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Abstract. If uncertainty is modelled by a probability measure, decisions are
typically made by choosing the option with the highest expected utility. If an
imprecise probability model is used instead, this decision rule can be generalised
in several ways. We here focus on two such generalisations that apply to sets
of probability measures: E-admissibility and maximality. Both of them can be
regarded as special instances of so-called choice functions, a very general math-
ematical framework for decision making. For each of these two decision rules,
we provide a set of necessary and sufficient conditions on choice functions that
uniquely characterises this rule, thereby providing an axiomatic foundation for
imprecise decision making with sets of probabilities. A representation theorem
for Archimedean choice functions in terms of coherent lower previsions lies at
the basis of both results.
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1 Introduction

Decision making under uncertainty is typically carried out by combining an uncertainty
model with a decision rule. If uncertainty is modelled by a probability measure, the by
far most popular such decision rule is maximising expected utility, where one chooses
the option—or makes the decision—whose expected utility with respect to this proba-
bility measure is the highest.

Uncertainty can also be modelled in various other ways though. The theory of
imprecise probabilities, for example, offers a wide range of extensions of probabil-
ity theory that provide more flexible modelling possibilities, such as differentiating
between stochastic uncertainty and model uncertainty. The most straightforward such
extension is to consider a set of probability measures instead of a single one, but one
can also use interval probabilities, coherent lower previsions, sets of desirable gambles,
belief functions, to name only a few.

For all these different types of uncertainty models, various decision rules have been
developed, making the total number of possible combinations rather daunting. Choosing
which combination of uncertainty model and decision rule to use is therefore difficult
and often dealt with in a pragmatic fashion, by using a combination that one is familiar
with, that is convenient or that is computationaly advantageous.
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To motivate the use of a specific combination in a more principled way, one can also
consider its properties. That is, one can aim to select an uncertainty model and decision
rule whose resulting decisions satisfy the properties that one finds desirable for the
decision problem at hand. In some cases, imposing a given set of properties as axioms
can even rule out all combinations but one, thereby providing an axiomatic foundation
for the use of a specific type of uncertainty model and decision rule. The famous work
of Savage [9], for example, provides an axiomatic foundation for maximising expected
utility with respect to a probability measure.

The main contributions of this paper are axiomatic foundations for three specific
decision rules that make use of imprecise probability models [11]. The first two decision
rules, called E-admissibility [7] and maximality [13], apply to a set of probability mea-
sures; they both reduce to maximising expected utility when this set contains only a sin-
gle probability measure, but are otherwise fundamentally different. The third decision
rule applies to sets of coherent lower previsions; it is more abstract then the other two,
but includes both of them as special cases. This allows us to use our axiomatic founda-
tion for the third rule as an intermediate step towards axiomatising E-admissibility and
maximality.

To obtain our results, we make extensive use of choice functions [4,10,12]: a uni-
fying framework for studying decision making. These choice functions require no ref-
erence to an uncertainty model or a decision rule, but are simply concerned with the
decisions themselves, making them an excellent tool for comparing different methods.
We will be especially interested in Archimedean choice functions, because all of the
decision schemes that we consider are of this particular type.

In order to adhere to the page limit constraint, all proofs are omitted; they are avail-
able in the appendix of an extended online version [2].

2 Choice Functions and Uncertainty Models

A choice function C, quite simply, is a function that chooses. Specifically, for every
finite set A of options, it returns a subset C(A) of A. We here consider the special case
where options are gambles: bounded real functions on some fixed state space X . We
letL be the set of all gambles onX and we useQ to denote the set of all finite subsets
of L , including the empty set. A choice function C is then a map from Q to Q such
that, for all A ∈ Q,C(A) ⊆ A.

IfC(A) contains only a single option u, this means that u is chosen from A. IfC(A)
consists of multiple options, several interpretations can be adopted. On the one hand,
this can be taken to mean that each of the options inC(A) is chosen. On the other hand,
C(A) can also be regarded as a set of options among which it is not feasible to choose, in
the sense that they are incomparable based on the available information; in other words:
the elements of A \C(A) are rejected, but those in C(A) are not necessarily ‘chosen’.
While our mathematical results further on do not require a philosophical stance in this
matter, it will become apparent from our examples and interpretation that we have the
later approach in mind.

A very popular class of choice functions—while not necessarily always called as
such—are those that correspond to maximising expected utility. The idea there is to
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consider a probability measure P and to letC(A) be the element(s) of A whose expected
value—or utility—is highest. The probability measure in question is often taken to be
countably additive, but we will not impose this restriction here, and impose only finite
additivity. These finitely additive probability measures are uniquely characterised by
their corresponding expectation operators, which are linear real functionals on L that
dominate the infinum operator. We follow de Finetti in denoting these expectation oper-
ators by P as well, and in calling them linear previsions [6,13].

Definition 1. A linear prevision P on L is a map from L to R that satisfies

P1. P(u ) ≥ infu for all u ∈ L ; boundedness
P2. P(λu) = λP(u) for all real λ and u ∈L ; homogeneity
P3. P(u+v) = P(u)+P(v) for all u,v ∈L . additivity

We denote the set of all linear previsions on L by P.

For any such linear prevision—or equivalently, any finitely additive probability
measure—the choice function obtained by maximising expected utility is defined by

CP(A) :=
{
u ∈ A : (∀v ∈ A \{u}) P(u) ≥ P(v)

}
for all A ∈ Q. (1)

It returns the options u in A that have the highest prevision—or expectation—P(u).
However, there are also many situations in which it is not feasible to represent uncer-

tainty by a single prevision or probability measure [13, Section 1.4.4]. In those cases,
imprecise probability models can be used instead. The most straightforward such impre-
cise approach is to consider a non-empty setP ⊆P of linear previsions—or probability
measures—as uncertainty model, the elements of which can be regarded as candidates
for some ‘true’ but unknown precise model.

In that context, maximising expected utility can be generalised in several ways [11],
of which we here consider two. The first is called E-admissibility; it chooses those
options that maximise expected utility with respect to at least one precise model inP:

CE
P(A) :=

{
u ∈ A : (∃P∈ P)(∀v ∈ A \{u}) P(u) ≥ P(v)

}
for all A ∈ Q. (2)

The second generalisation is called maximality and starts from a partial order on the
elements of A. In particular, for any two options u,v ∈ A, the option u is deemed better
than v if its expectation is higher for every P∈ P . Decision making with maximality
then consists in choosing the options u in A that are undominated in this order, in the
sense that no other option v ∈ A is better than u:

CM
P(A) :=

{
u ∈ A : (∀v ∈ A \{u})(∃P∈ P) P(u) ≥ P(v)

}
for all A ∈ Q. (3)

One can easily verify that CE
P(A) ⊆CM

P(A), making maximality the most conservative
decisions rule of the two. Furthermore, in the particular case where P contains only a
single linear prevision, they clearly coincide and both reduce to maximising expected
utility. In all other cases, however, maximality and E-admissibility are different; see for
example Proposition 3 in Sect. 9 for a formal statement.
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One of the main aims of this paper is to characterise each of these two types of
choice functions in terms of their properties. That is, we are looking for necessary and
sufficient conditions under which a general choice functionC is of the formCE

P orCM
P ,

without assuming a priori the existence of a set of linear previsionsP . Such conditions
will be presented in Sects. 7 and 8, respectively.

A crucial intermediate step in obtaining these two results will consist in finding
a similar characterisation for choice functions that correspond to (sets of) coherent
lower previsions [13], a generalisation of linear previsions that replaces additivity by
the weaker property of superadditivity.

Definition 2. A coherent lower prevision P on L is a map from L to R that satisfies

LP1. P(u)≥ infu for all u ∈L ; boundedness
LP2. P(λu)= λP(u) for all real λ > 0 and u ∈L ; positive homogeneity
LP3. P(u+v)≥ P(u)+P(v) for all u,v ∈L . superadditivity

We denote the set of all coherent lower previsions onL by P.

That linear previsions are a special case of coherent lower previsions follows triv-
ially from their definitions. There is however also a more profound connection between
both concepts: coherent lower previsions are minima of linear ones.

Theorem 1 [13, Section 3.3.3.]. A real-valued map P on L is a coherent lower previ-
sion if and only if there is a non-empty set P ⊆ P of linear previsions such that

P(u) =min{P(u) : P∈ P} for all u ∈ L .

Alternatively, coherent lower previsions can also be given a direct behavioural inter-
pretation in terms of gambling, without any reference to probability measures or linear
previsions [13,14].

Regardless of their interpretation, with any given non-empty set P ⊆ P of these
coherent lower previsions, we can associate a choice functionCP in the following way:

CP(A) :=
{
u ∈ A : (∃P ∈ P)(∀v ∈ A \{u}) P(v−u) ≤ 0

}
for all A ∈ Q. (4)

If the lower previsions in P are all linear, this definition reduces to E-admissibility,
as can be seen by comparing Eqs. (2) and (4). What is far less obvious though, is that
maximality is also a special case of Eq. (4); see Theorem 7 in Sect. 8 for a formal state-
ment. In that case, the setsP in Eqs. (4) and (3) may of course—and typically will—be
different.

Because the choice functions that correspond to E-admissibility and maximality are
both of the form CP , with P a set of coherent lower previsions, any attempt at char-
acterising the former will of course benefit from characterising the latter. A large part
of this paper will therefore be devoted to the development of necessary and sufficient
conditions for a general choice functionC to be of the formCP . In order to obtain such
conditions, we will interpret choice functions in terms of (strict) desirability and estab-
lish a connection with so-called sets of desirable option sets. This interpretation will
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lead to a natural set of conditions that, as we will eventually see in Sect. 6, uniquely
characterises choice functions of the form CP . We start with a brief introduction to
desirability and sets of desirable option sets.

3 Coherent Sets of Desirable Option Sets

The basic notion on which our interpretation for choice functions will be based, and
from which our axiomatisation will eventually be derived, is that of a desirable option:
an option that is strictly preferred over the status quo [1,8,13]. In our case, where
options are gambles u ∈ L on X and the status quo is the zero gamble, this means
that the uncertain—and possibly negative—reward u(x), whose actual value depends
on the uncertain state x ∈ X , is strictly preferred over the zero reward. In other words:
gambling according to u is strictly preferred over not gambling at all.

We will impose the following three principles on desirable options, where we use
‘(λ ,μ) > 0’ as a shorthand notation for ‘λ ≥ 0, μ ≥ 0 and λ + μ > 0’. The first two
principles follow readily from the meaning of desirability. The third one follows from
an assumption that rewards are expressed in a linear utility scale.

d1. 0 is not desirable;
d2. if infu > 0, then u is desirable;1

d3. if u,v are desirable and (λ ,μ)> 0, then λu+μv is desirable.

The notion of a desirable option gives rise to two different frameworks for modelling
a subject’s uncertainty about the value x∈X . The first, which is well established, is that
of sets of desirable options—or sets of desirable gambles. The idea there is to consider
a set D that consists of options that are deemed desirable by a subject. If such a set is
compatible with the principles d1–d3, it is called coherent.

Definition 3. A set of desirable options D ∈ D is coherent if it satisfies:

D1. 0 /∈ D;
D2. if infu > 0, then u ∈ D;
D3. if u,v ∈ D and (λ ,μ)> 0, then λu+μv ∈ D.

We denote the set of all coherent sets of desirable options by D.

Amore general framework, which will serve as our main workhorse in this paper, is
that of sets of desirable option sets [3]. The idea here is to consider a set K of so-called
desirable option sets A, which are finite sets of options that, according to our subject,
are deemed to contain at least one desirable option. To say that A = {u,v} is a desirable
option set, for example, means that u or v is desirable. Crucially, the framework of
sets of desirable option sets allows a subject to make this statement without having to

1 There is no consensus on which properties to impose on desirability; the main ideas and results
are always very similar though [1,8,13,14]. In particular, d2 is often strengthened by requiring
that u is desirable as soon as infu ≥ 0 and u �= 0; we here prefer d2 because it is less stringent
and because it combines more easily with the notion of strict desirability that we will consider
in Sect. 5. Annalogous comments apply to D2 and K2 further on.
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specify—or know—which of the two options u or v is desirable. As explained in earlier
work [4, Section 3],2 it follows from d1–d3 that any set of desirable option sets K should
satisfy the following axioms. If it does, we call K coherent.

Definition 4. A set of desirable option sets K ⊆ Q is coherent if it satisfies:

K0. if A ∈ K then also A \{0} ∈ K, for all A ∈ Q;
K1. {0} /∈ K;
K2. {u} ∈ K for all u ∈ L with infu > 0;
K3. if A1,A2 ∈ K and if, for all u ∈ A1 and v ∈ A2, (λu,v ,μu,v)> 0, then also

{λu,vu+μu,vv : u ∈ A1,v ∈ A2} ∈ K;

K4. if A1 ∈ K and A1 ⊆ A2, then also A2 ∈ K, for all A1,A2 ∈ Q.

We denote the set of all coherent sets of desirable option sets by K.

One particular way of obtaining a set of desirable option sets, is to derive it from a
set of desirable options D, as follows:

KD := {A ∈ Q : A∩D �= /0}. (5)

One can easily verify that if D is coherent, then KD will be as well [4, Proposition 8]. In
general, however, sets of desirable option sets are more expressive than sets of desirable
options. The link between both is provided by Theorem 2, which shows that a set of
desirable option sets can be equivalently represented by a set of sets of desirable options.

Theorem 2 [4, Theorem 9]. A set of desirable option sets K is coherent if and only if
there is some non-empty set D ⊆ D such that K =

⋂{KD : D ∈ D}.
In practice, modelling a subject’s uncertainty does not require her to specify a full

coherent set of desirable option sets though. Instead, it suffices for her to provide an
assessment A ⊆ Q, consisting of option sets A that she considers desirable. If such an
assessment is consistent with coherence, meaning that there is at least one coherent set
of desirable option sets K that includesA , then this assessment can always be extended
to a unique smallest—most conservative—coherent set of desirable option sets, called
the natural extension of A . This natural extension is given by

Ex(A ) :=
⋂{

K ∈ K : A ⊆ K
}
=

⋂{
KD : D ∈ D,A ⊆ KD

}
, (6)

as follows readily from Theorem 2. IfA is not consistent with coherence, Ex(A ) is an
empty intersection, which, by convention, we set equal toQ.

2 Reference [4] deals with the more general case where options take values in an abstract vector
space V , and where d2 imposes that u should be desirable if u 
 0, with 
 an arbitrary but
fixed strict vector ordering. Whenever we invoke results from [4], we are applying them for
the special case where V =L and u 
 v ⇔ inf(u− v)> 0.
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4 Strongly Archimedean Sets of Desirable Option Sets

That sets of desirable option sets can be used to axiomatise choice functions of the type
CP , with P a set of coherent lower previsions, was already demonstrated in earlier
work [4] for the specific case whereP is closed with respect to pointwise convergence.
A key step in that result consisted in strengthening the interpretation of K, replacing
desirability with the stronger notion of strict desirability [13, Section 3.7.7]. We here
repeat the reasoning that led to this result, before adapting it in Sect. 5 to get rid of the
closure condition.

We call a desirable option u strictly desirable if there is some real ε > 0 such that
u− ε is desirable.3 As a simple consequence of this definition and d1–d3, we find that

sd1. 0 is not strictly desirable;
sd2. if infu > 0, then u is strictly desirable;
sd3. if u,v are strictly desirable and (λ ,μ)> 0, then λu+μv is strictly desirable;
sd4. if u is strictly desirable, then u− ε is strictly desirable for some real ε > 0.

By applying these principles to sets of desirable options, we arrive at the concept of a
coherent set of strictly desirable options: a coherent set of desirable options D that is
compatible with sd4. What is particularly interesting about such sets is that they are in
one-to-one correspondence with coherent lower previsions [4,13], thereby allowing us
to move from desirability to lower previsions as a first step towards choice functions
of the form CP . The problem with coherent sets of strictly desirable options, however,
is that they correspond to a single lower prevision P, while we which to consider a set
P of them. To achieve this, we again consider sets of desirable option sets, but now
suitably adapted to strict desirability.

So consider any set of desirable option sets K and let us interpret it in terms of
strict desirability. That A belongs to K then means that A contains at least one strictly
desirable option. Given this interpretation, what properties should K satisfy? Since the
principles sd1–sd3 are identical to d1–d3, K should clearly be coherent, meaning that it
should satisfy K0–K4. Formalising the implications of sd4 is more tricky though, as it
can be done in several ways.

The first and most straighforward approach is to impose the following immediate
translation of sd4 to desirable option sets, where for all A ∈ Q and real ε:

A− ε := {u− ε : u ∈ A}

Definition 5. A set of desirable option sets K is strongly Archimedean4 if it is coherent
and satisfies the following property:

KSA. if A ∈ K, then also A− ε ∈ K for some real ε > 0.

3 Walley’s original notion of strict desirability [13, Section 3.7.7] is slightly different. In his ver-
sion, if infu = 0 (but u �= 0) then u should also be strictly desirable (but need not satisfy sd4).

4 In earlier work [4], we have referred to this property as Archimedeanity. With hindsight, how-
ever, we now prefer to reserve this terminology for the property in Definition 6.
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The reasoning behind this axiom goes as follows. Since A ∈ K is taken to mean that
there is at least one u ∈ A that is strictly desirable, it follows from sd4 that there is some
real ε > 0 such that u− ε is strictly desirable. This implies that A− ε contains at least
one strictly desirable option. It therefore seems sensible to impose that A− ε ∈ K.

To explain the implications of this axiom, and how it is related to lower previsions,
we need a way to link the latter to sets of desirable option sets. The first step is to
associate, with any coherent lower prevision P ∈ P, a set of desirable option sets

KP := {A ∈ Q : (∃u ∈ A)P(u )> 0}. (7)

The coherence of this set can be easily verified [4, Propositions 8 and 24]. More gen-
erally, with any non-empty set P of coherent lower previsions, we associate a set of
desirable option sets

KP :=
⋂

{KP : P ∈ P}. (8)

Coherence is again easily verified; it follows directly from the coherence of KP and the
fact that coherence is preserved under taking intersections. The final tool that we need
to explain the implications of strong Archimedeanity, does the opposite; it starts with a
coherent set of desirable option sets K, and associates a set of coherent lower previsions
with it, defined by

P(K) := {P ∈ P : K ⊆ KP}.
If K is strongly Archimedean, then as the following result shows, P(K) serves as a
mathematically equivalent representation for K, from wich K can be recovered through
Eq. (8). The representing set P(K) will then furthermore be closed with respect to the
topology induced by pointwise convergence.

Theorem 3 [4, Theorem 28 and Proposition 24]. A set of desirable option sets K is
strongly Archimedean if and only if there is some non-empty closed set P ⊆ P of
coherent lower previsions such that K = KP . Closure is with respect to pointwise con-
vergence, and the largest such set P is then P(K).

If the representing coherent lower previsions in P or P(K) were linear, this result
would already brings us very close to decision rules based on sets of linear previsions—
or sets of probability measures. As we will see further on in Sect. 7, this can be achieved
by imposing an additional axiom called mixingness. Before we do so, however, we will
do away with the closure condition in Theorem 3, as it is overly restrictive. Imagine for
example that we are modelling a subject’s uncertainty about the outcome of a coin toss,
and that she beliefs the coin to be unfair. In terms of probabilities, this would mean
that her probability for heads is different from one half. Strong Archimeanity is not
compatible with such an assessment, as the set of probability measures that satisfy this
(strict) probability constraint is not closed. Our first main contribution will consist in
resolving this issue, by suitably modifying the notion of strong Archimedeanity.

5 Archimedean Sets of Desirable Option Sets

At first sight, it may seem as if KSA is the only way in which sd4 can be translated to
option sets. There is however also a second, far more subtle approach.
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The crucial insight on which this second approach is based is that our interpreta-
tion in terms of strict desirability does not require ε to be known; it only imposes the
existence of such an ε . Consider a subject whose uncertainty is represented by a set
of desirable option sets K and let us adopt an interpretation in terms of strict desir-
ability. This implies that the option sets A ∈ K are option sets that, according to her
beliefs, contain at least one strictly desirable option u ∈ A. As a consequence of sd4,
this implies that she beliefs that there is some real ε > 0 such that u − ε is strictly
desirable. Hence, she believes that there is some real ε > 0 such that A− ε contains at
least one strictly desirable option. Strong Archimedeanity, at that point, concludes that
A− ε ∈ K. However, this is only justified if our subject knows ε . If she doesn’t know
ε , but only believes that there is such an ε , then there is no single ε > 0 for which she
believes that A− ε contains at least one strictly desirable option. Since the option sets
in K are options sets for which our subject believes that they contain at least one strictly
desirable option, it follows that A ∈ K need not necessarily imply that A − ε ∈ K for
some ε > 0. Strong Archimedeanity is therefore indeed, as its name suggests, a bit too
strong for our purposes.

So if we can’t infer that A − ε ∈ K, what is it then that we can infer from A ∈ K
and sd4? As explained above, the only thing that can be inferred is that for any A ∈ K,
there is some ε > 0 such that A−ε contains at least one strictly desirable option. Let us
denote this specific epsilon by ε(A). Crucially, we may not know—or rather, our subject
may not know—the specific value of ε(A). Nevertheless, any inferences we can make
without knowing the specific value of ε(A), can and should still be made. Our approach
will therefore consist in finding out what inferences can be made for a specific choice
of the ε(A), to do this for every such choice, and to then only consider those inferences
that can be made regardless of the specific choice of ε(A).

To formalize this, we consider the set RK
>0 of all functions ε that associate a strictly

positive real ε(A)> 0 with every option set A in K. As a consequence of our interpre-
tation, we know that there is at least one ε ∈ R

K
>0 such that, for every A ∈ K, A− ε(A)

contains a strictly desirable option.
Let us now assume for a minute that our subject does know for which specific ε in

R
K
>0 this is the case. In order to be compatible with sd1–sd3, the resulting assessment

Kε := {A− ε(A) : A ∈ K} (9)

should then be consistent with coherence, meaning that there is at least one coherent set
of desirable option sets that includes Kε . Whenever this is the case, then as explained
in Sect. 3, we can use coherence to extend the assessment Kε to the unique smallest
coherent set of desirable option sets that incudes it: the natural extension Ex(Kε) of
Kε . Based on the assessment Kε and coherence, each of the option sets in Ex(Kε) must
necessarily contain a strictly desirable option. Hence, still assuming for the moment
that our subject knows ε , it follows that every option set in Ex(Kε) should belong to K.

Our subject may not know ε though; all we can infer from sd4 is that there must
be at least one ε for which the above is true. Let us denote this specific—but possibly
unkown—ε by ε∗. Then as argued above, for every option set A in Ex(Kε∗), it follows
from our interpretation that A should also belong to K. Since we don’t know ε∗, how-
ever, we don’t know for which option sets this is the case. What we can do though, is
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to consider those option sets A ∈ Q that belong to Ex(Kε) for every possible ε ∈ R
K
>0.

For those option sets, regardless of whether we know ε∗ or not, it trivially follows that
A ∈ Ex(Kε∗), and therefore, that A should belong to K. Any coherent set of desirable
option sets K that satisfies this property, we will call Archimedean.

Definition 6. A set of desirable option sets K is Archimedean if it is coherent and sat-
isfies the following property:

KA. for any A ∈ Q, if A ∈ Ex(Kε) for all ε ∈ R
K
>0, then also A ∈ K.

Note that Archimedeanity also rules out the possibility that Kε is inconsistent for all
ε ∈ R

K
>0, for this would imply that K =Q, hence contradicting K1.

By replacing strong Archimedeanity with Archimedeanity, the condition that the
representing set P must be closed can be removed from Theorem 3, and we obtain a
representation in terms of general sets of lower previsions.

Theorem 4. A set of desirable option sets K is Archimedean if and only if there is some
non-empty setP ⊆ P of coherent lower previsions such that K = KP . The largest such
setP is then P(K).

The significance of this result is that it relates two very different things: sets of desirable
option sets and sets of coherent lower previsions. While this may not yet be obvious, this
is a major step in characterising choice functions of the formCP . In fact, we are nearly
there. The only thing left to do is to connect choice functions with sets of desirable
option sets. As we will explain in the next section, this connection comes quite naturally
once we interpret choice functions in terms of (strict) desirability.

6 Archimedean Choice Functions

In order to provide choice functions with an interpretation, we need to explain what
it means for an option u to be chosen from A, or alternatively, what it means for u to
be rejected from A, in the sense that u /∈ C(A). We here adopt the latter approach. In
particular, if our subject states that u /∈C(A), we take this to mean that she is convinced
that there is at least one other option v in A \{u} that is better that u, where ‘v is better
than u’ is taken to mean that v − u is strictly desirable, or equivalently, that there is
a positive price ε > 0 for which paying ε to exchange the uncertain reward u for v is
preferrable to the status quo. Note however that this interpretation does not not assume
that our subject knows the specific ε and v for which this is the case.

Our interpretation has two implications for C. First, since v − u = (v − u)− 0, it
immediately implies that C should be translation invariant, in the sense that

u ∈C(A) ⇔ 0 ∈C(A−u) for all A ∈ Q and u ∈ A, (10)

with A−u := {v−u : v ∈ A}. Second, for all A ∈Q such that 0 /∈C(A∪{0}), it implies
that A should contain at least one strictly desirable gamble. Indeed, if 0 /∈C(A ∪{0}),
then according to our interpretation, there is some v ∈ (A ∪ {0}) \ {0} ⊆ A such that
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v−0= v is strictly desirable. Hence, A indeed contains a strictly desirable option. For
any choice function C, this leads us to consider the set of desirable option sets

KC :=
{
A ∈ Q : 0 /∈C(A∪{0})}. (11)

According to our interpretation, each of the option sets in KC contains at least one
strictly desirable option. Following the discussion in Sect. 6, we will therefore require
KC to be Archimedean. When a choice function C satisfies both of the conditions that
are implied by our interpretation, we call it Archimedean.

Definition 7. A choice function C is Archimedean if KC is Archimedean and C is trans-
lation invariant.

Instead of deriving a set of desirable options sets KC from a choice function C,
we can also do the converse. That is, with any set of desirable option sets K, we can
associate a choice functionCK , defined by

CK(A) :=
{
u ∈ A : A�u /∈ K

}
for all A ∈ Q, (12)

where A�u := {v−u : v ∈A\{u}}. Similarly to KC , the expression forCK is motivated
by our interpretation. Indeed, for any option u ∈ A, the statement that A�u ∈ K means
that A � u contains a strictly desirable option, so there is some v ∈ A \ {u} such that
v−u is strictly desirable. This is exactly our interpretation for u /∈C(A).

If a set of desirable option sets K is Archimedean, then CK will be Archimedean
as well. In fact, as our next result shows, every Archimedean choice function is of the
formCK , with K an Archimedean set of desirable option sets.

Proposition 1. Let C be a choice function. Then C is Archimedean if and only if there
is an Archimedean set of desirable option sets K such that C =CK. This set K is then
necessarily unique and furthermore equal to KC.

At this point, the hard work in characterising choice functions of the form CP is
done. Proposition 1 relates Archimedean choice functions to Archimedean sets of desir-
able option sets, while Theorem 4 relates Archimedean sets of desirable option sets to
sets of coherent lower previsions P . Combining both results, we find that a choice
function is Archimedean if and only if it is of the form CP .

Theorem 5. A choice function C is Archimedean if and only if there is a non-empty set
P ⊆ P of coherent lower previsions such that C =CP . Whenever this is the case, the
largest such setP is P(KC).

Starting from this result, we will now proceed to axiomatise maximality and E-
admissibility, by combining Archimedeanity with additional axioms.

7 Axiomatising E-Admissibility

Archimedeanity implies that a choice function is representable by a set of coherent
lower previsions P , in the sense that is of the form CP . As can be seen by comparing
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Eqs. (4) and (2), this already brings us very close E-admissibility. Indeed, all that we
need in order to obtain E-admissibility is for the lower previsions in P to be linear.
That is, we would like the role of P(K) to be taken up by

P(K) := {P∈ P : K ⊆ KP}

instead. To achieve this, we impose a property called mixingness [4] on the
Archimedean set of desirable option sets KC that corresponds to C. For any option set
A, this property considers the set

posi(A) :=
{ n

∑
i=1

λiui : n ∈ N,λi > 0,ui ∈ A

}
,

of all positive linear combinations of the elements in A, and requires that if any of these
positive linear combinations—any mixture—is strictly desirable, then A itself should
contain a strictly desirable option as well.

Definition 8. A set of desirable option sets K is mixing if it satisfies

KM. if B ∈ K and A ⊆ B ⊆ posi(A), then also A ∈ K, for all A,B ∈ Q;

A choice function C is called mixing if KC is.

As the following result shows, mixingness achieves exactly what we need: for any
coherent set of desirable option sets K, it guarantees that the coherent lower previsions
in P(K) are in fact linear.

Proposition 2. Let K be a coherent set of desirable option sets that is mixing. Then for
any P ∈ P(K), we have that P ∈ P. Hence, P(K) = P(K).

By combining this result with Theorem 5, it follows that Archimedean choice func-
tions that are mixing correspond to E-admissibility. The next result formalizes this and
furthermore shows that the converse is true as well.

Theorem 6. A choice function C is Archimedean and mixing if and only if there is a
non-empty setP ⊆ P of linear previsions such that C =CE

P . The largest such setP is
then P(KC).

8 Axiomatising Maximality

Having axiomatised E-admissibility, we now proceed to do the same for maximality.
The link with Archimedeanity is not that obvious here though, because there is no
immediate connection between Eqs. (4) and (3). Rather than focus on how to relate
these two equations, we therefore zoom in on the properties of maximality itself. One
such property, which is often used to illustrate the difference with E-admissibility, is
that a choice function that corresponds to maximality is completely determined by its
restriction to so-called binary choices—that is, choices between two options.
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Definition 9. A choice function C is binary if for all A ∈ Q and u ∈ A:

u ∈C(A) ⇔ (∀v ∈ A \{u}) u ∈C({u,v})

Inspired by this observation, we impose binarity as an additional axiom, alongside
Archimedeanity. As the following result shows, these two conditions are necessary and
sufficient for a choice functionC to be of the formCM

P , hence providing an axiomatisa-
tion for decision making with maximality.

Theorem 7. A choice function C is Archimedean and binary if and only if there is a
non-empty setP ⊆ P of linear previsions such that C =CM

P . The largest such setP is
then P(KC).

The formal proof of this result is rather technical, but the basic idea behind the
sufficiency proof is nevertheless quite intuitive. First, for every u ∈C(A), the binarity
of C implies that u ∈ C({u,v}) for every v ∈ A \ {u}. For every such v ∈ A \ {u},
since C is Archimedean, Theorem 5 furthermore implies that there is a coherent lower
prevision P such that P(v − u) ≤ 0. Because of Theorem 1, this in turn implies that
there is a linear prevision such that P(v− u) ≤ 0 and therefore also P(u) ≥ P(v). The
challenging part consists in showing that P∈ P(KC) and establishing necessity.

9 An Axiomatisation for Maximising Expected Utility

As we have seen in Sects. 7 and 8, mixingness and binarity have quite a different
effect on Archimedean choice functions. The former implies that they correspond to
E-admissibility, while the latter leads to maximality. What is intriguing though is that
the set of linear previsionsP is twice the same. Indeed, as can be seen from Theorem 6
and 7, we may assume without loss of generality that this set is equal to P(KC). For a
choice functionC that is mixing and binary, we therefore find thatC =CE

P =CM
P , with

P = P(KC). As the following result shows, this is only possible ifP is a singleton.

Proposition 3. Let P ⊆ P be a non-empty set of linear previsions. Then CE
P =CM

P if
and only ifP = {P} consists of a single linear prevision P ∈ P.

As a fairly immediate consequence, we obtain the following axiomatic characteri-
sation of choice functions that correspond to maximising expected utility.

Theorem 8. A choice function C is Archimedean, binary and mixing if and only if there
is a linear prevision P∈ P such that C =CP.

10 Conclusion and Future Work

The main conclusion of this work is that choice functions, when interpreted in terms
of (strict) desirability, can provide an axiomatic basis for decision making with sets
of probability models. In particular, we were able to derive necessary and sufficient
conditions for a choice function to correspond to either E-admissibility or maximality.
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As a byproduct, we also obtained a characterisation for choice functions that correspond
to maximising expected utility.

The key concept on which these results were based is that of an Archimedean choice
function, where Archimedeanity is itself a combination of several conditions. The first
of these conditions is translation invariance; this condition is fairly simple and allows
for a reduction from choice functions to sets of desirable option sets. The resulting set
of desirable option sets should then satisfy two more conditions: coherence and KA.
Coherence is also fairly simple, because it follows directly from the principles of desir-
ability. The condition KA, however, is more involved, making it perhaps the least intu-
itive component of Archimedeanity.

The abstract character of KA is not intrinsic to the property itself though, but rather
to the framework on which it is imposed. In fact, the basic principle sd4 on which KA

is based is very simple: if u is strictly desirable, then there must be some positive real
ε such that u− ε is strictly desirable as well. The reason why this simplicity does not
translate to KA is because we restrict attention to option sets that are finite. Consider for
example an assessment of the form {u} ∈ K. This means that u is strictly desirable and
therefore implies, due to sd4, that the option set {u− ε : ε ∈ R>0} contains at least one
strictly desirable option. Hence, we should simply impose that this set belongs to K.
This is not possible though because {u− ε : ε ∈ R>0} is infinite, while our framework
of sets of desirable option sets only considers finite option sets.

This situation can be remedied, and the axiom of Archimedeanity can be simplified,
by developing and adopting a framework of sets of desirable options that allows for
infinite option sets, and connecting it to a theory of choice funtions that chooses from
possibly infinite option sets. Explaining how this works is beyond the scope and size of
the present contribution though; I intend to report on those results elsewhere.

Acknowlegements. This work was funded by the BOF starting grant 01N04819 and is part of
a larger research line on choice functions of Gert de Cooman and I [3,4]. Within this line of
research, this contribution is one of two parallel papers on Archimedean choice functions, one
by each of us. My paper—this one—deals with the case where options are bounded real-valued
functions. It axiomatises Archimedean choice functions from the ground up by starting from
(strict) desirability principles and proves that the resulting axioms guarantee a representation
in terms of coherent lower prevision. The paper of Gert [5] defines Archimedeanity directly in
terms of coherent lower previsions—superlinear functionals, actually, in his case—but considers
the more general case where options live in an abstract Banach space; he also extends the concept
of a coherent lower prevision to this more general context and discusses the connection with horse
lotteries. We would like to combine our respective results in future work.
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