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Abstract. This paper considers the problem of learning a generalized
credal network (a set of Bayesian networks) from a dataset. It is based on
using the BDEu score and computes all the networks with score above a
predetermined factor of the optimal one. To avoid the problem of deter-
mining the equivalent sample size (ESS), the approach also considers the
possibility of an undetermined ESS. Even if the final result is a set of
Bayesian networks, the paper also studies the problem of selecting a sin-
gle network with some alternative procedures. Finally, some preliminary
experiments are carried out with three small networks.
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1 Introduction

Probabilistic graphical models [17] and in particular Bayesian networks have
been very successful for representing and reasoning in problems with several
uncertain variables. The development of procedures to learn a Bayesian network
from a dataset of observations [16] is one the most important reasons of this suc-
cess. Usually, learning is carried out by selecting a score measuring the adequacy
of a model given the data and optimizing it in the space of models. However, in
most of the situations the selection of a single Bayesian network is not justified
as there are many models that explain the data with a similar degree, being the
selection of an optimal network a somewhat arbitrary choice [7]. For this reason,
recently, there has been some effort in computing a set of possible models instead
of selecting a single one [12]. The idea is to compute all the models with a score
within a given factor of the optimal one. In this paper we will follow this line,
but interpreting the result as a generalized credal network: a set of Bayesian
networks which do not necessarily share the same graph [13]. The term credal
network was introduced [6] for a set of Bayesian networks over a single graph
(there is imprecision only in the parameters). The overall procedure is based on
the general framework introduced in [15], where it is proposed a justification
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based on sets of desirable gambles [5,18,22] for the selection of a set of models
instead of a single one, following the lines of Gérdenfors and Shalin [8] and a-cut
conditioning by Cattaneo [2].

The basic criterion used for learning is the so called BDEu score [9]. This score
needs a parameter, the equivalent sample size (ESS), which is usually arbitrarily
selected in practice with a value between 1 and 10. However, there are results
showing that the final network can have a dependence on the ESS, producing
more dense networks when it is higher [4,14,21]. For this reason, our approach
will also consider the possibility of imprecision due to an undetermined ESS.

The paper is organized as follows. Section 2 provides the basic theoretical
framework for our problem. Section 3 describes the algorithms used in the com-
putation. Section4 is devoted to the experiments. Finally, the conclusions and
future work are in Sect. 5.

2 Learning Imprecise Models

Given a set of variables, X = (Xi,...,X,,), a Bayesian network [17] is a pair
(G, ), where G is a directed acyclic graph such that each node represents a
variable, and [ is the set of parameters: a conditional probability distribution
for each variable X; given its parents in the graph, Pa;, denoted as P(X;|Pa;)
or as P g)(X;|Pa;) when we want to make reference to the associated model.
It will be assumed that each variable X, takes values on a finite set with K;
possible values. A generic value for variable X; is denoted by z; and a generic
value for all the variables X is denoted as x. An assignation of a concrete value
to each variable in Pa; is called a configuration and denoted as pa;. The number
of possible configurations of Pa; is denoted by R;. There is a joint probability
distribution for variables X associated with a Bayesian network (G, ) that will
be denoted as P g) and that is equal to the product [[", P g)(X;|Pa;).

We will consider that we have a set of full observations D for all the variables
in X. Given a graph G, n;;; will denote the number of observations in D where
X; = x, and its parents Pa, take the jth configuration, n;; = Zé{:l Nk,
whereas n will be the total sample size. In the framework for learning proposed
in [15], it is assumed that we have the following elements:

— A set of parameters © that corresponds to the space of possible decisions. In
our case, O is the set of pairs (G, s), where G is a direct acyclic graph, and
s is a possible ESS belonging to a finite set of values, S. For example, in our
experiments we have considered S = {0.1,0.5,1.0,2.0,4.0,6.0,8.0,10.0}. We
assume a finite set instead of a continuous interval for computational reasons.
— A set of parameters B, and a conditional probability distribution P(3|0)
specifying the probability on B for each value of the parameter § € ©. In our
case the set B is the list of conditional probability distributions P(X;|Pa;),
where the probability values of the conditional distribution of X; given the jth
configuration of the parents are denoted by 5;; = (8ij1, - - -, Bijk,) (i.e. Bijx =
P(X; = zy|Pa; = pag )). It is assumed that each 3;; follows an independent
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Dirichlet distribution D(s/(R;K;),...,s/(R;K;)). The set of all parameters
Bi; will be denoted by 3.

— A conditional distribution for an observation of the variables (Xi,...,X,,)
given a pair (0,3) € © x B (in our case, given G,s and (3). The proba-
bility of observing X = xy,,..., X, = wy,, is the product [[%, Bijr, =
Hi]\i1 P(zy,|pal), where pal is the configuration of the parents compatible
with the observation, and k; represents the subscript of the observed value
for X; = xy,.

In this setting, a set of observations O, defines a likelihood function L in O,
which is given at the general case by,

6) = /B P(B16)P(D|3,0)dp. (1)

In the particular case of learning generalized credal networks, we have that
this likelihood is identical to the well known BDEu score [9] for learning Bayesian
networks:

I'(s/Ri) r I'(niji + s/ (R K5)) 2)
I(nig +s/Ri) o T'(s/(R:K3))

L(G, s) = BDEu(G, s) = P(D|G) = ﬁ

The score for Pa; as set of parents of X; is the value:

nwars/RK))
I'(s/(R;K;))

K;
R;)

log(BDEu(Pa;, s, X;)) = log H[’ (n; ‘:/_ s/R;) H

i k=1

3)
It is immediate that log(BDEu(G,s)) = >..*,log(BDEu(Pa;, s, X;)).
Finally, a generalized uniform distribution on @ is considered given in terms
of a coherent set of desirable gambles [15]. When © is finite as in this case,
associated credal set only contains the uniform probability, but when © is a
continuous interval is quite different from the usual uniform density. Then a dis-
counting is considered of this prior information on © given by a value € € [0, 1].
This discounting is a generalization of the e discounting of a belief function [20].
After the observations are obtained, the model is conditioned to them, obtaining
a posterior information on ©. It is assumed that the set of decisions is equiv-
alent to the set of parameters © and the problem is solved by computing all
un-dominated decisions under a 0—1 loss (details in [15]). Finally, in our case the
set of un-dominated decisions is the set of parameters (G, s) such that:

L(G,s) = BDEu(G, s) > aBDEu(G, 3),
where a = 1

e €10,1] and (G, 5) is the pair maximizing the likelihood L(G, s)
for (G, s) € ©. The set of parameters satisfying the above inequality is denoted
by Hf and defines what we shall call the set of possible models.
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In the following, we will use the value v = 1=¢ € [0, 1] which is computed as
a continuous decreasing function from [0, 1] into [0, 1] and that determines the
factor of the maximum entropy model which makes (G, S) non-dominated.
Given a parameter (G, s), the model for X is given by the Bayesian network
(G, /3’), where [ is the Bayesian estimation of 3 (expected value of § given (G, s)
and D), and which can be computed in closed form by the well known expression:

A nijk + s/ (R K;)

ik = nij + s/ (1) )

The probability distribution associated with (G, 3) will be also denoted as
PG .s)(x)". Finally the set of possible models (a generalized credal network) is
the set of Bayesian networks:

Mp ={(G,B) | (G,s) € H}, (5)

and where (3 is the set of parameters given by Eq. (4).

Though, in our opinion, the result of learning should be the set M3, in some
cases, it is interesting to select a single model. For example, we have carried
out experiments in which we want to compare this approach to learning with a
Bayesian procedure that always selects a single network. For this aim we have
considered two approaches:

— Magimum Entropy: We select the pair (G, 3) € M% maximizing the entropy,
where the entropy of a model (G, 3) is given by:

ZPGH x)log P ) (x)- (6)
— Minimum of Mazimum Kullback-Leibler Divergence: If( ) and (G, (') are
two models, then the Kullback-Leibler divergence of (G, 3) to (G', 5’ ) is given
by the expression:
PG’ ﬁ/)(X)
KL((G'.B),(G,B) =Y Pqrp(x)log <(’ . (7)
Zx: (G7,8") P(G,B) (x)

Then, for each model (G, B) € M3, the following value is computed:

MKL(G, ) = max{KL((G", 3),(G, 0)) | (G', ") € MB}.

Finally, the model (G, B) € Mg minimizing MK L(G, (5) is selected.

! In fact, this probability also depends on D, but we do not include it to simplify the
notation.
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3 Algorithms

Given a set of observations D and a value of €, our aim is to compute the set
of Bayesian networks given by Eq. (5), where o« = }IE For this we have taken
as basis the pgmpy package in which basic procedures for inference and learning
with Bayesian networks are implemented [1].

Our first algorithm Al1Scores(ESS, a) computes the set of possible parents
as well as the logarithm of their scores for each variable X;, for each sample size
s € S and for a given value of «, being denoted this set as Par(X;, s, a).

To do it, we compute the value of log(BDFEu(Pa;, s, X;)) following Eq. (3)
for each set Pa; C X\ {X;}, storing the pair (Pa;,log(BDEu(Pa;, s, X;)), but
taking into account the following pruning rules as in [12]:

— If Pa; C Paj and log(BDEu(Pa;, s, X;)) > log(BDEu(Pa}, s, X;)) — log(a),
then Pa is not added to Par(X;,s,«) as there can not be a model in Mg
with this set of parents.

— If Pa; C Pa) and log(BDEu(Paj, s, X;)) > log(K;)+R; (Pa.)—log(a), where
R} (Pal) is the number of configurations of Pa) with n;; > 0, then Pd} is
not added to Par(X;,s,«) and none of the supersets of Pa} is considered as
possible set of parents for X;.

Once Al1Scores(S, a) computes Par(X;, s, «) for any s € S and any variable
X;, then an A* algorithm is applied to compute all the order relationships o
in {1,...,m} and values s € S such that there is a pair (G,s) in H with
Pagiy € { X1y, -, Xo@i—1)}- For this we introduce two modifications of the
algorithm proposed in [10]: a value « has been considered and we compute not
only the order with the optimal value but also all the orders within a factor «
of the optimal one.

A partial order oy, is given by the values (o (1),...,0%(k)) for & < m (only
the first k values are specified). A partial order can be defined for values k =
0,...,m. For kK = m we have a full order and for k£ = 0 the empty order. A graph
G is compatible with a partial order oy when Pa,,;y C {Xs, 1), Xopi—1)}
for i = 1,...,k. Given an ESS s and oy, it is possible to give an upper bound
for the logarithm of the score of all the orders o that are extensions of o) and
which is given by,

k
Bound(oy, s) = Z Best(X, i), {Xo)s > Xo@—1)}, 8)F
. (8)

Z BeSt(XU(i)7 X \ {Xo(i)}7 8)7
i=k+1

where Best(X;, A, s) is the best score stored in Par(X;, s, «), between those set
of parents Pa; C A, i.e. we select the parents compatible with partial order oy,
for variables Xg, (1),..., X5, (x) and the rest of the set of parents are chosen in
an arbitrary way.
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Our algorithm is applied to nodes N(Ag, s, score,up), where Ay is a set
{ok(1),...,0%(k)} for a partial order oy, s is a value in S, score is the value of
Bound(oy, s), and up is a reference to the node N(Ag_1, s, score’, up’) such that
oy is obtained by extending partial order oy_1 with the value oy (k).

The A* algorithm is initiated with a priority queue with a node for each pos-
sible value of s € S, N(0, s, score, NULL), where score is obtained by applying
Eq. (8) to partial order g (empty partial order). The algorithm stores a value B
which is the best score obtained so far for a complete order (which is equal to the
score of the first complete order selected from the priority queue) and H (A, s)
which is the best score obtained so far for a node N(Ag, s, score,up) where
Ay = A. Let us note that for a node N (A, s, score, up) it is always possible to
recover its corresponding partial order o as we have that op(k) = Ap \ Agp—_1
where Aj_1 is the set appearing in node N (Ag_1, s, score’, up') referenced by up,
and the rest of values can be recursively found by applying the same operation
of the node N(Ag_1, s, score’,up’).

The algorithm proceeds selecting the node with highest score from the pri-
ority queue while the priority queue is not empty and score > B +log(«). If this
node is N(Ag, s, score, up), then if it is complete (A = X), the node is added
to the set of solution nodes. In the case it is not complete then all the nodes
N(Ag1,5,score’,up') obtained by adding one variable X;, in X\ Ay to Ay are
computed, where up’ points to former node N (A, s, score, up) and the value of
score’ is calculated taking into account that

score’ = score 4+ Best(X;, Ay, s) — Best(X;, X \ {X;(141) }, 5)- (

9)
The new node is added to the priority queue if and only if score’ >
H(Ak+1,5) +log(a). In any case the value of H(Ag41,$) is updated if score’ >
H(Ag1,5).

Once A* is finished, we have a set of solution nodes N (X, score, s, up). For
each one of these nodes we compute their associated order ¢ and then the order
is expanded in a set of networks. Details are given in Algorithm 1. In that algo-
rithm, ParOrder(Xq 1), s, o, 0) is the set of pairs (Pay(x),t) € Par(X, (), s, )
such that Pa,p) € {Xo1), - Xok—1)}, and t is log(BDEu(Pay(xy, §, Xo(k)))-

The algorithm is initially called with a list L with a pair (G, u) where G is
the empty graph, u is the value of score in the solution node N (X, score, s, up)
and with k£ = 1. It works in the following way: it considers pairs (G, u), where G
is a partial graph (parents for variables X,(),..., X,(x—1) have been selected,
but not for the rest of variables) and w is the best score that could be achieved if
the optimal selection of parents is done for the variables X, ), - .., Xo(m). Then,
the possible candidates for parents of variable X, ) are considered. If Payy) is
a possible candidate set with a score of £ and the optimal set of parents for this
variable is T, then if this parent set is chosen, then T — ¢ is lost with respect to
the optimal selection. If u was the previous optimal value, now it is v’ = u—T+t.
This set of parents can be selected only if v’ > B +log(«); in that case, the new
graph G’ obtained from G by adding links from Pa, ) to Xq(x) is considered
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Algorithm 1. Computing the networks associated to an order and ESS s

Require: o, an order of the variables

Require: «, the factor of the optimal score

Require: B, the best score of any network

Require: s, the ESS

Require: L a list of pairs (G, u) where G is a partial graph and u is the best score of
a completion of G

Require: k the node to expand

Ensure: LR = {(G1,...,Gx}, a list of graphs with an admissible score compatible
with o

1: procedure EXPAND(c,a,B,s,L,k)

2 if £ > m then

3 Let LR the list of graphs G such that (G,u) € L

4: return LR

5: end if

6.

7

8

Let L' equal to
Let T' = max{t : (Pay(),t) € ParOrder(X,),s,a,0)}
: for (G,u) € L do
9: Let @ be the set of pairs (Pay(x),t) € ParOrder(Xq ), s, o, o) with

10: u—T+t> B+ log(a)

11: for (Pas),t) € Q do

12: Let G’ the graph G expanded with links from Pagky to Xor)
13: Let ' =u—T+t

14: Add (G',u') to L'

15: end for

16: end for

17: return EXPAND(o,score,B,s, L’k + 1)

18: end procedure

with optimal value u/. The algorithm proceeds by expanding all the new partial
graphs obtained this way, by assigning parents to the next variable, X (x41)-

Finally we compute the list of all the graphs associated to the result of the
algorithm for any solution node N (X, score, s, up) with the corresponding value
s. In this list, it is possible that the same graph is repeated with identical value
of s (the same graph can be obtained with two different order of variables). To
avoid repetitions a cleaning step is carried out in order to remove the repetitions
of identical pairs (G, s). This is the final set of non-dominated set of parameters
H¢. Finally the set of possible models M3 is the set of Bayesian networks (G, ﬁA)
that are computed for each pair (G,s) € HY where B has been obtained by
applying Eq. (4).

The number of graphs compatible with an order computed by this algo-
rithm can be very large. The size of L is initially equal to 1, and for each
variable X,(;) in 1,...,m, this number is increased in the different calls to
ExpPAND(o,«,B,s,L,k). The increasing depends of the number of set of parents
in @ (computed in lines 9-10 of the algorithm). If for each, (G, u), we denote by
NU(G,u) the cardinality of @, then the new cardinality of L’ is given by:
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> NU(G,u)

(Guw)eL

Observe that if NU(G,u) is always equal to k, then the final number of net-
works is O(k™), and the complexity is exponential. However, in the experiments
we have observed that this number is not very large (in the low size networks we
have considered) as the cardinality of sets @) is decreasing for most of the pairs
(G,u) when k increases, as the values u' associated with the new pairs (G',u’)
in L’ are always lower than the value u in the pair (G, u) giving rise to them
(see line 13 in the algorithm).

Above this, we have implemented some basic methods for computing the
entropy of the probability distribution associated with a Bayesian network
E(G, ) and the Kullback-Leibler divergence from a model (G, ) to another
one (G',3") given by KL((G',3"), (G, 3)). For that, following [11, Theorem 8.5],
we have implemented a function computing ELL((G’, 5'), (G, 3)) given by:

ELL((G',8),(G.5)) = Y_ Pir,5) (%) 10g(Pc,5)(x))-

For this computation, we take into account that Pgg)(x) =
I1721 Pc,p)(zilpai), where pa; is a generic configuration of the parents Pa; of
X, in G, obtaining the following expression:

ELL((G',8),(G,8)) =YY P (@i, pai) log(P,p (xilpas)).

1=1 pa;

In this expression, P g)(:|pa;) is directly available in Bayesian network (G, 3),
but Pgr gy (4, pa;) is not and have to be computed by means of propagation
algorithms in Bayesian network (G’, 3'). This is done with a variable elimination
algorithm for each configuration of the parents Pa; = pa;, entering it as evidence
and computing the result for variable X; without normalization. This provides
the desired value P gy (i, pas).

Finally, the values of entropy and Kullback-Leibler divergence are computed
as follows:

E(G,B) = —ELL((G", 8), (G, B))
KL((G/a ﬂl)a (Ga /6)) - ELL((G/a ﬂl)a (Gla ﬂ)) - ELL((G/a ﬂl)a (Ga /8))

4 Experiments

To test the methods proposed in this paper we have carried out a series of exper-
iments with 3 small networks obtained from the Bayesian networks repository
in bnlearn web page [19]. The networks are: Cancer (5 nodes, 10 parameters),
Earthquake (5 nodes, 10 parameters), and Survey (6 nodes, 21 parameters). The
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main reason for not using larger networks was the complexity associated to com-
pute the Kullback-Leibler divergence for all the pairs of possible models. This is
a really challenging problem, as if the number of networks is 7', then T'(T — 1)
divergences must be computed, and each one of them, involves a significant num-
ber of propagation algorithms computing joint probability distributions. So, at
this stage the use of large networks is not feasible to select the network with
minimum maximum KL divergence to the rest of possible networks.

4.1 Experiment 1

In this case, we have considered a set of possible values for ESS, S =
{0.1,0.5, 1.0,2.0, 4.0,6.0,8.0,10.0}, and we have repeated 200 times the fol-

lowing sequence:

— A dataset of size 500 is simulated from the original network.

— The set of possible networks is computed with a value of @ = e

— The maximum entropy network (MEntropy), the minimum of maximum
Kullback-Leibler divergence (MinMaxKL), and the maximum score network
for all the sample sizes (Bayesian) are computed. For all of them the Kullback-
Leibler divergence with the original one are also computed, as well as the
maximum (MaxKL) and minimum divergence (MinKL) of all the possible
models with the original one.

—-0.6

The means of the divergences of the estimated models can be seen in Table 1.
We can observe as the usual method for learning Bayesian networks (considering
the graph with highest score) gives rise to a network with a divergence between
the maximum and minimum of the divergences of all the possible networks,
and that the average is higher than the middle of the interval determined by
the averages of the minimum and the maximum. This supports the idea that
the Bayesian procedure somewhat makes an arbitrary selection among a set of
networks that are all plausible given the data. This idea is also supported by
Fig. 1 in which the density of the Bayesian, MinKL, and MaxKL divergences are
depicted for each one of the networks?. On it we can see the similarities between
the densities of these three values: of course the MinKL density is a bit biased
to the left and MaxKL density to the right, being the Bayesian density in the
middle, but with very small differences. This again supports the idea that all
the computed models should be considered as result of the learning process.

When selecting a single model, we also show that our alternative methods
based on considering a family of possible models and then selecting the one with
maximum entropy or minimum of maximum of Kullback-Leibler divergence pro-
duce networks with a lower divergence on average to the original one than the
usual Bayesian procedure. We have carried out a Friedman non-parametric test
and in the three networks the differences are significant (p-values: 0.000006,
0.0159, 0.0023, for Cancer, Earthquake, and Survey networks, respectively).
In a posthoc Friedman-Nemenyi test, the differences between MinMaxKL and

2 Plotted with Python seaborn package.
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Table 1. Means of divergences of estimated models and the original one

Network Bayesian | MinKL. | MaxKL | MEntroKL | MinMaxKL
Cancer 0.013026 | 0.011225 | 0.014126 | 0.012712 0.012270
Earthquake | 0.017203 | 0.013132 | 0.019769 | 0.016784 | 0.016072
Survey 0.031459 | 0.028498 | 0.033899 | 0.031257 | 0.030932

cancer.bif

earthquake.bif survey.bif

80 4 —— Bayesian 601
—— Min

—— Bayesian
—— Min
— Max

—— Bayesian
— Min
— Max

704 — Max
60
504
40 304

30 154

0.04 0.06 0.08

KL Diverbence

0.04 0.06 0.08 0.02

KL Diverbence

0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.02
KL Diverbence

Fig. 1. Density for the Bayesian, minimum, and maximum Kullback-Leibler diver-
gences.

Bayesian are significant in Cancer and Survey networks (p-values: 0.027, 0.017)
but not in Cancer (p-value: 0.1187). The differences of MaxEntropy and the
Bayesian procedure are not significant.

4.2 Experiment 2

In this case, we have a similar setting than in Experiment 1, but what we have
measured is the number of networks that are obtained by our procedure (number
of elements in MJ) and the distribution of the number of networks by each ESS
s € S. In Fig. 2 we can see the densities of the number of networks (left) and the
figure with the averages of the networks by each s € S. First, we can observe
that the number of possible networks is low in average (below 5) for our selection
of networks, «, and sample size, but that the right queue of the densities is
somewhat large, existing cases in which the number of possible networks is 20
or more. With respect to the number of networks by value of ESS s, the most
important fact is that the distribution of networks by ESS is highly dependent of
the network, being the networks for Survey obtained with much higher values of
s than in the case of Cancer or Earthquake. This result puts in doubt the usual
practice of selecting a value of s when learning a Bayesian network without
thinking that this does not have an effect in the final result.
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Total Number Networks Average Number of Networks by ess

— cancer.bif —— cancer.bif
— earthquake.bif 2.0 — earthquake.bif
0.35 — survey.bif — survey.bif

0.10 4 0.5

0.0

0 5 10 15 20 25 0.10.51.0 2.0 4.0 6.0 8.0 10.0
Number

Fig. 2. Densities of the number of networks (left) and average number of networks by
ESS (right).

4.3 Experiment 3

In this case, we compare the results of selecting a unique network by fixing
a value of s (the optimal one for this value) with the result of selecting the
parameter s and the network G optimizing the score. We again repeat a similar
experiment to the other two cases, but we compute the networks: the Bayesian
network, given by the pair (G,s) with highest score (the Bayesian approach
in Experiment 1), and the best graph for each one of the values s € S. For
each one of the networks we compute the Kullback-Leibler divergence with the
original one. The results of the averages of these divergences are depicted in
Fig. 3 for each one of the networks. The dashed line represents the average of
the divergence pair (G, s) with best score. On it, we can see that selecting the
pair with best score is a good idea in Cancer network, as it produces an average
divergence approximately equal to the best selection of value of s, but that is
not the case of Earthquake and Survey networks, as there are many selections
of s producing networks with lowest divergences than the divergence of the pair
with best score. For this reason, is not always a good idea to select the equivalent
sample size by using an empirical likelihood approach (the sample size giving rise
to greatest likelihood). Other observation is that the shape of the densities of
the divergences is quite different by network. For example, in Survey the lowest
divergences are obtained with the highest values of s, while in Cancer a minimum
is obtained for a low sample size of 2.

4.4 Experiment 4

In this case we have tested the evolution of the number of possible networks (ele-
ments in M3) as a function of the sample size. For this aim, instead of fixing a
sample size of 500, we have repeated the generation of a sample and the estima-
tion of the models Mg for different samples sizes (n = 400, 500, 1000, 2000, 5000,
10000, 20000, 40000) and for each value of n we have compute the number of
models in M3 (repeating it 200 times). Finally Fig. 4 shows the average number



162 A. Cano et al.
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Fig. 3. Kulback Leibler of the best network and the best network by ESS s.

of models for each sample size. As it can be expected the number of models
decreases when the sample size increases, very fast at the beginning and more
slowly afterwards. In some cases, there are minor increasings in the average
number of models when the sample size increases. We think that this is due
to the fact that the density of the number of models has a long queue to the
right, existing the possibility of obtaining some few cases with a high number of
models. This fact can produce this small local irregularities.

cancer.bif earthquake.bif survey.bif
4.5
2.6 1 4.00 4
4.0
3.754
2.4
3.54 3.504
2.2+ 3.04 3.254
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Fig. 4. Evolution of the number of possible networks as a function of the sample size.

5 Conclusions and Future Work

In this paper we have applied the general procedure proposed in Moral [15] to
learn a generalized credal network (a set of possible Bayesian networks) given
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a dataset of observations. We have implemented algorithms for its computation
and we have shown that the results applied to learning from samples simulated
from small networks are promising. In particular, our main conclusion is that
the usual procedure of selecting a network with the highest score does not make
too much sense, when there is a set of networks that are equally plausible and
that represents probability distributions with a similar divergence to the one
associated with the true network. Even in this family, we can find networks
using other alternative procedures with smaller divergences to the original one,
as the case of considering the minimum of the maximum of Kullback-Leibler
divergences in the family of possible models.

Our plans for future work are mainly related to making scalable the proposed
procedures and algorithms. When the number of variables increases a direct
application of the methods in this paper can be unfeasible. We could try to
use more accurate bounds to prune A* search [3], but even so, the number of
networks for a threshold could be too large to be computed. Experiments in
this line are necessary. Then it would be convenient to develop approximations
that could learn a set of significant networks from the full family of possible
ones. Other line of research is to integrate several networks into a more compact
representation: for example if a group of networks share the same structure with
different probabilities try to represent it as a credal network with imprecision in
the probabilities.

Other important task is to try to use the set of possible models to answer
structural questions, as: is there a link from X; to X;? An obvious way to answer
it is to see whether this link is present in all the networks of set of learned models,
in none of the networks, or in some of them but not in all. In that case, the answer
could be yes, no, or possibly. But a theoretical study justifying this or alternative
decision rules would be necessary, as well as algorithms designed to answer these
questions without an explicit construction of the full set of models.
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