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Abstract. Surprisingly, estimated voxel displacement maps (VDMs),
based on image registration, seem to work just as well to correct geomet-
rical distortion in functional MRI data (EPI) as VDMs based on actual
information about the magnetic field. In this article, we compare our
new image registration-based distortion correction method ‘COPE’ to an
implementation of the pixelshift method. Our approach builds on exist-
ing image registration-based techniques using opposite phase encoding,
extending these by local cost aggregation. Comparison of these meth-
ods with 3T and 7T spin-echo (SE) and gradient-echo (GE) data show
that the image registration-based method is a good alternative to the
fieldmap-based EPI distortion correction method.
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1 Introduction and Background

In this article we introduce an image registration-based method for EPI distor-
tion Correction based on Opposite Phase Encoding (COPE). To ensure its use-
fulness, we compare the new, image-registration-based approach with a fieldmap-
based approach for reducing geometric distortion in EPI data due to the suscep-
tibility artifact.

In the fieldmap-based geometric distortion correction method for EPI data
based on the ‘pixelshift method’ by Jezzard and Balaban [6], a pixelshift map,
also called voxel displacement map (VDM), is calculated from a T2-weighted
reference scan. The VDM indicates how far the voxels need to be translated
back to their original locations.

In image registration-based distortion correction methods, the VDM is esti-
mated by acquiring EPI data with two opposite phase encoding directions. In
EPI, the frequency and phase are modulated such that the original location of
each signal can be found; due to the susceptibility artifact, the field inhomogene-
ity ‘disrupts’ the phase encoding, but by acquiring data in the opposite phase
encoding direction, pixel shifts occur in the same amount in opposite directions
in the functional images. Image registration-based methods use a suitable cost
function to minimise, which is a function that measures the dissimilarity between
the opposite phase encoded images.

In the next section, we will explain our distortion correction method ‘COPE’
in more detail. In Sect. 3 we show the experiment we performed for testing the
performance of our method. In the final section we will discuss the results (Fig. 1).

Fig. 1. Setup of the EPI distortion correction comparison

2 Methods

In our image-registration based distortion correction method ‘COPE’, opposite
phase encoded echo planar images (EPI) are registered to each other. Acquiring
an opposite phase encoded EPI volume requires a few seconds. We use one
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model for the forward and backward transformation, which estimates a voxel
displacement map, so the forward and backward transformations are each others
inverse.

First, the optimal transformations (scaling and translation) in the y-direction
are estimated column-wise; for each iteration, the distance DSSD between the
images is established via sum of square differences (SSD) or normalised cross-
correlation (NCC). Let DSSD [I1, I2;p] be a function of parameters p using the
1D columns I1 (from image in one phase encoding direction) and I2 (from image
in the opposite phase encoding direction), and where f(p) =

∑
r is the sum of

the residuals, quantifying the difference between each voxel in one image and
the opposite phase encoded image:

DSSD(p) =
1
2
(f(p))2 with f(p) = I2 ◦ φp − I1 ◦ φ−1

p , (1)

φ : R2 → R
2 and x �→ psx+pt, where φ is the transformation for each coordinate,

composed of ps and pt, the scaling resp. translation parameters. Gauss-Newton
optimisation [7] involves approximating the function DSSD with a second-degree
Taylor expansion in order to iteratively minimise it. Like in Gauss-Newton opti-
misation methods, the Hessian H is approximated with the Jacobian J and the
parameter change s is obtained using both H and J and differences between
columns δ: s = −H JT δ. Instead of regularization, smoothing with a Gaussian
kernel is applied to the scaling and translation matrices and the EPI volumes
that are used to estimate the VDM. The algorithm is inspired by Andersson
et al. [1] and Ruthotto et al. [9].

If the “spin echo” (SE) option has been selected, intensity correction is
applied using the derivative of the inverse of the VDM; for “gradient echo”
(GE), this operation is omitted.

In the next step, a local search is performed to find the most plausible defor-
mation (measured via NCC or SSD); the local search is inspired by the local cost
aggregation method of Heinrich et al. [5]. The displacement values are fine-tuned
by locally finding the best displacement that minimizes the distance between the
images. Additional displacement values are added to the values in the VDM -
that was obtained via Gauss-Newton optimisation in the previous step - and the
similarity between the transformed opposite phase encoded images is recalcu-
lated. This is performed iteratively, from larger additional displacement values
from ±5.00 in the y-direction while simultaneously applying strong smoothing,
to smaller displacements until ±0.75 with lighter smoothing; the image similarity
is calculated accordingly and the displacement value for each voxel that results
in the highest image similarity is kept (see also Fig. 2). The voxel displacement
map can then be applied to distorted EPI data using cubic spline interpolation.
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Fig. 2. Estimation of a voxel displacement map (VDM) via COPE

We compare fieldmap based-correction with image registration-based correc-
tion of SE-EPI and GE-EPI data on 3T and 7T. The distance of each EPI dataset
to the anatomical image of the same subject is compared before and after distor-
tion correction. To assess the generality of the performance of fieldmap-based vs
image registration-based distortion, we use EPI data sets acquired with different
field strengths (3T and 7T), multi-band factors and sequences (spin-echo (SE)-
EPI, gradient echo (GE)-EPI), modality (BOLD and diffusion weighted) and
different sites (Maastricht vs Carnegie-Mellon)(see Table 1) on Siemens scanners
(Siemens Medical Systems, Erlangen, Germany).

2.1 Data Pre-processing

All processing was performed in native scanner space. Pre-processing steps spe-
cific for each modality are described below.

Anatomical Data. Anatomical data were corrected for B1 inhomogeneity and
skull-stripped in BrainVoyager (v20.6, Maastricht, The Netherlands) [4].

Fieldmaps. For datasets 6–10, the combined 32-channel fieldmaps, differential
phase maps Δφ were calculated in Matlab (R2014a) via a custom script accord-
ing to − arctan (I(z1z∗

2)/R(z1z∗
2)), where z1 is the first echo, z2 the second echo,

I denotes the imaginary part, R the real part and ∗ the complex conjugate [2].



126 H. Breman et al.

All following processing steps were performed on the fieldmaps using anatabacus
plugin v1.1 for BrainVoyager. All phase maps were converted to radians using
a linear transformation [8]. Unwrapping of the phase maps was calculated using
3D multigrid, the deviation from B0 in Hz and pixel shifts calculated according
to [6]. Undistortion was applied using linear 1D interpolation.

EPI Data. The functional (BOLD) EPI data were slice scan time corrected
using cubic interpolation, corrected for motion using rigid body parameters esti-
mated using trilinear interpolation and resliced with SINC interpolation; finally,
a temporal high pass filter was applied in Fourier domain with 0.0078 Hz cutoff
in BrainVoyager v20.6.
Concerning diffusion weighted data, unprocessed b0 images were used for
fieldmap-based and opposite phase encoding correction.

Table 1. Acquisition parameters of data used to compare fieldmap-based with image
registration-based distortion correction. Sequence = sequence: field maps/EPI data,
SE = spin echo, GE = gradient echo, MB = multiband factor: fieldmap/EPI data,
Slices = number of slices in EPI data, iPAT = acceleration in EPI data, FOV =
field of view (mm), TR = repetition time (ms), TE = echo time (ms) of EPI data,
Echo sp = Echo spacing (ms), T = B0 field strength in Tesla. All EPI data were
scanned in anterior-posterior phase encoding direction. Sets 1–4 were acquired at a
Siemens scanner in Pittsburgh, USA, and sets 5–10 at the University of Maastricht,
The Netherlands. For the diffusion weighted data (set 5), opposite phase encoded
b = 0 images were used to estimate the VDM.

Dataset Sequence MB Slices iPAT Matrix
size (y)

TR (ms) TE (ms) Echo sp. T BWpe

1 SE/GE 1/3 72 1 212 2000 30.0 0.72 3 13.10

2 SE/GE 3/3 72 1 212 2000 30.0 0.72 3 13.10

3 SE/GE 1/3 72 1 212 2000 30.0 0.72 3 13.10

4 SE/GE 3/3 72 1 212 2000 30.0 0.72 3 13.10

5 SE b3000 1 52 1 220 6600 94.0 0.40 3 28.41

6 GE 3 99 3 160 2000 19.0 0.81 7 23.15

7 GE 2 82 3 220 2027 21.0 0.80 7 17.05

8 GE 2 58 2 136 2000 21.0 0.80 7 18.38

9 GE 3 99 3 182 2000 21.0 1.00 7 16.48

10 GE 2 64 2 100 2000 30.0 0.65 3 30.77

2.2 Data Comparison

The uncorrected, fieldmap-based corrected and image-registration-based cor-
rected EPI data are mapped to anatomical space using the fmr2vmrplugin
(v0.9.1) for BrainVoyager, after which the similarity is calculated via

D(I1, I2) =
∑n

i=1(I1i · I2i)2∑n
i=1(I1iI1i) · ∑n

i=1(I2iI2i)
(2)
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where I1 is the anatomical image of the subject, I2 the EPI image and n is the
number of voxels.

2.3 Computational Platform

The COPE plugin was implemented using C++ 11 code. The data were pro-
cessed on a MacBook Air with a 1.6 GHz Intel Core i5 processor and 4 GB
1600 MHz DDR3 memory with a macOS 10.13 (High Sierra) operating system.
We used COPE v1.1 and anatabacus v1.1. Typical processing time for estima-
tion of a VDM by COPE is 3 min (dataset 8).

3 Results

3.1 Distance Measure

The similarities between EPI data and anatomical images, calculated using the
fmr2vmrplugin v0.9.1 in BrainVoyager 20.6.2., are shown in Table 2. The ‘before’
column indicates the similarity between the EPI data and the anatomical image
without any EPI distortion correction. The ‘anatabacus’ column shows the sim-
ilarity after fieldmap-based EPI distortion correction via the anatabacus plugin.
In the ‘COPE’ column the similarity values are provided after image registration-
based EPI distortion correction via the COPE plugin.

Table 2. Similarity values between anatomical image and distorted EPI data (left),
between anatomical image and EPI data undistorted via fieldmap-based method
(anatabacus) (centre) and between anatomical image and EPI data undistorted via
image registration (COPE) (right).

Dataset Before anatabacus COPE

1 0.960059 0.967195 0.961707

2 0.960059 0.967195 0.964098

3 0.960059 0.967195 0.965260

4 0.960059 0.967195 0.963018

5 0.996122 0.997106 0.999763

6 0.884896 0.889236 0.890754

7 0.884390 0.900305 0.911093

8 0.475983 0.491037 0.593685

9 0.665548 0.680071 0.736336

10 0.838839 0.843269 0.915955

In Table 2 we see that in all ten cases, EPI distortion correction improves the
match between the shape of the EPI data and the shape of the anatomical data.
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Furthermore, in six of the ten cases, the new image registration-based EPI dis-
tortion correction method (as implemented in COPE) outperforms the fieldmap-
based EPI distortion correction method (as implemented in anatabacus), which
is shown in the graph in Fig. 3.
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Fig. 3. The graph shows that the image based registration (via COPE) relatively
increases similarity between anatomical and functional 7T data the most (datasets
6–10)

3.2 Comparison

We ran a non-parametric test, the Friedman Test, on the distance data. The
results showed a significant difference between the groups (p < 0.001). Processing
was performed via the SciPy library. Posthoc analysis with the Nemenyi test
using scikit-posthocs [10] did not provide any further specific significance. All
statistical analysis was performed in Python 3.

Figure 4 shows data set 6 after “fine alignment” (normalized gradient field
registration) of EPI data to anatomical data (z=135) in BrainVoyager 20.6,
where the overlay shows the contours of the EPI image in green. On the left the
distorted EPI image is shown; in the centre, the EPI image corrected via image
registration-based EPI distortion correction in COPE; on the right, the EPI
image corrected via fieldmap-based EPI distortion correction in anatabacus.
Improvements in the registration with respect to the distorted image on the left
are indicated with circles; we see for example an improved fit at the anterior
of the corpus callosum. Normalized gradient field registration is an affine image
registration method finding global scaling, translation and rotation parameters
for the EPI image via Gauss-Newton optimization.
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Fig. 4. Slice z = 135 of dataset 6 before EPI distortion correction (left), after EPI distor-
tion correction via COPE v1.1 (centre) and after distortion correction via anatabacus
v1.1 (right), where the green lines depict the contours of the EPI image overlaid on
the anatomical image in native space (Color figure online)

4 Conclusion

The comparison between fieldmap-based and our novel method of image registra-
tion-based distortion correction combined with local cost aggregation indicates
that this approach can be a viable alternative to fieldmap-based distortion cor-
rection (see also [3]), in particular for 7T data; this eliminates the need for phase
data unwrapping and masking. This image registration-based EPI distortion cor-
rection variant has been implemented in the COPE plugin for BrainVoyager and
can be freely downloaded from the BrainVoyager support website.
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