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Application: Social Networks, Communication Networks
Topics: Continuous-TimeMarkov Chains, Product-Form Queueing Networks

6.1 Social Networks

We provide the proofs of the theorems in Sect. 5.1.

Theorem 6.1 (Spreading of a Message) Let Z be the number of nodes that
eventually receive the message.

(a) If μ < 1, then P(Z < ∞) = 1 and E(Z) < ∞;
(b) If μ > 1, then P(Z = ∞) > 0.

Proof For part (a), let Xn be the number of nodes that are n steps from the root. If
Xn = k, we can write Xn+1 = Y1 + · · · + Yk where Yj is the number of children of
node j at level n. By assumption, E(Yj ) = μ for all j . Hence,

E[Xn+1 | Xn = k] = E(Y1 + · · · + Yk) = μk.

Hence, E[Xn+1 | Xn] = μXn. Taking expectations shows that E(Xn+1) =
μE(Xn), n ≥ 0. Consequently,

E(Xn) = μn, n ≥ 0.
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Now, the sequence Zn = X0 + · · · + Xn is nonnegative and increases to Z =∑∞
n=0 Zn. By MCT, it follows that E(Zn) → Z. But

E(Zn) = μ0 + · · · + μn = 1 − μn+1

1 − μ
.

Hence, E(Z) = 1/(1 − μ) < ∞. Consequently, P(Z < ∞) = 1.
For part (b), one first observes that the theorem does not state that P(Z = ∞) =

1. For instance, assume that each node has three children with probability 0.5 and
has no child otherwise. Then μ = 1.5 > 1 and P(Z = 1) = P(X1 = 0) = 0.5, so
that P(Z = ∞) ≤ 0.5 < 1. We define Xn, Yj , and Zn as in the proof of part (a).

Let αn = P(Xn > 0). Consider the X1 children of the root. Since αn+1 is the
probability that there is one survivor after n+1 generations, it is the probability that
at least one of the X1 children of the root has a survivor after n generations. Hence,

1 − αn+1 = E((1 − αn)
X1), n ≥ 0.

Indeed, if X1 = k, the probability that none of the k children of the root has a
survivor after n generations is (1 − αn)

k . Hence,

αn+1 = 1 − E((1 − αn)
X1) =: g(αn), n ≥ 0.

Also, α0 = 1. As n → ∞, one has αn → α∗ = P(Xn > 0, for all n). Figure 6.1
shows that α∗ > 0. The key observations are that

g(0) = 0

g(1) = P(X1 > 0) < 1

g′(0) = E(X1(1 − α)X1−1) |α=0= μ > 1

g′(1) = E(X1(1 − α)X1−1) |α=1= 0,

so that the figure is as drawn. �	

Theorem 6.2 (Cascades) Assume pk = p ∈ (0, 1] for all k ≥ 1. Then, all nodes
turn red with probability at least equal to θ where

θ = exp

{

−1 − p

p

}

.

Proof The probability that node n does not listen to anyone is an = (1 − p)n. Let
X be the index of the first node that does not listen to anyone. Then
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Fig. 6.1 The proof that
α∗ > 0
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g(α) = 1 − E((1 − α)X1)

P (X1 > 0)

α∗

P(X > n) = (1 − a1)(1 − a2) · · · (1 − an) ≤ exp{−a1 − · · · − an}

= exp

{

− 1

p
((1 − p) − (1 − p)n+1)

}

.

Now,

P(X = ∞) = lim
n

P (X > n) ≥ exp

{

−1 − p

p

}

= θ.

Thus, with probability at least θ , every node listens to at least one previous node.
When that is the case, all the nodes turn red. To see this, assume that n is the first
blue node. That is not possible since it listened to some previous nodes that are all
red. �	

6.2 Continuous-TimeMarkov Chains

Our goal is to understand networks where packets travel from node to node until
they reach their destination. In particular, we want to study the delay of packets
from source to destination and the backlog in the nodes.

It turns out that the analysis of such systems is much easier in continuous time
than in discrete time. To carry out such analysis, we have to introduce continuous-
time Markov chains. We do this on a few simple examples.
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6.2.1 Two-State Markov Chain

Figure 6.2 illustrates a random process {Xt, t ≥ 0} that takes values in {0, 1}. A
random process is a collection of random variables indexed by t ≥ 0. Saying that
such a random process is defined means that one can calculate the probability that
{Xt1 = x1, Xt2 = x2, . . . , Xtn = xn} for any value of n ≥ 1, any 0 ≤ t1 ≤
· · · ≤ tn, and x1, . . . , xn ∈ {0, 1}. We explain below how one could calculate such a
probability.

We call Xt the state of the process at time t . The possible values {0, 1} are also
called states. The state Xt evolves according to rules characterized by two positive
numbers λ and μ. As Fig. 6.2 shows, if X0 = 0, the state remains equal to zero
for a random time T0 that is exponentially distributed with parameter λ, thus with
mean 1/λ. The state Xt then jumps to 1 where it stays for a random time T1 that is
exponentially distributed with rate μ, independent of T0, and so on. The definition is
similar if X0 = 1. In that case, Xt keeps the value 1 for an exponentially distributed
time with rate μ, then jumps to 0, etc.

Thus, the pdf of T0 is

fT0(t) = λ exp{−λt}1{t ≥ 0}.

In particular,

P(T0 ≤ ε) ≈ fT0(0)ε = λε, for ε � 1.

Throughout this chapter, the symbol ≈ means “up to a quantity negligible compared
to ε.” It is shown in Theorem 15.3 that exponentially distributed random variable is
memoryless. That is,

P [T0 > t + s | T0 > t] = P(T0 > s), s, t ≥ 0.

The memoryless property and the independence of the exponential times Tk

imply that {Xt, t ≥ 0} starts afresh from Xs at time s. Figure 6.3 illustrates that
property. Mathematically, it says that given {Xt, t ≤ s} with Xs = k, the process
{Xs+t , t ≥ 0} has the same properties as {Xt, t ≥ 0} given that X0 = k, for k = 0, 1
and for any s ≥ 0. Indeed, if Xs = 0, then the residual time that Xt remains in 0
is exponentially distributed with rate λ and is independent of what happened before

Fig. 6.2 A random process
on {0, 1} Xt

t0

1

Exp(λ)

Exp(μ)

T0

T1

T2

T3
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Fig. 6.3 The process Xt

starts afresh from Xs at time s
Xt

t0

1

s

{Xs+t, t ≥ 0}

time s, because the time in 0 is memoryless and independent of the previous times
in 0 and 1. This property is written as

P [{Xs+t , t ≥ 0} ∈ A | Xs = k;Xt, t ≤ s] = P [{Xt, t ≥ 0} ∈ A | X0 = k],

for k = 0, 1, for all s ≥ 0, and for all sets A of possible trajectories. A generic set
A of trajectories is

A = {(xt , t ≥ 0) ∈ C+ | xt1 = i1, . . . , xtn = in}

for given 0 < t1 < · · · < tn and i1, . . . , in ∈ {0, 1}. Here, C+ is the set of right-
continuous functions of t ≥ 0 that take values in {0, 1}.

This property is the continuous-time version of the Markov property for Markov
chains. One says that the process Xt satisfies the Markov property and one calls
{Xt, t ≥ 0} is a continuous-time Markov chain (CTMC).

For instance,

P [Xs+2.5 = 1, Xs+4 = 0, Xs+5.1 = 0 | Xs = 0;Xt, t ≤ s]
= P [X2.5 = 1, X4 = 0, X5.1 = 0 | X0 = 0].

The Markov property generalizes to situations where s is replaced by a random
τ that is defined by a causal rule, i.e., a rule that does not look ahead. For instance,
as in Fig. 6.4, τ can be the second time that Xt visits state 0. Or τ could be the
first time that it visits state 0 after having spent at least 3 time units in state 1. The
property does not extend to non-causal times such as one time unit before Xt visits
state 1. Random times τ defined by causal rules are called stopping times. This more
general property is called the strong Markov property. To prove this property, one
conditions on the value s of τ and uses the fact that the future evolution does not
depend on this value since the event {τ = s} depends only on {Xt, t ≤ s}.

For 0 < ε � 1 one has

P [Xt+ε = 1 | Xt = 0] ≈ λε.
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Fig. 6.4 The process Xt

starts afresh from Xτ at the
stopping time τ
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τ

Fig. 6.5 The state transition
diagram
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Indeed, the process jumps from 0 to 1 in ε time units if the exponential time in 0 is
less than ε, which has probability approximately λε.

Similarly,

P [Xt+ε = 0 | Xt = 1] ≈ με.

We say that the transition rate from 0 to 1 is equal to λ and that from 1 to 0 is equal
to μ to indicate that the probability of a transition from 0 to 1 in ε units of time is
approximately λε and that from 1 to 0 is approximately με.

Figure 6.5 illustrates these transition rates. This figure is called the state
transition diagram.

The previous two identities imply that

P(Xt+ε = 1) = P(Xt = 0, Xt+ε = 1) + P(Xt = 1, Xt+ε = 1)

= P(Xt=0)P [Xt+ε=1 | Xt=0]+P(Xt=1)P [Xt+ε=1 | Xt=1]
≈ P(Xt = 0)λε + P(Xt = 1)(1 − P [Xt+ε = 0 | Xt = 1])
≈ P(Xt = 0)λε + P(Xt = 1)(1 − με).

Also, similarly, one finds that

P(Xt+ε = 0) ≈ P(Xt = 0)(1 − λε) + P(Xt = 1)με.

We can write these identities in a convenient matrix notation as follows. For
t ≥ 0, one defines the row vector πt as

πt = [P(Xt = 0), P (Xt = 1)].
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One also defines the transition rate matrix Q as follows:

Q =
[−λ λ

μ −μ

]

.

With that notation, the previous identities can be written as

πt+ε ≈ πt (I + Qε),

where I is the identity matrix. Subtracting πt from both sides, dividing by ε, and
letting ε → 0, we find

d

dt
πt = πtQ. (6.1)

By analogy with the scalar equation dxt/dt = axt whose solution is xt =
x0 exp{at}, we conclude that

πt = π0 exp{Qt}, (6.2)

where

exp{Qt} := I + Qt + 1

2!Q
2t2 + 1

3!Q
3t3 + · · · .

Note that

d

dt
exp{Qt} = 0 + Q + Q2t + 1

2!Q
3t2 + · · · = Q exp{Qt}.

Observe also that πt = π for all t ≥ 0 if and only if π0 = π and

πQ = 0. (6.3)

Indeed, if πt = π for all t , then (6.1) implies that 0 = d
dt

πt = πtQ = πQ.
Conversely, if π0 = π with πQ = 0, then

πt = π0 exp{Qt} = π exp{Qt} = π

(

I + Qt + 1

2!Q
2t2 + 1

3!Q
3t3 + · · ·

)

= π.

These equations πQ = 0 are called the balance equations. They are

[π(0), π(1)]
[−λ λ

μ −μ

]

= 0,
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Fig. 6.6 A discrete-time
approximation of Xt

0 1

μ

1 − μ1 −

i.e.,

π(0)(−λ) + π(1)μ = 0

π(0)λ − π(1)μ = 0.

These two equations are identical. To determine π , we use the fact that π(0) +
π(1) = 1. Combined with the previous identity, we find

[π(0), π(1)] =
[

μ

λ + μ
,

λ

λ + μ

]

.

The identity πt+ε ≈ πt (I + Qε) shows that one can view {Xnε, n = 0, 1, . . .}
as a discrete-time Markov chain with transition matrix P = I + Qε. Figure 6.6
shows the transition diagram that corresponds to this transition matrix. The invariant
distribution for P is such that πP = π , i.e., π(I + Qε) = π , so that πQ = 0, not
surprisingly.

Note that this discrete-time Markov chain is aperiodic because states have self-
loops. Thus, we expect that

πnε → π, as n → ∞.

Consequently, we expect that, in continuous time,

πt → π, as t → ∞.

6.2.2 Three-State Markov Chain

The previous Markov chain alternates between the states 0 and 1. More general
Markov chains visit states in a random order. We explain that feature in our next
example with 3 states. Fortunately, this example suffices to illustrate the general
case. We do not have to look at Markov chains with 4, 5, . . . states to describe the
general model.
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Fig. 6.7 A three-state
Markov chain
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In the example shown in Fig. 6.7, the rules of evolution are characterized
by positive numbers q(0, 1), q(0, 2), q(1, 2), and q(2, 0). One also defines
q0, q1, q2, Γ (0, 1), and Γ (0, 2) as in the figure.

If X0 = 0, the state Xt remains equal to 0 for some random time T0 that
is exponentially distributed with rate q0. At time T0, the state jumps to 1 with
probability Γ (0, 1) or to state 2 otherwise, with probability Γ (0, 2). If Xt jumps
to 1, it stays there for an exponentially distributed time T1 with rate q1 that is
independent of T0. More generally, when Xt enters state k, it stays there for a
random time that is exponentially distributed with rate qk that is independent of the
past evolution. From this definition, it should be clear that the process Xt satisfies
the Markov property.

Define πt = [πt (0), πt (1), πt (2)] where πt (k) = P(Xt = k) for k = 0, 1, 2.
One has, for 0 < ε � 1,

P [Xt+ε = 1 | Xt = 0] ≈ q0εΓ (0, 1) = q(0, 1)ε.

Indeed, the process jumps from 0 to 1 in ε time units if the exponential time with
rate q0 is less than ε and if the process then jumps to 1 instead of jumping to 2.

Similarly,

P [Xt+ε = 2 | Xt = 0] ≈ q0εΓ (0, 2) = q(0, 2)ε.

Also,
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P [Xt+ε = 1 | Xt = 1] ≈ 1 − q1ε,

since this is approximately the probability that the exponential time with rate q1 is
larger than ε. Moreover,

P [Xt+ε = 1 | Xt = 2] ≈ 0,

because the probability that both the exponential time with rate q2 in state 2 and the
exponential time with rate q0 in state 0 are less than ε is roughly (q2ε) × (q1ε), and
this is negligible compared to ε.

These observations imply that

πt+ε(1) = P(Xt = 0, Xt+ε = 1) + P(Xt = 1, Xt+ε = 1) + P(Xt = 2, Xt+ε = 1)

= P(Xt=0)P [Xt+ε=1 | Xt=0]+P(Xt=1)P [Xt+ε=1 | Xt=1]
+ P(Xt = 2)P [Xt+ε = 1 | Xt = 2]

≈ πt (0)q(0, 1)ε + πt (1)(1 − q1ε).

Proceeding in a similar way shows that

πt+ε(0) ≈ πt (0)(1 − q0ε) + πt (2)q(2, 0)ε

πt+ε(2) ≈ πt (1)q(1, 2)ε + πt (2)(1 − q2ε.

Similarly to the two-state example, let us define the rate matrix Q as follows:

Q =
⎡

⎣
−q0 q(0, 1) q(0, 2)
0 −q1 q(0, 1)

q(2, 0) 0 −q2

⎤

⎦ .

The previous identities can then be written as follows:

πt+ε ≈ πt [I + Qε].

Subtracting πt from both sides, dividing by ε, and letting ε → 0 then shows that

d

dt
πt = πtQ.

As before, the solution of this equation is

πt = π0 exp{Qt}, t ≥ 0.

The distribution π is invariant if and only if
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Fig. 6.8 The transition
matrix of the discrete-time
approximation
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1q(0, 1)
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1 − q0 1 − q2

1 − q1

πQ = 0.

Once again, we note that {Xnε, n = 0, 1, . . .} is approximately a discrete-time
Markov chain with transition matrix P = I + Qε shown in Fig. 6.8. This Markov
chain is aperiodic, and we conclude that

P(Xnε = k) → π(k), as n → ∞.

Thus, we can expect that

πt → π, as t → ∞.

Also, since Xnε is irreducible, the long-term fraction of time that it spends in the
different states converge to π , and we can then expect the same for Xt .

6.2.3 General Case

Let X be a countable or finite set. The process {Xt, t ≥ 0} is defined as
follows. One is given a probability distribution π on X and a rate matrix Q =
{q(i, j), i, j ∈ X }.

By definition, Q is such that

q(i, j) ≥ 0,∀i �= j and
∑

j

q(i, j) = 0,∀x.

Definition 6.1 (Continuous-Time Markov Chain) A continuous-time Markov
chain with initial distribution π and rate matrix Q is a process {Xt, t ≥ 0} such
that P(X0 = i) = π(i). Also,

P [Xt+ε = j |Xt = i, Xu, u < t] = 1{i = j} + εq(i, j) + o(ε).

�
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Fig. 6.9 Construction of a
continuous-time Markov
chain
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This definition means that the process jumps from i to j �= i with probability
q(i, j)ε in ε � 1 time units. Thus, q(i, j) is the probability of jumping from i to j ,
per unit of time. Note that the sum of these expressions over all j gives 1, as should
be.

One construction of this process is as follows. Say that Xt = i. One then chooses
a random time τ that is exponentially distributed with rate qi := −q(i, i). At time
t + τ , the process jumps and goes to state y with probability Γ (i, j) = q(i, j)/qi

for j �= i (Fig. 6.9).
Thus, if Xt = i, the probability that Xt+ε = j is the probability that the process

jumps in (t, t + ε), which is qiε, times the probability that it then jumps to j , which
is Γ (i, j). Hence,

P [Xt+ε = j |Xt = i] = qiε
q(i, j)

qi

= q(i, j)ε,

up to o(ε). Thus, the construction yields the correct transition probabilities.
As we observed in the examples,

d

dt
πt = πtQ,

so that

πt = π0 exp{Qt}.

Moreover, a distribution π is invariant if and only if it solves the balance equations
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0 = πQ.

These equations, state by state, say that

π(i)qi =
∑

j �=i

π(j)q(j, i),∀i ∈ X .

These equations express the equality of the rate of leaving a state and the rate of
entering that state.

Define

Pt(i, j) = P [Xs+t = j | Xs = i], for i, j ∈ X and s, t ≥ 0.

The Markov property implies that

P(Xt1 = i1, . . . , Xtn = in) = P(Xt1 = i1)Pt2−t1 (i1, i2)Pt3−t2 (i2, i3) · · ·Ptn−tn−1 (in−1, in),

for all i1, . . . , in ∈ X and all 0 < t1 < · · · < tn.
Moreover, this identity implies the Markov property. Indeed, if it holds, one has

P [Xtm+1 = im+1, . . . , Xtn = in | Xt1 = i1, . . . , Xtm = im]

= P(Xt1 = i1, . . . , Xtn = in)

P (Xt1 = i1, . . . , Xtm = im)

= P(Xt1 = i1)Pt2−t1(i1, i2)Pt3−t2(i2, i3) · · · Ptn−tn−1(in−1, in)

P (Xt1 = i1)Pt2−t1(i1, i2)Pt3−t2(i2, i3) · · · Ptm−1−tm−2(im−2, im−1)

= Ptm−tm−1(im−1, im) · · · Ptn−tn−1(in−1, in).

Hence,

P [Xtm+1 = im+1, . . . , Xtn = in | Xt1 = i1, . . . , Xtm = im]

= P(Xtm−1 = im−1)Ptm−tm−1(im−1, im) · · · Ptn−tn−1(in−1, in)

P (Xtm−1 = im−1)Ptm−tm−1(im−1, im)

= P(Xtm−1 = im−1, . . . , Xtn = in)

P (Xtm−1 = im−1)

= P [Xtm = im, . . . , Xtn = in | Xtm−1 = im−1].

If Xt has the invariant distribution, one has

P(Xt1 = i1, . . . , Xtn = in) = π(i1)Pt2−t1(i1, i2)Pt3−t2(I2, i3) · · · Ptn−tn−1(in−1, in),

for all i1, . . . , in ∈ X and all 0 < t1 < · · · < tn.
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Here is the result that corresponds to Theorem 15.1. We define irreducibility,
transience, and null and positive recurrence as in discrete time. There is no notion
of periodicity in continuous time.

Theorem 6.1 (Big Theorem for Continuous-Time Markov Chains)
Consider a continuous-time Markov chain.

(a) If the Markov chain is irreducible, the states are either all transient, all positive
recurrent, or all null recurrent. We then say that the Markov chain is transient,
positive recurrent, or null recurrent, respectively.

(b) If the Markov chain is positive recurrent, it has a unique invariant distribution
π and π(i) is the long-term fraction of time that Xt is equal to i. Moreover, the
probability πt (i) that the Markov chain Xt is in state i converges to π(i).

(c) If the Markov chain is not positive recurrent, it does not have an invariant
distribution and the fraction of time that it spends in any state goes to zero.

�

6.2.4 Uniformization

We saw earlier that a CTMC can be approximated by a discrete-time Markov chain
that has a time step ε � 1. There are two other DTMCs that have a close relationship
with the CTMC: the jump chain and the uniformized chain. We explain these chains
for the CTMC Xt in Fig. 6.7.

The jump chain is Xt observed when it jumps. As Fig. 6.7 shows, this DTMC
has a transition matrix equal to Γ where

Γ (i, j) =
{

q(i, j)/qi, if i �= j

0, if i = j.

Let ν be the invariant distribution of this jump chain. That is, ν = νΓ . Since ν(i) is
the long-term fraction of time that the jump chain is in state i, and since the CTMC
Xt spends an average time 1/qi in state i whenever it visits that state, the fraction of
time that Xt spends in state i should be proportional to ν(i)/qi . That is, one expects

π(i) = Aν(i)/qi

for some constant A. That is, one should have

∑

j

[Aν(i)/qi]q(i, j) = 0.

To verify that equality, we observe that
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∑

j

[ν(i)/qi]q(i, j) =
∑

j �=i

ν(i)Γ (i, j) + ν(i)q(i, i)/qi = ν(i) − ν(i) = 0.

We used the fact that νΓ = ν and q(i, i) = −qi .
The uniformized chain is not the jump chain. It is a discrete-time Markov chain

obtained from the CTMC as follows. Let λ ≥ qi for all i. The rate at which Xt

changes state is qi when it is in state i. Let us add a dummy jump from i to i with
rate λ − qi . The rate of jumps, including these dummy jumps, of this new Markov
chain Yt is now constant and equal to λ.

The transition matrix P of Yt is such that

P(i, j) =
{

(λ − qi)/λ, if i = j

q(i, j)/λ, if i �= j.

To see this, assume that Yt = i. The next jump will occur with rate λ. With
probability (λ − qi)/λ, it is a dummy jump from i to i. With probability qi/λ it
is an actual jump where Yt jumps to j �= i with probability Γ (i, j). Hence, Yt

jumps from i to i with probability (λ − qi)/λ and from i to j �= i with probability
(qi/λ)Γ (i, j) = q(i, j)/λ.

Note that

P = I + 1

λ
Q,

where I is the identity matrix.
Now, define Zn to be the jump chain of Yt , i.e., the Markov chain with transition

matrix P . Since the jumps of Yt occur at rate λ, independently of the value of the
state Yt , we can simulate Yt as follows. Let Nt be a Poisson process with rate λ. The
jump times {t1, t2, . . .} of Nt will be the jump times of Yt . The successive values of
Yt are those of Zn. Formally,

Yt = ZNt .

That is, if Nt = n, then we define Yt = Zn. Since the CTMC Yt spends 1/λ on
average between jumps, the invariant distribution of Yt should be the same as that
of Xt , i.e., π . To verify this, we check that πP = π , i.e., that

π

(

I + 1

λ
Q

)

= π.

That identity holds since πQ = 0. Thus, the DTMC Zn has the same invariant
distribution as Xt . Observe that Zn is not the same as the jump chain of Xt . Also, it
is not a discrete-time approximation of Xt . This DTMC shows that a CTMC can be
seen as a DTMC where one replaces the constant time steps by i.i.d. exponentially
distributed time steps between the jumps.
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6.2.5 Time Reversal

As a preparation for our study of networks of queues, we note the following result.

Theorem 6.2 (Kelly’s Lemma) Let Q be the rate matrix of a Markov chain onX .
Let also Q̃ be another rate matrix onX . Assume that π is a distribution onX and
that

qi = q̃i , i ∈ X and

π(i)q(i, j) = π(j)q̃(j, i),∀i �= j.

Then πQ = 0.

�

Proof We have

∑

j �=i

π(j)q(j, i) =
∑

j �=i

p(i)q̃(i, j) = p(i)
∑

j �=i

q̃(i, j) = p(i)q̃i = p(i)qi,

so that πQ = 0. �	

The following result explains the meaning of Q̃ in the previous theorem. We state
it without proof.

Theorem 6.3 Assume that Xt has the invariant distribution π . Then Xt reversed in
time is a Markov chain with rate matrix Q̃ given by

q̃(i, j) = π(j)q(j, i)

π(i)
.

�

6.3 Product-Form Networks

Theorem 6.4 (Invariant Distribution of Network) Assume λk < μk and let
ρk = λk/μk , for k = 1, 2, 3. Then the Markov chain Xt has a unique invariant
distribution π that is given by

π(x1, x2, x3) = π1(x1)π2(x2)π3(x3)

πk(n) = (1 − ρk)ρ
n
k , n ≥ 0, k = 1, 2

π3(a1, a2, . . . , an) = p(a1)p(a2) · · · p(an)(1 − ρ3)ρ
n
3 ,

n ≥ 0, ak ∈ {1, 2}, k = 1, . . . , n,
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Fig. 6.10 The network (top)
and a guess for its
time-reversal (bottom). The
bottom network is obtained
from the top one by reversing
the flows of customers. It is a
bold guess that the arrivals
have exponential inter-arrival
times and their rates are
independent of the current
queue lengths

p1

p2

γ1

γ2 μ2

μ1

μ3

λ1

λ2

λ3

p1

p2
μ2

μ1 μ3

λ1

λ2

λ3 γ1 + γ2

where p(1) = λ1/(λ1 + λ2) and p(2) = λ2/(λ1 + λ2).

Proof Figure 6.10 shows a guess for the time-reversal of the network.
Let Q be the rate matrix of the top network and Q̃ that of the bottom one. Let

also π be as stated in the theorem. We show that π,Q, Q̃ satisfy the conditions of
Kelly’s Lemma.

For instance, we verify that

π([3, 2, [1, 1, 2, 1]])q([3, 2, [1, 1, 2, 1]], [4, 2, [1, 1, 2]])
= π([4, 2, [1, 1, 2]])q̃([4, 2, [1, 1, 2]], [3, 2, [1, 1, 2, 1]]).

Looking at the figure, we can see that

q([3, 2, [1, 1, 2, 1]], [4, 2, [1, 1, 2]]) = μ3p1

q̃([4, 2, [1, 1, 2]], [3, 2, [1, 1, 2, 1]] = μ1p1.

Thus, the previous identity reads

π([3, 2, [1, 1, 2, 1]])μ3p1 = π([4, 2, [1, 1, 2]])μ1p1,

i.e.,

π([3, 2, [1, 1, 2, 1]])μ3 = π([4, 2, [1, 1, 2]])μ1.

Given the expression for π , this is
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(1 − ρ1)ρ
3
1 × (1 − ρ2)ρ

2
2 × p(1)p(1)p(2)p(1)(1 − ρ3)ρ

4
3μ3

= (1 − ρ1)ρ
4
1 × (1 − ρ2)ρ

2
2 × p(1)p(1)p(2)(1 − ρ3)ρ

3
3μ1.

After simplifications, this identity is seen to be equivalent to

p(1)ρ3μ3 = ρ1μ1,

i.e.,

λ1

λ3

λ3

μ3
μ3 = λ1

μ1
μ1

and this equation is seen to be satisfied. A similar argument shows that Kelly’s
lemma is satisfied for all pairs of states. �	

6.4 Proof of Theorem 5.7

The first step in using the theorem is to solve the flow conservation equations. Let
us call class 1 that of the white jobs and class 2 that of the gray job. Then we see
that

λ11 = λ12 = γ, λ21 = λ22 = α

solve the flow conservation equations for any α > 0. We have to assume γ < μ for
the services to be able to keep up with the white jobs. With this assumption, we can
choose α small enough so that λ1 = λ2 = λ := γ + α < min{μ1, μ2}.

The second step is to use the theorem to obtain the invariant distribution. It is

π(x1, x2) = Ah(x1)h(x2)

with

h(xi) =
(

γ

μ

)n1(xi )
(

α

μ

)n2(xi )

= ρ
n1(xi )
1 ρ

n2(xi )
2 ,

where ρ1 = γ /μ, ρ2 = α/μ, and nc(x) is the number of jobs of class c in xi , for
c = 1, 2. To calculate A, we note that there are n + 1 states xi with n class 1 jobs
and 1 class 2 job, and 1 state xi with n classes 1 jobs and no class 2 job. Indeed, the
class 2 customer can be in n+1 positions in the queue with the n customers of class
1.

Also, all the possible pairs (x1, x2) must have one class 2 customer either in
queue 1 or in queue 2. Thus,
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1 =
∑

(x1,x2)

π(x1, x2) = A

∞∑

m=0

∞∑

n=0

G(m, n),

where

G(m, n) = (m + 1)ρm+n
1 ρ2 + (n + 1)ρm+n

1 ρ2.

In this expression, the first term corresponds to the states with m class 1 customers
and one class 2 customer in queue 1 and n customers of class 1 in queue 2; the
second term corresponds to the states with m customer of class 1 in queue 1, and n

customers of class 1 and one customer of class 2 in queue 2. Thus, AG(m, n) is the
probability that there are m customers of class 1 in the first queue and n customers
of class 1 in the second queue.

Hence,

1 = A

∞∑

m=0

∞∑

n=0

[(m + 1)ρm+n
1 ρ2 + (n + 1)ρm+n

1 ρ2] = 2A
∞∑

m=0

∞∑

n=0

(m + 1)ρm+n
1 ρ2,

by symmetry of the two terms. Thus,

1 = 2Aρ2

[ ∞∑

m=0

(m + 1)ρm
1

] [ ∞∑

n=0

ρn
1

]

.

To compute the sum, we use the following identities:

∞∑

n=0

ρn = (1 − ρ)−1, for 0 < ρ < 1

and

∞∑

n=0

(n + 1)ρn = ∂

∂ρ

∞∑

n=0

ρn+1 = ∂

∂ρ
[(1 − ρ)−1 − 1] = (1 − ρ)−2.

Thus, one has

1 = 2Aρ2(1 − ρ1)
−3,

so that

A = (1 − ρ1)
3

2ρ2
.
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Third, we calculate the expected number L of jobs of class 1 in the two queues.
One has

L =
∞∑

m=0

∞∑

n=0

A(m + n)G(m, n)

=
∞∑

m=0

∞∑

n=0

A(m + n)(m + 1)ρm+n
1 ρ2 +

∞∑

m=0

∞∑

n=0

A(m + n)(n + 1)ρm+n
1 ρ2

= 2
∞∑

m=0

∞∑

n=0

A(m + n)(m + 1)ρm+n
1 ρ2,

where the last identity follows from the symmetry of the two terms. Thus,

L = 2
∞∑

m=0

∞∑

n=0

Am(m + 1)ρm+n
1 ρ2 + 2

∞∑

m=0

∞∑

n=0

An(m + 1)ρm+n
1 ρ2

= 2Aρ2

[ ∞∑

m=0

m(m + 1)ρm
1

] [ ∞∑

n=0

ρn
1

]

+ 2Aρ2

[ ∞∑

m=0

(m + 1)ρm
1

] [ ∞∑

n=0

nρn
1

]

= 2Aρ2

[ ∞∑

m=0

m(m + 1)ρm
1

]

(1 − ρ1)
−1 + 2Aρ2(1 − ρ)−2

[ ∞∑

n=0

nρn
1

]

.

To calculate the sums, we use the fact that

∞∑

m=0

m(m + 1)ρm = ρ

∞∑

m=0

m(m + 1)ρm−1

= ρ
∂2

∂ρ2

∞∑

m=0

ρm+1 = ρ
∂2

∂ρ2 [(1 − ρ)−1 − 1]

= 2ρ(1 − ρ)−3.

Also,

∞∑

n=0

nρn
1 = ρ1

∞∑

n=0

nρn−1
1 = ρ1

∞∑

n=0

(n + 1)ρn
1 = ρ1(1 − ρ1)

−2.

Hence,

L = 2Aρ2 × 2ρ(1 − ρ)−3 × (1 − ρ1)
−1 + 2Aρ2(1 − ρ)−2 × ρ1(1 − ρ1)

−2

= 6Aρ2ρ1(1 − ρ1)
−4.
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Substituting the value for A that we derived above, we find

L = 3
ρ1

1 − ρ1
.

Finally, we get the average time W that jobs of class 1 spend in the network: W =
L/γ .

Without the gray job, the expected delay W ′ of the white jobs would be the sum
of delays in two M/M/1 queues, i.e., W ′ = L′/γ where

L′ = 2
ρ1

1 − ρ1
.

Hence, we find that

W = 1.5W ′,

so that using a hello message increases the average delay of the class 1 customers
by 50%.

6.5 References

The time-reversal arguments are developed in Kelly (1979). That book also explains
many other models that can be analyzed using that approach. See also Bremaud
(2008), Lyons and Perez (2017), Neely (2010).
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