does not contain time results for the generate-and-test algorithm as it did
not execute within an acceptable time.

Computing Belief
In this section, we discuss the results of the algorithms regarding computing belief of a
specific set. Note that, similar results hold for computing plausibility, as we can
compute plausibility (resp. belief) for a set by computing the belief (resp. plausibility)
of its complement. Recall that when computing the belief of a set the normalization
factor K must be evaluated in order to normalize the result. Note that, computing K is
of the same complexity as computing the joint mass and the benefit of using CP in this
case was discussed in the previous paragraph. So, we considered a case where K ¼ 0 in
order to examine the extra benefit by using CP in the case of belief evaluation.

We worked as before, creating random test cases so as to compare both methods.
The number of all possible combinations is qn, where n is the number of mass func-
tions, and q is the number of focal points for each mass function. We have already
mentioned that the generate-and-test (g-t) algorithm has to evaluate all qn combinations
and then discard those that do not intersect to the desired set, i.e. a subset of the set
under consideration, whereas the constrain-and-generate (c-g) one sets constraints to
be satisfied, so as to avoid evaluating every possible combination. We tested with
different sizes of Universe, number of focal points per mass function, and number of
mass functions. The run-time for both algorithms and the number of combinations that
had to be evaluated for each set were recorded. The last set in each trial was the
Universe itself. In all test cases for sets different from the Universe, improvement was
noticed on run-time. A sample result is shown below.

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

22000 32000 42000 52000

Ti
m

e
(s

)

Number of intersec ng
combina ons

constrain-and-generate

Fig. 5. |U| = 20, number of mass func-
tions = 5, number of focal points per mass
function = 10

Table 3. |U| = 20, number of mass func-
tions = 5, number of focal points per mass
function = 10

Possible
combinations

Intersecting
combinations

constrain-
and-
generate
(s)

100000 22240 2.17
25204 2.36
36753 3.05
39085 3.16
41821 3.84
48379 3.98
53184 4.68

Dempster-Shafer Theory 363

Table 4 and Fig. 6 highlight the importance of constraints for computing belief for
sets that are smaller than the Universe, or, otherwise stated, sets that are formed out by
fewer combinations than the Universe.

To sum up, from the test results verified that Constraint Programming can help to
reduce the time needed for computing Dempster’s Rule of Combination whether we
wish to compute the joint mass or belief/plausibility for a set. How much we can benefit
from CP, depends deeply on the number of intersections that must be evaluated, which,
unfortunately, is unknown prior to the computation. In general, the constrain-and-
generate’s performance is remarkable in cases where empty intersections exist, as it
executes the calculation much faster than the generate-and-test method.

6 Conclusions and Future Work

Dempster-Shafer theory remains one of the most expressive frameworks for reasoning
under uncertainty. However, the high complexity of Dempster’s rule of combination
imposes a significant restriction to its application. This becomes worse, considering the
tremendous amount of data available. The method that we proposed to overcome this
problem makes use of Constraint Programming to optimize the evaluation of Demp-
ster’s rule by computing only the appropriate combinations. The conclusion that can be

Table 4. |U| = 20, number of mass func-
tions = 13, number of focal points per mass
function = 3

Set Combinations g-t (s) c-g (s)

[1, 7, 9] 0

4.438

0.156

[4, 5, 9, 10] 14848 1.422

[2, 3, 6, 9, 10] 15360 1.625

[2, 6, 8] 15888 1.828

[2, 4–7, 10] 16128 1.719

[4, 8–10] 30736 3.313

[1, 2, 4, 5, 8–10] 31488 3

[2, 3, 7, 8, 10] 31788 3.5

[1, 3, 4, 6–8, 10] 31808 3.234

[1–8, 10] 32256 4.391

U 32768 4.438

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

0 10000 20000 30000

Ti
m

e(
s)

Number of intersec ng
combina ons

generate-and-test

constrain-and-generate

Fig. 6. |U| = 20, number of mass func-
tions = 13, number of focal points per mass
function = 3

364 A. Kaltsounidis and I. Karali

drawn from the empirical testing that we performed is that the constrain-and-generate
algorithm utilizing Constraint Programming needs considerable less time to compute
the joint mass, or belief/plausibility of a specific set, than the generate-and-test algo-
rithm. Therefore, such a method allows the computation of Dempster’s rule of com-
bination to be performed in an acceptable time even for more complex cases.

However, concerning the implementation platform, we have to make some
remarks. ECLiPSe Prolog is one of the first systems to embed Constraint Programming
libraries. While working with the ic_sets library, though, we encountered some
anomalies. In cases where the combinations that have to be evaluated are significantly
large, even the generation part of the constrain-and-generate method takes too much
time, even more than the time needed by the simple generate-and-test. As far as we
know, this could be an overhead of the library itself, or the way it handles some
constraints.

As we have already pointed out, Constraint Programming allowed us to avoid
generating non intersecting combinations. Notice that we can compute the normal-
ization factor, K, by generating either all intersecting combinations or all non-
intersecting ones. An idea that we would like to exploit is the concurrent computation
of the intersecting and non-intersecting combinations in order to evaluate the nor-
malization factor. This approach should ensure the fastest termination in all cases.

As mentioned, our implementation provides us with a prototype experimentation. It
would be worthwhile to compare the use of constraint programming with approxi-
mation methods using data from a real-life application so as the comparison depicts the
benefit we would gain in real world. Moreover, we believe it would be meaningful to
compare our method with methods using the Fast Mobius Transformation [39–41]. In
this case, another CP platform may be considered.

Acknowledgements. This research was partially funded by the National and Kapodistrian
University of Athens Special Account of Research Grants no 13233.

References

1. Shafer, G.: A mathematical theory of evidence turns 40. Int. J. Approx. Reasoning 79, 7–25
(2016)

2. Dubois, D., Prade, H.: Possibility theory, probability theory and multiple-valued logics: a
clarification. Ann. Math. Artif. Intell. 32(1), 35–66 (2001)

3. Pearl, J.: Fusion, propagation, and structuring in belief networks. Artif. Intell. 29(3), 241–
288 (1986)

4. McDermott, D., Doyle, J.: Non-monotonic logic I. Artif. Intell. 13(1–2), 41–72 (1980)
5. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann.

Math. Stat. 38(2), 325–339 (1967)
6. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton

(1976)
7. Shafer, G.: Perspectives on the theory and practice of belief functions. Int. J. Approximate

Reasoning 4(5–6), 323–362 (1990)
8. Zadeh, L.A.: Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems. World Scientific Press,

Singapore (1996)

Dempster-Shafer Theory 365

9. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
10. World Wide Web Consortium. Semantic Web. https://www.w3.org/standards/semanticweb/.

Accessed 13 Feb 2020
11. Laskey, K.J., Laskey, K.B., Costa, P.C.G., Kokar, M.M., Martin, T., Lukasiewicz, T.:

Uncertainty reasoning for the world wide web. W3C Incubator Group Report, Technical
report (2008)

12. Shafer, G.: Dempster’s rule of combination. Int. J. Approx. Reasoning 79, 26–40 (2016)
13. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for

the semantic web. Web Semant. 6(4), 291–308 (2008)
14. Ortega, F.B.: Managing vagueness in ontologies. Ph.D. dissertation, Universidad de Granada

(2008)
15. Stoilos, G., Stamou, G.B., Tzouvaras, V., Pan, J.Z., Horrocks, I.: Fuzzy OWL: uncertainty

and the semantic web. In: Proceedings of the OWLED*05 Workshop on OWL: Experiences
and Directions, Galway, Ireland (2005)

16. Karanikola, L., Karali, I.: Towards a Dempster-Shafer fuzzy description logic - handling
imprecision in the semantic web. IEEE Trans. Fuzzy Syst. 26(5), 3016–3026 (2018)

17. Karanikola, L., Karali, I.: Semantic web and ignorance: Dempster-Shafer description logics.
In: FLAIRS Conference 2017, pp. 68–73 (2017)

18. Zadeh, L.A.: A simple view of the Dempster-Shafer theory of evidence and its implications
for the rule of combination. AI Mag. 7(2), 86–90 (1986)

19. Pei, W.: A defect in Dempster-Shafer theory. In: Proceedings of the 10th Conference on
Uncertainty in Artificial Intelligence, Seattle, pp. 560–566 (1994)

20. Khan, N., Anwar, S.: Time-domain data fusion using weighted evidence and Dempster-
Shafer combination rule: application in object classification. Sensors (Basel) 19(23), 5187
(2019). https://doi.org/10.3390/s19235187

21. S. Mckeever, J. Ye, A Comparison of Evidence Fusion Rules for Situation Recognition in
Sensor-Based Environments. In: Communications in Computer and Information Science.
pp. 163–175 (2013). https://doi.org/10.1007/978-3-319-04406-4_16

22. Orponnen, P.: Dempster’s rule of combination is #P-complete. Artif. Intell. 44(1–2), 245–
253 (1990)

23. Wilson, N.: Algorithms for Dempster-Shafer theory. In: Kohlas, J., Moral, S. (eds.)
Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 5, pp. 421–
475. Springer, Dordrecht (2000). https://doi.org/10.1007/978-94-017-1737-3_10

24. Voorbraak, F.: A computationally efficient approximation of Dempster-Shafer theory. Int.
J. Man Mach. Stud. 30(5), 525–536 (1989)

25. Tessem, B.: Approximations for efficient computation in the theory of evidence. Artif. Intell.
61(2), 315–329 (1993)

26. Lowrance, J.D., Garvey, T.D., Strat, T.M.: A framework for evidential-reasoning systems.
In: 5th National Conference on Artificial Intelligence, Menlo Park, California, pp. 896–903
(1986)

27. Bauer, M.: Approximation algorithms and decision making in the Dempster-Shafer theory of
evidence – an empirical study. Int. J. Approximate Reasoning 17(2–3), 217–237 (1997)

28. Mayoh, B., Tyugu, E., Penjam, J.: Constraint Programming. Springer, Heidelberg (1993).
https://doi.org/10.1007/978-3-642-85983-0

29. The ECLiPSe Constraint Programming System. https://eclipseclp.org/. Accessed 13 Feb
2020

30. Gervet, C: Conjunto: constraint logic programming with finite set domains. In: ILPS (1994)
31. Eclipse conjunto libray. http://eclipseclp.org/doc/bips/lib/conjunto/index.html. Accessed 13

Feb 2020

366 A. Kaltsounidis and I. Karali

https://www.w3.org/standards/semanticweb/
https://doi.org/10.3390/s19235187
https://doi.org/10.1007/978-3-319-04406-4_16
https://doi.org/10.1007/978-94-017-1737-3_10
https://doi.org/10.1007/978-3-642-85983-0
https://eclipseclp.org/
http://eclipseclp.org/doc/bips/lib/conjunto/index.html

32. Kohlas, J., Monney, P.-A.: Propagating belief functions through constraint systems. Int.
J. Approximate Reasoning 5(5), 433–461 (1991)

33. Rouahi, A., Ben Salah, K., Ghédira, K.: Belief constraint satisfaction problems. In: 12th
International Conference of Computer Systems and Applications (AICCSA), Marrakech,
pp. 1–4 (2015)

34. Aiken, A., Kozen, D., Vardi, M., Wimmers, E.: The complexity of set constraints. In:
Börger, E., Gurevich, Y., Meinke, K. (eds.) CSL 1993. LNCS, vol. 832, pp. 1–17. Springer,
Heidelberg (1994). https://doi.org/10.1007/BFb0049320

35. Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag, Heidelberg (1984).
https://doi.org/10.1007/978-3-642-96826-6

36. Colmerauer, A., Kanoui, H.: Philippe Roussel et Robert Pasero, Un système de
communication homme-machine en Français, rapport de recherche. Groupe de recherche
en Intelligence Artificielle, Marseille (1973)

37. Jaffar, J., Lassez, J.L.: Constraint logic programming. In: Proceedings of the 14th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, Munch, West
Germany, pp. 111–119 (1987)

38. Van Hentenryck, P.: Constraint Satisfaction in Logic Programming. MIT Press, Cambridge
(1989)

39. Kennes, R., Smets, P.: Computational aspects of the Mobius transformation. In: Proceedings
of the Sixth Annual Conference on Uncertainty in Artificial Intelligence, pp. 401–416.
Elsevier Science Inc., USA (1990)

40. Kennes, R., Smets, P.: Fast algorithms for Dempster-Shafer theory. In: Uncertainty in
Knowledge Bases. IPMU 1990, Paris, France, pp. 14-26 (1990)

41. Chaveroche, M., Davoine, F., Cherfaoui, V.: Efficient Möbius transformations and their
applications to D-S theory. In: 13th International Conference on Scalable Uncertainty
Management, Compiègne, France, pp. 390–403 (2019)

Dempster-Shafer Theory 367

https://doi.org/10.1007/BFb0049320
https://doi.org/10.1007/978-3-642-96826-6

	Dempster-Shafer Theory: Ηow Constraint Programming Can Help
	Abstract
	1 Introduction
	2 Dempster Shafer Theory
	2.1 Formal Definition

	3 Complexity of Dempster’s Rule of Combination – Approximation Algorithms
	4 Constraint Programming and Logic Programming
	5 Constraint Programming for Computing Dempster’s Rule of Combination
	5.1 Implementation
	5.2 Test Results

	6 Conclusions and Future Work
	Acknowledgements
	References

