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Abstract. We study the limit behaviour of upper and lower bounds on
expected time averages in imprecise Markov chains; a generalised type
of Markov chain where the local dynamics, traditionally characterised
by transition probabilities, are now represented by sets of ‘plausible’
transition probabilities. Our main result is a necessary and sufficient
condition under which these upper and lower bounds, called upper and
lower expected time averages, will converge as time progresses towards
infinity to limit values that do not depend on the process’ initial state.
Remarkably, our condition is considerably weaker than those needed to
establish similar results for so-called limit—or steady state—upper and
lower expectations, which are often used to provide approximate infor-
mation about the limit behaviour of time averages as well. We show that
such an approximation is sub-optimal and that it can be significantly
improved by directly using upper and lower expected time averages.
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1 Introduction

Markov chains are probabilistic models that can be used to describe the uncertain
dynamics of a large variety of stochastic processes. One of the key results within
the field is the point-wise ergodic theorem. It establishes a relation between the
long-term time average of a real-valued function and its limit expectation, which
is guaranteed to exist if the Markov chain is ergodic.1 For this reason, limit
expectations and limit distributions have become central objects of interest. Of
course, if one is interested in the long-term behaviour of time averages, one could
also study the expected values of these averages directly. This is not often done
though, because the limit of these expected time averages coincides with the

1 The term ergodicity has various meanings; sometimes it refers to properties of
an invariant measure, sometimes it refers to properties such as irreducibility (with
or without aperiodicity), regularity, ... Our usage of the term follows conventions
introduced in earlier work [2,8] on imprecise Markov chains; see Sects. 2 and 4.
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aforementioned limit expectations, which can straightforwardly be obtained by
solving a linear eigenproblem [10].

We here consider a generalisation of Markov chains, called imprecise Markov
chains [2,4,9], for which the considerations above are not necessarily true. Impre-
cise Markov chains are sets of traditional (“precise”) probabilistic models, where
the Markov property (history independence) and time-homogeneity apply to the
collection of precise models as a whole, but not necessarily to the individual mod-
els themselves. Imprecise Markov chains therefore allow one to incorporate model
uncertainty about the numerical values of the transition probabilities that make
up a Markov chain, but also, and more importantly, about structural assump-
tions such as time-homogeneity and the Markov property. For such an imprecise
Markov chain, one is then typically interested in obtaining tight upper and lower
bounds on inferences for the individual constituting models. The operators that
represent these upper and lower bounds are respectively called upper and lower
expectations.

Just like traditional Markov chains can have a limit expectation, an imprecise
Markov chain can have limit upper and lower expectations. There are necessary
and sufficient conditions for their existence [8] as well as an imprecise variant
of the point-wise ergodic theorem [2]. An important difference with traditional
Markov chains however, is that upper and lower bounds on expectations of time
averages—we will call these upper and lower expected time averages—may not
converge to limit upper and lower expectations. Nevertheless, because they give
conservative bounds [11, Lemma 57], and because they are fairly easy to com-
pute, limit upper and lower expectations are often used as descriptors of the
long-term behaviour of imprecise Markov chains, even if one is actually inter-
ested in time averages. This comes at a cost though: as we illustrate in Sect. 4,
both inferences can differ greatly, with limit expectations providing far too con-
servative bounds.

Unfortunately, apart from some experiments in [11], little is known about
the long-term behaviour of upper and lower expected time averages in imprecise
Markov chains. The aim of this paper is to remedy this situation. Our main result
is an accessibility condition that is necessary and sufficient for upper and lower
expected time averages to converge to a limit value that does not depend on
the process’ initial state; see Sect. 7. Remarkably, this condition is considerably
weaker than the ones required for limit lower and upper expectations to exist.

Technical proofs are relegated to the appendix of an extended online ver-
sion [12]. This is particularly true for the results in Sect. 7, where the main text
provides an informal argument that aims to provide intuition.

2 Markov Chains

We consider an infinite sequence X0X1X2 · · · of uncertain states, where each
state Xk at time k ∈ N0 := N ∪ {0} takes values in some finite set X , called
the state space. Such a sequence X0X1X2 · · · will be called a (discrete-time)
stochastic process. For any k, � ∈ N0 such that k ≤ �, we use Xk:� to denote the
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finite subsequence Xk · · · X� of states that takes values in X �−k+1. Moreover,
for any k, � ∈ N0 such that k ≤ � and any xk:� ∈ X �−k+1, we use Xk:� =
xk:� to denote the event that Xk = xk · · · X� = x�. The uncertain dynamics
of a stochastic process are then typically described by probabilities of the form
P(Xk+1 = xk+1|X0:k = x0:k), for any k ∈ N0 and any x0:k+1 ∈ X k+2. They
represent beliefs about which state the process will be in at time k + 1 given
that we know that it was in the states x0 · · · xk at time instances 0 through k.
Additionally, our beliefs about the value of the initial state X0 can be represented
by probabilities P(X0 = x0) for all x0 ∈ X . The local probability assessments
P(Xk+1 = xk+1|X0:k = x0:k) and P(X0 = x0) can now be combined to construct
a global probability model P that describes the dynamics of the process on a more
general level. This can be done in various ways; one of the most common ones
being a measure-theoretic approach where countable additivity plays a central
role. For our purposes however, we will only require finite additivity. Regardless,
once you have such a global probability model P, it can then be used to define
expectations and make inferences about the uncertain behaviour of the process.

For any set A, let us write L (A) to denote the set of all real-valued functions
on A. Throughout, for any a ∈ A, we use Ia to denote the indicator of a: the
function in L (A) that takes the value 1 in a and 0 otherwise. We will only be
concerned with (upper and lower) expectations of finitary functions: functions
that depend on the state of the process at a finite number of time instances. So if
f is finitary, we can write f = g(X0:k) for some k ∈ N0 and some g ∈ L (X k+1).
Note that finitary functions are bounded; this follows from their real-valuedness
and the fact that X is finite. The expectation of a finitary function f(X0:k)
conditional on some event X0:� = x0:� simply reduces to a finite weighted sum:

EP(f(X0:k)|X0:� = x0:�) =
∑

x�+1:k∈X k−�

f(x0:k)
k−1∏

i=�

P(Xi+1 = xi+1|X0:i = x0:i).

A particularly interesting case arises when studying stochastic processes that
are described by a probability model P that satisfies

P(Xk+1 = y |X0:k = x0:k) = P(Xk+1 = y |Xk = xk),

for all k ∈ N0, all y ∈ X and all x0:k ∈ X k+1. This property, known as
the Markov property, states that given the present state of the process the
future behaviour of the process does not depend on its history. A process of
this type is called a Markov chain. We moreover call it (time) homogeneous
if additionally P(Xk+1 = y |Xk = x) = P(X1 = y |X0 = x), for all k ∈ N0

and all x, y ∈ X . Hence, together with the assessments P(X0 = x0), the
dynamics of a homogeneous Markov chain are fully characterised by the prob-
abilities P(X1 = y |X0 = x). These probabilities are typically gathered in a
transition matrix T ; a row-stochastic |X | × |X | matrix T that is defined by
T (x, y) := P(X1 = y |X0 = x) for all x, y ∈ X . This matrix representation T
is particularly convenient because it can be regarded as a linear operator from
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L (X ) to L (X ), defined for any k ∈ N0, any f ∈ L (X ) and any x ∈ X by

Tf(x) :=
∑

y∈X

f(y)P(Xk+1 = y |Xk = x) = EP(f(Xk+1) |Xk = x).

More generally, we have that EP(f(Xk+�) |Xk = x) = T �f(x) for all k ∈ N0,
all � ∈ N0 and all x ∈ X . Then, under some well-known accessibility conditions
[8, Proposition 3], the expectation T �f(x) converges for increasing � towards
a constant E∞(f) independently of the initial state x. If this is the case for
all f ∈ L (X ), the homogeneous Markov chain will have a steady-state dis-
tribution, represented by the limit expectation E∞, and we call the Markov
chain ergodic. The expectation E∞ is in particular also useful if we are inter-
ested in the limit behaviour of expected time averages. Indeed, let fk(X�:�+k) :=
1/(k + 1)

∑�+k
i=� f(Xi) be the time average of some function f ∈ L (X ) evaluated

at the time instances � through k + �. Then, according to [11, Theorem 38], the
limit of the expected average limk→+∞ EP(fk(X0:k)) coincides with the limit
expectation E∞(f). One of the aims of this paper is to explore to which extent
this remains true for imprecise Markov chains.

3 Imprecise Markov Chains

If the basic probabilities P(Xk+1|X0:k = x0:k) that describe a stochastic process
are imprecise, in the sense that we only have partial information about them,
then we can still model the process’ dynamics by considering a set Tx0:k of
such probabilities, for all k ∈ N0 and all x0:k ∈ X k+1. This set Tx0:k is then
interpreted as the set of all probability mass functions P(Xk+1|X0:k = x0:k) that
we deem “plausible”. We here consider the special case where the sets Tx0:k

satisfy a Markov property, meaning that Tx0:k = Txk
for all k ∈ N0 and all

x0:k ∈ X k+1. Similar to the precise case, the sets Tx, for all x ∈ X , can be
gathered into a single object: the set T of all row stochastic |X |×|X | matrices
T such that, for all x ∈ X , the probability mass function T (x, ·) is an element
of Tx. A set T of transition matrices defined in this way is called separately
specified [9]. For any such set T, the corresponding imprecise Markov chain
under epistemic irrelevance P ei

T [3] is the set of all (precise) probability models
P such that P(Xk+1|X0:k = x0:k) ∈ Txk

for all k ∈ N0 and all x0:k ∈ X k+1. The
values of the probabilities P(X0 = x0) will be of no importance to us, because
we will focus solely on (upper and lower) expectations conditional on the value
of the initial state X0.

Clearly, an imprecise Markov chain P ei
T also contains non-homogeneous, and

even non-Markovian processes. So the Markov property does in this case not
apply to the individual probability assessments, but rather to the sets Tx0:k .
The model P ei

T is therefore a generalisation of a traditional Markov chain where
we allow for model uncertainty about, on the one hand, the mass functions
P(Xk+1|X0:k = x0:k) and, on the other hand, about structural assumptions such
as the Markov and time-homogeneity property. However, there are also types of
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imprecise Markov chains that do impose some of these properties. For a given set
T, the imprecise Markov chain under complete independence P ci

T is the subset
of P ei

T that contains all, possibly non-homogeneous, Markov chains in P ei
T [11].

The imprecise Markov chain under repetition independence P ri
T is the subset of

P ei
T containing all homogeneous Markov chains [11]. Henceforth, we let T be

some fixed, arbitrary set of transition matrices that is separately specified.
Now, for any probability model P in the imprecise Markov chain P ei

T , we
can again consider the corresponding expectation operator EP. The upper and
lower expectation are then respectively defined as the tightest upper and lower
bound on this expectation:

E
ei

T (f |A) := sup
P∈P ei

T

EP(f |A) and E ei
T (f |A) := inf

P∈P ei
T

EP(f |A),

for any finitary function f and any event A of the form X0:k = x0:k. The opera-
tors E

ei

T and E ei
T are related by conjugacy, meaning that E ei

T (·|·) = −E
ei

T (− · |·),
which allows us to focus on only one of them; upper expectations in our case. The
lower expectation E ei

T (f |A) of a finitary function f can then simply be obtained
by considering the upper expectation −E

ei

T (−f |A).
In a similar way, we can define the upper expectations E

ci

T and E
ri

T and the
lower expectations Eci

T and Eri
T as the tightest upper and lower bounds on the

expectations corresponding to the models in P ci
T and P ri

T , respectively. Since
P ri

T ⊆ P ci
T ⊆ P ei

T , we have that E
ri

T (f |A) ≤ E
ci

T (f |A) ≤ E
ei

T (f |A) for any
finitary function f and any event A of the form X0:k = x0:k.

As we have mentioned before, imprecise Markov chains generalise traditional
Markov chains by incorporating different types of model uncertainty. The corre-
sponding upper (and lower) expectations then allow us to make inferences that
are robust with respect to this model uncertainty. For a more detailed discus-
sion on the motivation for and interpretation behind these and other types of
so-called imprecise probability models, we refer to [1,5,14].

Within the context of imprecise Markov chains, we will be specifically con-
cerned with two types of inferences: the upper and lower expectation of a function
at a single time instant, and the upper and lower expectation of the time aver-
age of a function. For imprecise Markov chains under epistemic irrelevance and
under complete independence, both of these inferences coincide [11, Theorem 51
& Theorem 52]. For any f ∈ L (X ) and any x ∈ X , we will denote them by

Ek(f |x) = E
ei

T (f(Xk)|X0 = x) = E
ci

T (f(Xk)|X0 = x)

and Eav,k(f |x) = E
ei

T (fk(X0:k)|X0 = x) = E
ci

T (fk(X0:k)|X0 = x),

respectively, where the dependency on T is implicit. The corresponding lower
expectations can be obtained through conjugacy: Ek(f |x) = −Ek(−f |x) and
Eav,k(f |x) = −Eav,k(−f |x) for all f ∈ L (X ) and all x ∈ X . In the remainder,
we will omit imprecise Markov chains under repetition independence from the
discussion. Generally speaking, this type of imprecise Markov chain is less stud-
ied within the field of imprecise probability because of its limited capacity to
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incorporate model uncertainty. Indeed, it is simply a set of time-homogeneous
precise Markov chains and therefore only allows for model uncertainty about the
numerical values of the transition probabilities. Moreover, as far as we know, a
characterisation for the ergodicity of such Markov chains—a central topic in this
paper—is currently lacking. We therefore believe that this subject demands a
separate discussion, which we defer to future work.

4 Transition Operators, Ergodicity and Weak Ergodicity

Inferences of the form Ek(f |x) were among the first ones to be thoroughly stud-
ied in imprecise Markov chains. Their study was fundamentally based on the
observation that Ek(f |x) can be elegantly rewritten as the k-th iteration of the
map T : L (X ) → L (X ) defined by

Th(x) := sup
T∈T

Th(x) = sup
T (x,·)∈Tx

∑

y∈X

T (x, y)h(y),

for all x ∈ X and all h ∈ L (X ). Concretely, Ek(f |x) = [T kf ](x) for all x ∈ X
and all k ∈ N0 [4, Theorem 3.1]. The map T therefore plays a similar role as the
transition matrix T in traditional Markov chains, which is why it is called the
upper transition operator corresponding to the set T.

In an analogous way, inferences of the form Eav,k(f |x) can be obtained as the
k-th iteration of the map Tf : L (X ) → L (X ) defined by Tfh := f + Th for all
h ∈ L (X ). In particular, if we let m̃f,0 := f = Tf (0) and

m̃f,k := f + Tm̃f,k−1 = Tfm̃f,k−1 for all k ∈ N, (1)

then it follows from [11, Lemma 41] that Eav,k(f |x) = 1
k+1m̃f,k(x) for all x ∈ X

and all k ∈ N0. Applying Eq. (1) repeatedly, we find that for all x ∈ X :

Eav,k(f |x) = 1
k+1m̃f,k(x) = 1

k+1 [T k
f m̃f,0](x) = 1

k+1 [T k+1
f (0)](x). (2)

The same formula can also be obtained as a special case of the results in [13].
These expressions for Ek(f |x) and Eav,k(f |x) in terms of the respective oper-

ators T and Tf are particularly useful when we aim to characterise the limit
behaviour of these inferences. As will be elaborated on in the next section, there
are conditions on T that are necessary and sufficient for Ek(f |x) to converge to
a limit value that does not depend on the process’ initial state x ∈ X . If this
is the case for all f ∈ L (X ), the imprecise Markov chain is called ergodic and
we then denote the constant limit value by E∞(f) := limk→+∞ Ek(f |x). Simi-
larly, we call an imprecise Markov chain weakly ergodic if, for all f ∈ L (X ),
limk→+∞ Eav,k(f |x) exists and does not depend on the initial state x. For a
weakly ergodic imprecise Markov chain, we denote the common limit value by
Eav,∞(f) := limk→+∞ Eav,k(f |x). In contrast with standard ergodicity, weak
ergodicity and, more generally, the limit behaviour of Eav,k(f |x), is almost
entirely unexplored. The aim of this paper is to remedy this situation. The main
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contribution will be a necessary and sufficient condition for an imprecise Markov
chain to be weakly ergodic. As we will see, this condition is weaker than those
needed for standard ergodicity, hence our choice of terminology. The following
example shows that this difference already becomes apparent in the precise case.

Example 1. Let X = {a, b}, consider any function f =
[ fa

fb

] ∈ L (X ) and
assume that T consists of a single matrix T =

[
0 1
1 0

]
. Clearly, T is not ergodic

because T (2�+1)f = T (2�+1)f =
[
0 1
1 0

]
f =

[ fb

fa

]
and T (2�)f =

[
1 0
0 1

]
f =

[ fa

fb

]
for

all � ∈ N0. T is weakly ergodic though, because

T
(2�)
f (0) = �

[ fa+fb

fa+fb

]
and T

(2�+1)
f (0) = f + T T

(2�)
f (0) = f + �

[ fa+fb

fa+fb

]
,

for all � ∈ N0, which implies that Eav,∞(f) := limk→+∞ T k
f (0)/k = (fa + fb)/2

exists. ♦

Notably, even if an imprecise Markov chain is ergodic (and hence also weakly
ergodic) and therefore both E∞(f) and Eav,∞(f) exist, these inferences will
not necessarily coincide. This was first observed in an experimental setting [11,
Section 7.6], but the differences that were observed there were marginal. The
following example shows that these differences can in fact be very substantial.

Example 2. Let X = {a, b}, let Ta be the set of all probability mass functions
on X and let Tb := {p} for the probability mass function p = (pa, pb) = (1, 0)
that puts all mass in a. Then, for any f =

[ fa

fb

] ∈ L (X ), we have that

Tf(x) =

{
max f if x = a;
fa if x = b,

and T 2f(x) =

{
max Tf = max f if x = a;
Tf(a) = max f if x = b.

It follows that T kf = max f for all k ≥ 2, so the limit upper expectation E∞(f)
exists and is equal to max f for all f ∈ L (X ). In particular, we have that
E∞(Ib) = 1. On the other hand, we find that T

(2�)
Ib

(0) = � and T
(2�+1)
Ib

(0) =
Ib + T T

(2�)
Ib

(0) =
[

�
�+1

]
for all � ∈ N0. This implies that the upper expectation

Eav,∞(Ib) := limk→+∞ T k
Ib

(0)/k exists and is equal to 1/2. This value differs
significantly from the limit upper expectation E∞(Ib) = 1.

In fact, this result could have been expected simply by taking a closer look
at the dynamics that correspond to T. Indeed, it follows directly from T that,
if the system is in state b at some instant, then it will surely be in a at the next
time instant. Hence, the system can only reside in state b for maximally half of
the time, resulting in an upper expected average that converges to 1/2. These
underlying dynamics have little effect on the limit upper expectation E∞(Ib)
though, because it is only concerned with the upper expectation of Ib evaluated
at a single time instant. ♦

Although we have used sets T of transition matrices to define imprecise
Markov chains, it should at this point be clear that, if we are interested in
the inferences Ek(f |x) and Eav,k(f |x) and their limit values, then it suffices to
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specify T . In fact, we will henceforth forget about T and will assume that T is
a coherent upper transition operator on L (X ), meaning that it is an operator
from L (X ) to L (X ) that satisfies

C1. min h ≤ Th ≤ max h [boundedness];
C2. T (h + g) ≤ Th + Tg [sub-additivity];
C3. T (λh) = λTh [non-negative homogeneity],

for all h, g ∈ L (X ) and all real λ ≥ 0 [5,14,15], and we will regard Ek(f |x) and
Eav,k(f |x) as objects that correspond to T . Our results and proofs will never
rely on the fact that T is derived from a set T of transition matrices, but will
only make use of C1–C3 and the following two properties that are implied by
them [14, Section 2.6.1]:

C4. T (μ + h) = μ + Th [constant additivity];
C5. if h ≤ g then Th ≤ Tg [monotonicity],

for all h, g ∈ L (X ) and all real μ. This can be done without loss of generality
because an upper transition operator T that is defined as an upper envelope
of a set T of transition matrices—as we did in Sect. 4—is always coherent [14,
Theorem 2.6.3]. Since properties such as ergodicity and weak ergodicity can be
completely characterised in terms of T , we will henceforth simply say that T
itself is (weakly) ergodic, instead of saying that the corresponding imprecise
Markov chain is.

5 Accessibility Relations and Topical Maps

To characterise ergodicity and weak ergodicity, we will make use of some well-
known graph-theoretic concepts, suitably adapted to the imprecise Markov chain
setting; we recall the following from [4] and [8]. The upper accessibility graph
G (T ) corresponding to T is defined as the graph with vertices x1 · · · xn ∈ X ,
where n := |X |, with an edge from xi to xj if T Ixj

(xi) > 0. For any two
vertices xi and xj , we say that xj is accessible from xi, denoted by xi → xj , if
xi = xj or if there is a directed path from xi to xj , which means that there is
a sequence xi = x′

0, x
′
1, · · · , x′

m = xj of vertices, with m ∈ N, such that there
is an edge from x′

�−1 to x′
� for all � ∈ {1, · · · ,m}. We say that two vertices

xi and xj communicate and write xi ↔ xj if both xi → xj and xj → xi.
The relation ↔ is an equivalence relation (reflexive, symmetric and transitive)
and the equivalence classes are called communication classes. We call the graph
G (T ) strongly connected if any two vertices xi and xj in G (T ) communicate, or
equivalently, if X itself is a communication class. Furthermore, we say that T
(or G (T )) has a top class R if

R := {x ∈ X : y → x for all y ∈ X } 	= ∅.

So, if T has a top class R, then R is accessible from any vertex in the graph
G (T ). As a fairly immediate consequence, it follows that R is a communication
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class that is maximal or undominated, meaning that x 	→ y for all x ∈ R and all
y ∈ Rc. In fact, it is the only such maximal communication class.

Having a top class is necessary for T to be ergodic, but it is not sufficient.
Sufficiency additionally requires that the top class R satisfies [8, Proposition 3]:

E1. (∀x ∈ R)(∃k∗ ∈ N)(∀k ≥ k∗) min T k
Ix > 0 [Regularity];

E2. (∀x ∈ Rc)(∃k ∈ N) T k
IRc(x) < 1 [Absorbing].

We will say that T is top class regular (TCR) if it has a top class that is regular,
and analogously for top class absorbing (TCA). Top class regularity represents
aperiodic behaviour: it demands that there is some time instant k∗ ∈ N such
that all of the elements in the top class R are accessible from each other in
k steps, for any k ≥ k∗. In the case of traditional Markov chains, top class
regularity suffices as a necessary and sufficient condition for ergodicity [4,10].
However, in the imprecise case, we need the additional condition of being top
class absorbing, which ensures that the top class will eventually be reached. It
requires that, if the process starts from any state x ∈ Rc, the lower probability
that it will ever transition to R is strictly positive. We refer to [4] for more
details. From a practical point of view, an important feature of both of these
accessibility conditions is that they can be easily checked in practice [8].

The characterisation of ergodicity using (TCR) and (TCA) was strongly
inspired by the observation that upper transition operators are part of a spe-
cific collection of order-preserving maps, called topical maps. These are maps
F : Rn → R

n that satisfy

T1. F (μ + h) = μ + Fh [constant additivity];
T2. if h ≤ g then F (h) ≤ F (g) [monotonicity],

for all h, g ∈ R
n and all μ ∈ R. To show this, we identify L (X ) with the

finite-dimensional linear space R
n, with n = |X |; this is clearly possible because

both are isomorph. That every coherent upper transition operator is topical
now follows trivially from C4 and C5. What is perhaps less obvious, but can be
derived in an equally trivial way, is that the operator Tf is also topical. This
allows us to apply results for topical maps to Tf in order to find necessary and
sufficient conditions for weak ergodicity.

6 A Sufficient Condition for Weak Ergodicity

As a first step, we aim to find sufficient conditions for the existence of Eav,∞(f).
To that end, recall from Sect. 4 that if Eav,∞(f) exists, it is equal to the limit
limk→+∞ T k

f (0)/k. Then, since Tf is topical, the following lemma implies that it
is also equal to limk→+∞ T k

f h/k for any h ∈ L (X ).

Lemma 1 [7, Lemma 3.1]. Consider any topical map F : Rn → R
n. If the limit

limk→+∞ F kh/k exists for some h ∈ R
n, then the limit exists for all h ∈ R

n and
they are all equal.
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Hence, if limk→+∞ T k
f h/k converges to a constant vector μ for some h ∈ L (X ),

then Eav,∞(f) exists and is equal to μ. This condition is clearly satisfied if the
map Tf has an (additive) eigenvector h ∈ L (X ), meaning that T k

f h = h + kμ
for some μ ∈ R and all k ∈ N0. In that case, we have that Eav,∞(f) = μ, where
μ is called the eigenvalue corresponding to h.

To find conditions that guarantee the existence of an eigenvector of Tf ,
we will make use of results from [6] and [7]. There, accessibility graphs are
defined in a slightly different way: for any topical map F : Rn → R

n, they
let G ′(F ) be the graph with vertices v1, · · · , vn and an edge from vi to vj if
limα→+∞[F (αIvj

)](vi) = +∞. Subsequently, for such a graph G ′(F ), the acces-
sibility relation · → · and corresponding notions (e.g. ‘strongly connected’, ‘top
class’, . . . ) are defined as in Sect. 5. If we identify the vertices v1, · · · , vn in G ′(T )
and G ′(Tf ) with the different states x1, · · · , xn in X , this can in particular be
done for the topical maps T and Tf . The following results show that the resulting
graphs coincide with the one defined in Sect. 5.

Lemma 2. For any two vertices x and y in G ′(T ), there is an edge from x to
y in G ′(T ) if and only if there is an edge from x to y in G (T ).

Proof. Consider any two vertices x and y in the graph G ′(T ). Then there is an
edge from x to y if limα→+∞[T (αIy)](x) = +∞. By non-negative homogeneity
[C3], this is equivalent to the condition that limα→+∞ α[T Iy](x) = +∞. Since
moreover 0 ≤ T Iy ≤ 1 by C1, this condition reduces to T Iy(x) > 0. ��
Corollary 1. The graphs G ′(Tf ), G ′(T ) and G (T ) are identical.

Proof. Lemma 2 implies that G ′(T ) and G (T ) are identical. Moreover,
that G ′(Tf ) is equal to G ′(T ), follows straightforwardly from the definition
of Tf . ��

In principle, we could use this result to directly obtain the desired condition
for the existence of an eigenvector from [6, Theorem 2]. However, [6, Theorem 2]
is given in a multiplicative framework and would need to be reformulated in an
additive framework in order to be applicable to the map Tf ; see [6, Section 2.1].
This can be achieved with a bijective transformation, but we prefer to not do
so because it would require too much extra terminology and notation. Instead,
we will derive an additive variant of [6, Theorem 2] directly from [6, Theorem 9]
and [6, Theorem 10].

The first result establishes that the existence of an eigenvector is equivalent
to the fact that trajectories are bounded with respect to the Hilbert semi-norm
‖·‖H, defined by ‖h‖H := max h − min h for all h ∈ R

n.

Theorem 1 [6, Theorem 9]. Let F : Rn → R
n be a topical map. Then F has

an eigenvector in R
n if and only if

{∥∥F kh
∥∥
H

: k ∈ N
}
is bounded for some (and

hence all) h ∈ R
n.

That the boundedness of a single trajectory indeed implies the boundedness of
all trajectories follows from the non-expansiveness of a topical map with respect
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to the Hilbert semi-norm [6]. The second result that we need uses the notion
of a super-eigenspace, defined for any topical map F and any μ ∈ R as the set
Sμ(F ) := {h ∈ R

n : Fh ≤ h + μ}.

Theorem 2 [6, Theorem 10]. Let F : Rn → R
n be a topical map such that the

associated graph G ′(F ) is strongly connected. Then all of the super-eigenspaces
are bounded in the Hilbert semi-norm.

Together, these theorems imply that any topical map F : Rn → R
n for which the

graph G ′(F ) is strongly connected, has an eigenvector. The connection between
both is provided by the fact that trajectories cannot leave an eigenspace. The
following result formalises this.

Theorem 3. Let F : Rn → R
n be a topical map such that the associated graph

G ′(F ) is strongly connected. Then F has an eigenvector in R
n.

Proof. Consider any h ∈ R
n and any μ ∈ R such that max(Fh − h) ≤ μ. Then

Fh ≤ h + μ, so h ∈ Sμ(F ). Now notice that F (Fh) ≤ F (h + μ) = Fh + μ
because of T1 and T2, which implies that also Fh ∈ Sμ(F ). In the same way,
we can also deduce that F 2h ∈ Sμ(F ) and, by repeating this argument, that
the whole trajectory corresponding to h remains in Sμ(F ). This trajectory is
bounded because of Theorem 2, which by Theorem 1 guarantees the existence
of an eigenvector. ��
In particular, if G ′(Tf ) is strongly connected then Tf has an eigenvector, which
on its turn implies the existence of Eav,∞(f) as explained earlier. If we combine
this observation with Corollary 1, we obtain the following result.

Proposition 1. An upper transition operator T is weakly ergodic if the associ-
ated graph G (T ) is strongly connected.

Proof. Suppose that G (T ) is strongly connected. Then, by Corollary 1, G ′(Tf ) is
also strongly connected. Hence, since Tf is a topical map, Theorem 3 guarantees
the existence of an eigenvector of Tf . As explained in the beginning of this
section, this implies by Lemma 1 that Eav,∞(f) exists, so we indeed find that T
is weakly ergodic. ��

In the remainder of this paper, we will use the fact that T is coherent—so
not just topical—to strengthen this result. In particular, we will show that the
condition of being strongly connected can be replaced by a weaker one: being
top class absorbing. It will moreover turn out that this property is not only
sufficient, but also necessary for weak ergodicity.

7 Necessary and Sufficient Condition for Weak Ergodicity

In order to gain some intuition about how to obtain a more general sufficient
condition for weak ergodicity, consider the case where T has a top class R and
the process’ initial state x is in R. Since R is a maximal communication class, the
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process surely remains in R and hence, it is to be expected that the time average
of f will not be affected by the dynamics of the process outside R. Moreover,
the communication class R is a strongly connected component, so one would
expect that, due to Proposition 1, the upper expected time average Eav,k(f |x)
converges to a constant that does not depend on the state x ∈ R. Our intuition
is formalised by the following proposition. Its proof, as well as those of the other
statements in this section, are available in the appendix of [12].

Proposition 2. For any maximal communication class S and any x ∈ S, the
upper expectation Eav,k(f |x) is equal to Eav,k(fIS |x) and converges to a limit
value. This limit value is furthermore the same for all x ∈ S.

As a next step, we want to extend the domain of convergence of Eav,k(f |x)
to all states x ∈ X . To do so, we will impose the additional property of being
top class absorbing (TCA), which, as explained in Sect. 5, demands that there
is a strictly positive (lower) probability to reach the top class R in a finite time
period. Once in R, the process can never escape R though. One would therefore
expect that as time progresses—as more of these finite time periods go by—this
lower probability increases, implying that the process will eventually be in R
with practical certainty. Furthermore, if the process transitions from x ∈ Rc

to a state y ∈ R, then Proposition 2 guarantees that Eav,k(f |y) converges to a
limit and that this limit value does not depend on the state y. Finally, since the
average is taken over a growing time interval, the initial finite number of time
steps that it took for the process to transition from x to y will not influence the
time average of f in the limit. This leads us to suspect that Eav,k(f |x) converges
to the same limit as Eav,k(f |y). Since this argument applies to any x ∈ Rc, we
are led to believe that T is weakly ergodic. The following result confirms this.

Proposition 3. Any T that satisfies (TCA) is weakly ergodic.

Conversely, suppose that T does not satisfy (TCA). Then there are two
possibilities: either there is no top class or there is a top class but it is not
absorbing. If there is no top class, then it can be easily deduced that there are at
least two maximal communication classes S1 and S2. As discusssed earlier, the
process cannot escape the classes S1 and S2 once it has reached them. So if it
starts in one of these communication classes, the process’ dynamics outside this
class are irrelevant for the behaviour of the resulting time average. In particular,
if we let f be the function that takes the constant value c1 in S1 and c2 in S2,
with c1 	= c2, then we would expect that Eav,k(f |x) = c1 and Eav,k(f |y) = c2
for all k ∈ N0, any x ∈ S1 and any y ∈ S2. In fact, this can easily be formalised
by means of Proposition 2. Hence, Eav,∞(f |x) = c1 	= c2 = Eav,∞(f |y), so the
upper transition operator T cannot be weakly ergodic.

Proposition 4. Any weakly ergodic T has a top class.

Finally, suppose that there is a top class R, but that it is not absorbing. This
implies that there is an x ∈ Rc and a compatible precise model such that the
process is guaranteed to remain in Rc given that it started in x. If we now let
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f = IRc , then conditional on the fact that X0 = x, the expected time average of
f corresponding to this precise model is equal to 1. Furthermore, since f ≤ 1,
no other process can yield a higher expected time average. The upper expected
time average Eav,k(f |x) is therefore equal to 1 for all k ∈ N0. However, using
Proposition 2, we can also show that Eav,k(f |y) = 0 for any y ∈ R and all
k ∈ N0. Hence, Eav,∞(f |x) = 1 	= 0 = Eav,∞(f |y), which precludes T from being
weakly ergodic.

Proposition 5. Any weakly ergodic T that has a top class satisfies (TCA).

Together with Propositions 3 and 4, this allows us to conclude that (TCA) is a
necessary and sufficient condition for weak ergodicity.

Theorem 4. T is weakly ergodic if and only if it is top class absorbing.

8 Conclusion

The most important conclusion of our study of upper and lower expected time
averages is its final result: that being top class absorbing is necessary and suffi-
cient for weak ergodicity; a property that guarantees upper and lower expected
time averages to converge to a limit value that does not depend on the process’
initial state. In comparison with standard ergodicity, which guarantees the exis-
tence of a limit upper and lower expectation, weak ergodicity thus requires less
stringent conditions to be satisfied. We illustrated this difference in Example 1,
where we considered a(n imprecise) Markov chain that satisfies (TCA) but not
(TCR).

Apart from the fact that their existence is guaranteed under weaker condi-
tions, the inferences Eav,∞(f) are also able to provide us with more information
about how time averages might behave, compared to limit expectations. To see
why, recall Example 2, where the inference Eav,∞(Ib) = 1/2 significantly dif-
fered from E∞(Ib) = 1. Clearly, the former was more representative for the
limit behaviour of the time average of Ib. As a consequence of [11, Lemma 57],
a similar statement holds for general functions. In particular, it implies that
Eav,∞(f) ≤ E∞(f) for any function f ∈ L (X ). Since both inferences are upper
bounds, Eav,∞(f) is therefore at least as informative as E∞(f).

In summary then, when it comes to characterising long-term time aver-
ages, there are two advantages that (limits of) upper and lower expected time
averages have over conventional limit upper and lower expectations: they exist
under weaker conditions and they are at least as (and sometimes much more)
informative.

That said, there is also one important feature that limit upper and lower
expectations have, but that is currently still lacking for upper and lower expected
time averages: an (imprecise) point-wise ergodic theorem [2, Theorem 32]. For
the limit upper and lower expectations of an ergodic imprecise Markov chain,
this result states that

E∞(f) ≤ lim inf
k→+∞

fk(X0:k) ≤ lim sup
k→+∞

fk(X0:k) ≤ E∞(f),
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with lower probability one. In order for limit upper and lower expected time
averages to be the undisputed quantities of interest when studying long-term
time averages, a similar result would need to be obtained for weak ergodicity,
where the role of E∞(f) and E∞(f) := −E∞(−f) is taken over by Eav,∞(f)
and Eav,∞(f) := −Eav,∞(−f), respectively. If such a result would hold, it would
provide us with (strictly almost sure) bounds on the limit values attained by
time averages that are not only more informative as the current ones, but also
guaranteed to exist under weaker conditions. Whether such a result indeed holds
is an open problem that we would like to address in our future work.

A second line of future research that we would like to pursue consists in
studying the convergence of Eav,k(f |x) in general, without imposing that the
limit value should not depend on x. We suspect that this kind of convergence
will require no conditions at all.
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