
GOOSE: A Secure Framework for Graph
Outsourcing and SPARQL Evaluation

Radu Ciucanu1(B) and Pascal Lafourcade2

1 INSA Centre Val de Loire, Univ. Orléans, LIFO EA 4022, Orléans, France
radu.ciucanu@insa-cvl.fr

2 Université Clermont Auvergne, LIMOS CNRS UMR 6158, Clermont-Ferrand,
France

pascal.lafourcade@uca.fr

Abstract. We address the security concerns that occur when outsourc-
ing graph data and query evaluation to an honest-but-curious cloud i.e.,
that executes tasks dutifully, but tries to gain as much information as
possible. We present GOOSE, a secure framework for Graph OutsOurcing
and SPARQL Evaluation. GOOSE relies on cryptographic schemes and
secure multi-party computation to achieve desirable security properties:
(i) no cloud node can learn the graph, (ii) no cloud node can learn at the
same time the query and the query answers, and (iii) an external net-
work observer cannot learn the graph, the query, or the query answers.
As query language, GOOSE supports Unions of Conjunctions of Regular
Path Queries (UCRPQ) that are at the core of the W3C’s SPARQL 1.1,
including recursive queries. We show that the overhead due to crypto-
graphic schemes is linear in the input’s and output’s size. We empirically
show the scalability of GOOSE via a large-scale experimental study.

Keywords: Unions of Conjunctions of Regular Path Queries · Secure
SPARQL evaluation · Secure graph outsourcing · Honest-but-curious
cloud

1 Introduction

Outsourcing data and computations to a public cloud gained increasing popu-
larity over the last years. Many cloud providers offer an important amount of
data storage and computation power at a reasonable price e.g., Google Cloud
Platform, Amazon Web Services, Microsoft Azure. However, cloud providers do
not usually address the fundamental problem of protecting data security. The
outsourced data can be communicated over some network and processed on some
machines where malicious cloud admins could learn and leak sensitive data. We
address the data security issues that occur when outsourcing an RDF graph
database to a public cloud and querying the outsourced graph with SPARQL.

We depict the considered scenario in Fig. 1, where a data owner outsources
a graph to the cloud, then a user is allowed to query the graph by submitting

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Singhal and J. Vaidya (Eds.): DBSec 2020, LNCS 12122, pp. 347–366, 2020.
https://doi.org/10.1007/978-3-030-49669-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49669-2_20&domain=pdf
https://doi.org/10.1007/978-3-030-49669-2_20

348 R. Ciucanu and P. Lafourcade

User

Data Owner
Queries Q1, . . . , Qk

Ans(G, Q1), . . . ,Ans(G, Qk)

Graph G

Fig. 1. Outsourcing data and computations.

queries to the cloud, which computes and returns the queries’ answers to the
user. Our scenario is inspired by the database as a service cloud computing
service model, which usually considers relational databases, and security is well-
known as a major concern [8]: “A significant barrier to deploying databases in
the cloud is the perceived lack of privacy, which in turn reduces the degree of
trust users are willing to place in the system.” A typical solution to this concern
(developed in systems such as CryptDB [18]) is to outsource encrypted data and
use SQL-aware encryption schemes to answer queries directly on encrypted data.

Although SQL and SPARQL share some common functionalities, adapting
a system such as CryptDB to securely answer SPARQL queries on outsourced
graphs is not trivial because SPARQL allows to naturally express classes of
queries that are cumbersome to express in SQL. This is the case for the recursive
queries, which can be easily expressed using the Kleene star in the property
paths of SPARQL 1.11. To express such recursive queries in SQL, one needs to
define recursive views. After analyzing the source code of the SQL parser inside
CryptDB2, we concluded that such queries are beyond the scope of CryptDB and
it is unclear how hard it is to extend their system to support recursive queries.

We propose GOOSE, a framework for Graph OutsOurcing and SPARQL
Evaluation, which allows the data owner to securely outsource to the cloud a
graph that can be then queried by the user. We assume that the cloud is honest-
but-curious i.e., executes tasks dutifully, but tries to gain as much informa-
tion as possible. Similarly to CryptDB, GOOSE evaluates queries on encrypted
data without any change to the query engine, which in our case is the standard
Apache Jena for evaluating SPARQL queries. As query language, GOOSE sup-
ports Unions of Conjunctions of Regular Path Queries (UCRPQ) that are at the
core of the W3C’s SPARQL 1.1, including recursive queries via the Kleene star.

The key ingredients of GOOSE are: (i) secure multi-party computation i.e.,
the graph storage is distributed among 3 cloud participants, which can jointly
compute the query answers for each submitted query, but none of the cloud par-
ticipants can learn the graph, and none of the cloud participants can learn at the
same time the query and the answers of the query on the graph, and (ii) cryp-
tographic schemes i.e., all messages exchanged between GOOSE participants are
encrypted with AES-CBC [1,5] such that an external network observer cannot
learn the graph, the query, or the answers of the query on the graph.

1 https://www.w3.org/TR/sparql11-property-paths/.
2 https://css.csail.mit.edu/cryptdb/#Software.

https://www.w3.org/TR/sparql11-property-paths/
https://css.csail.mit.edu/cryptdb/#Software

A Secure Framework for Graph Outsourcing and SPARQL Evaluation 349

Related Work. GOOSE follows a recent line of research on tackling the security
concerns related to RDF graph data storage and querying [10–12,14–16].

The state-of-the-art system for query evaluation on encrypted graphs is
HDTcrypt [11], which focuses on (non-recursive) SPARQL queries defined as
triple patterns. HDTcrypt combines HDT (a compression technique useful for
reducing RDF storage space) and encryption (to hide particular subgraphs from
unauthorized users). Our work is complementary to this related research direc-
tion since we assume that query evaluation is outsourced to the cloud and our
security goals are different from theirs: we want to avoid that the cloud nodes
and network observer learn the entire graph, queries or query answers, whereas
their goal is to allow multiple users with different access rights to query the
graph. A common idea between HDT compression and our GOOSE is to map
nodes and edge labels to integers, but for different goals. For HDTcrypt , the
goal is to reduce storage and bandwidth usage. For GOOSE, the combination
of this technique with secure multi-party computation is particularly useful for
achieving security since the actual mapping functions are not shared with the
node responsible for query evaluation, which is able to evaluate UCRPQ without
knowing which are the true nodes and edge labels that it manipulates.

If one chooses to store RDF graphs in a relational database and query them
with SQL, then one can choose CryptDB [18] to run queries directly in the
encrypted domain. As already mentioned, CryptDB does not currently support
recursive queries, and such queries are anywise cumbersome to express in SQL as
they require recursive views. CryptDB has been extended as CryptGraphDB [2]
to run Neo4j queries on encrypted graphs, but again without considering recur-
sive queries. GOOSE is complementary to these systems since our goal is to
propose a system that is able to run UCRPQ while enjoying similar security
properties. We choose to rely on UCRPQ because this class of queries is at the
core of the W3C’s SPARQL 1.1 property paths, including recursive queries via
the Kleene star. A recent large-scale analytical study of SPARQL query logs [7]
includes more than a million such recursive queries, which suggests that a secure
protocol for evaluating recursive graph queries would be also useful in practice.
To the best of our knowledge, GOOSE is the first provably-secure system that
is able to run UCRPQ on outsourced graphs, without doing any change to the
standard SPARQL engine.

Our work is also related to query-based linked data anonymization [9], where
the idea is that the data owner, before publishing a graph, adds some noise,
specified declaratively using SPARQL. Then, a user is able to download the
anonymized graph and query it. However, their hypothesis and ours are different
as we assume that the bulk of computations is outsourced to the cloud and our
user does not need to do any computation effort other than decrypting the query
answers received from the cloud. For us, the challenge is to design a distributed
protocol that guarantees that the cloud cannot learn the graph, queries, and
query answers, while minimizing the overhead due to cryptographic primitives.
On the other hand, their challenge is to anonymize the graph before publishing,
while finding a good compromise between privacy and utility.

350 R. Ciucanu and P. Lafourcade

Summary of Contributions and Paper Organization. In Sect. 2, we intro-
duce some basic notions: graph data and queries, and cryptographic tools. Then,
Sect. 3 is the core of our contribution:

• We propose the GOOSE framework for secure graph outsourcing and SPARQL
evaluation.

• We formally prove that GOOSE satisfies desirable security properties that we
precisely characterize:
1. No cloud node can learn the graph.
2. No cloud node can learn at the same time the query and the answers of

the query on the graph.
3. An external network observer cannot learn the graph, the query, or the

answers of the query on the graph.
• We analyze the theoretical complexity of GOOSE, by quantifying the num-

ber of calls of cryptographic primitives: GOOSE uses a number of AES-CBC
encryptions/decryptions that is linear in the input’s and output’s size.

In Sect. 4, we report on a large-scale empirical evaluation that confirms the
theoretical complexity, and shows the scalability of GOOSE. Finally, we conclude
our paper and outline directions for future work in Sect. 5.

2 Preliminaries

In Sect. 2.1 we define graph data and queries. In Sect. 2.2 we introduce the AES-
CBC symmetric encryption scheme and the notion of IND-CPA security that is
useful for proving our protocol’s security.

2.1 Graph Data and Queries

Graph Data. An RDF (Resource Description Framework3) graph database is a
set of triples (s, p, o) where s is the subject, p is the predicate, and o is the object.
According to the specification, s ∈ I ∪ B, p ∈ I, o ∈ I ∪ B ∪ L, where I,B,L are
three disjoint sets of Internationalized Resource Identifiers (IRIs), blank nodes,
and literals, respectively. For the goal of this paper, the distinction between IRIs,
blank nodes, and literals is not important. Therefore, we simply assume that a
graph database G = (V,E) is a directed, edge-labeled graph, where V is a set of
nodes and E ⊆ V × Σ × V is a set of directed edges between nodes of V and
with labels from an alphabet Σ. For example, the graph in Fig. 2 has:

• Set of nodes V = {Alice,Bob,Charlie,David,Milan,Paris}. The first four
nodes correspond to persons and the last two correspond to cities.

• Alphabet Σ = {Follows,ReadsAbout,TravelsTo}. The first label occurs
between two persons and defines the follower relation as in a social network
e.g., Twitter. The other two labels occur between a person and a city.

3 https://www.w3.org/TR/rdf11-concepts/.

https://www.w3.org/TR/rdf11-concepts/

A Secure Framework for Graph Outsourcing and SPARQL Evaluation 351

Paris

Alice Bob

Charlie David

Milan

TravelsTo

ReadsAbout

Follows

Follows

Follows TravelsTo

TravelsTo ReadsAboutFollows

Fig. 2. Example of graph database.

• Set of edges E such as (Alice, Follows, Bob), (Alice, TravelsTo, Paris), etc.
There are 9 edges in total, corresponding to the 9 arrows in Fig. 2.

Graph Queries. We focus on Unions of Conjunctions of Regular Path Queries
(UCRPQ), which are at the core of the W3C’s SPARQL 1.14. Recall that Σ is
an alphabet and let Σ+ = {a, a− | a ∈ Σ}, where a− denotes the inverse of the
edge label a. Let V = {?x, ?y, . . .} be a set of variables and n > 0. A query rule
is an expression of the form head ← body, more precisely:

(?v) ← (?x1, r1, ?y1), . . . , (?xn, rn, ?yn)

where: for each 1 ≤ i ≤ n, it is the case that ?xi, ?yi are variables from V and
?v is a vector of zero or more of these variables, the length of which is called
the arity of the rule. For each 1 ≤ i ≤ n, it is the case that ri is a regular
expression over Σ+ using {·,+, ∗} (i.e., concatenation, disjunction, and Kleene
star). A query Q ∈ UCRPQ is a finite non-empty set of query rules of the same
arity. By Ans(G,Q) we denote the answers of query Q over a graph G, using
standard SPARQL semantics. For example, the UCRPQ query

(?x, ?z) ← (?x,Follows+, ?y), (?y,TravelsTo, ?z)

selects nodes ?x, ?z such that there exists node ?y such that one can go from ?x
to ?y with a path in the language of “Follows+” and can go from ?y to ?z with
a path in the language of “TravelsTo”. The answers of this query on the graph
from Fig. 2 are (Alice, Milan), (Alice, Paris), (Bob, Milan), (Bob, Paris), (David,
Paris). For example, the tuple (Alice, Paris) is an answer because of paths Alice
Follows−−−−→ Bob Follows−−−−→ David Follows−−−−→ Charlie and Charlie TravelsTo−−−−−−→ Paris, where
?x, ?y, ?z are mapped to Alice, Charlie, Paris, respectively.

2.2 Cryptographic Tools

We next introduce AES-CBC symmetric encryption and IND-CPA security.

AES-CBC Symmetric Encryption. AES [1] is a NIST standard for sym-
metric encryption that encrypts messages of 128 bits. AES is used as a block
cipher, for instance using CBC mode (Cipher Block Chaining). The AES-CBC
cryptosystem is a symmetric encryption scheme defined by a triple of polynomial-
time algorithms (KeyGen,Enc,Dec) and a security parameter λ such that:
4 https://www.w3.org/TR/sparql11-query/.

https://www.w3.org/TR/sparql11-query/

352 R. Ciucanu and P. Lafourcade

• KeyGen(λ) generates Key, a uniformly random symmetric key whose size
depends on λ.

• Enc(Key,m, IV) splits m in blocks of 128 bits m0, . . . , mn (padding bits may
be added if mn is smaller than 128 bits). Enc computes c0 = E(Key,m0⊕IV),
where E is the AES encryption [1] and IV is a random 128-bits number. By
x⊕y we denote the standard bit-wise xor operation between two bit strings x
and y. Then, Enc computes ci = E(Key, ci−1 ⊕ mi) for 1 ≤ i ≤ n and returns
the tuple ((c0, . . . , cn), IV).

• Dec(Key, c, IV) splits c in blocks of 128 bits c0, . . . , cn and computes m0 =
D(Key, c0) ⊕ IV , where D is the AES decryption [1]. Similarly, Dec computes
mi = D(Key, ci) ⊕ ci−1 for 1 ≤ i ≤ n and returns m0, . . . , mn.

IND-CPA [5] (INDistinguishability under Chosen-Plaintext Attack). Let Π =
(KeyGen,Enc,Dec) be a cryptographic scheme. The probabilistic polynomial-time
(PPT) adversary A tries to break the security of Π. The IND-CPA game,
denoted by EXP(A), works as follows: the adversary A chooses two messages
(m0,m1) and receives a challenge c = Enc(LRb(m0,m1)) from the challenger
who selects a bit b ∈ {0, 1} uniformly at random, and where LRb(m0,m1) is
equal to m0 if b = 0, and m1 otherwise. The adversary, knowing m0,m1 and c,
is allowed to perform any number of polynomial computations or encryptions
of any messages, using the encryption oracle, in order to output a guess b′ of
the encrypted message in c chosen by the challenger. Intuitively, Π is IND-CPA
if there is no PPT adversary that can guess b with a probability significantly
better than 1

2 . By α = Pr[b′ ← EXP(A); b = b′], we denote the probability that
A correctly outputs her guessed bit b′ when the bit chosen by the challenger in
the experiment is b. A scheme is IND-CPA secure if α − 1

2 is negligible function
in λ, where a function γ is negligible in λ, denoted negl(λ), if for every positive
polynomial p(·) and sufficiently large λ, γ(λ) < 1/p(λ). In particular, if f and g
are negligible in λ, then f(λ) + g(λ) is also negligible in λ.

AES-CBC is IND-CPA under the standard assumption that AES is a pseudo-
random permutation [5]. We also point out that all theoretical security properties
of our protocol also hold if we choose any other IND-CPA symmetric scheme
instead of AES-CBC. Our choice to rely on AES-CBC is due to practical reasons
since AES-CBC is a NIST standard, and moreover, is very efficient in practice
and implemented in standard libraries for modern programming languages.

3 Secure Graph Outsourcing and SPARQL Evaluation

We define the security model and the desired security properties in Sect. 3.1.
Then, we propose our secure protocol GOOSE (Sect. 3.2), and we analyze its
correctness (Sect. 3.3), security properties (Sect. 3.4), and complexity (Sect. 3.5).

3.1 Security Model

We assume that the cloud is honest-but-curious i.e., it executes tasks dutifully,
but tries to extract as much information as possible from the data that it sees.

A Secure Framework for Graph Outsourcing and SPARQL Evaluation 353

Our model follows the classical formulation in [13] (Ch. 7.5, where honest-but-
curious is denoted semi-honest), in particular (i) each cloud node is trusted: it
correctly does the required computations, it does not sniff the network and it
does not collude with other nodes, and (ii) an external observer has access to all
messages exchanged over the network. The aforementioned security model is of
practical interest in a real-world cloud environment. In particular, to satisfy all
our theoretical security properties while achieving the no-collusion hypothesis,
it suffice to host each cloud node of our protocol by a different cloud provider.
This should be feasible as our protocol requires only three cloud nodes.

As already outlined in the introduction and in Fig. 1, we assume that the data
(i.e., the graph) and the computations (i.e., the query evaluation algorithm) are
outsourced. More precisely, the data owner outsources the graph G to the cloud
once at the beginning. Then, the user sends query Q1 to the cloud and receives
Ans(G,Q1), then the user sends query Q2 to the cloud and receives Ans(G,Q2),
etc. The user does not have to do any query evaluation on her side. We expect
the following security properties:

1. No cloud node can learn the graph G.
2. No cloud node can learn at the same time a query Q submitted by the user

and the answers Ans(G,Q) of the query Q on the graph G.
3. By analyzing network messages, an external observer cannot learn the graph

G, cannot learn any query Q, and cannot learn any Ans(G,Q).

Next, we propose GOOSE, a distributed protocol that satisfies these prop-
erties. Intuitively, we achieve the aforementioned properties by exchanging only
encrypted messages, and moreover, by distributing the computations among sev-
eral cloud node participants, each of them having access only to the specific
data that it needs for performing its task and nothing else. The challenge is to
efficiently distribute tasks among as few cloud participants as possible, while
minimizing the time needed for cryptographic primitives.

User

Query
Translator

SPARQL
Engine

Answers
Translator

Data Owner
(0) EncDO QT(σΣ)

(0) EncDO AT(σV)

(0) EncDO SE(̂E)

(1) EncU QT(Q) (2) EncQT SE(̂Q)

(3) EncAT SE(Ans(̂G, ̂Q))

(4) EncU AT(Ans(G, Q))

Fig. 3. Architecture of GOOSE. The dashed rectangle is the cloud. Graph outsourcing
(step 0) is done only once at the beginning. Query evaluation (steps 1–4) is done for
each submitted query. The hat on some data means that the data is hidden using
functions σV , σΣ , or both (depends on step, see GOOSE description for details).

354 R. Ciucanu and P. Lafourcade

3.2 Overview of GOOSE

In Fig. 3, we depict the architecture of GOOSE, which has 5 participants: data
owner (DO), who owns the graph that it outsources to the cloud in order to be
queried, user (U), who submits graph queries to the cloud and receives query
answers, and 3 cloud participants: query translator (QT), SPARQL engine (SE)
and answers translator (AT). We next explain each step via a running example.

By EncA B or EncB A we denote symmetric AES-CBC encryption using the
key shared between participants A and B. We have 7 such shared keys because
there are 7 combinations of participants exchanging messages, hence 7 arrows in
Fig. 3. We assume that the sharing of AES keys has been done before starting
the actual protocol and there are many classical key exchange protocols in the
literature for doing this.

Step 0. The graph outsourcing (i.e., the 3 outgoing arrows from DO in Fig. 3)
is done only once at the beginning by DO. Intuitively, DO sends to each cloud
participant a piece of the graph such that each participant can perform its task
during query evaluation but no participant can reconstruct the entire graph. As
shown in the pseudocode of DO in Fig. 4(a), DO generates two random bijec-
tions: σΣ and σV , one for the edge labels and another one for the graph nodes,
respectively. By σ−1 we denote the inverse of σ (this is needed later on at the
end of query evaluation). For our example graph in Fig. 2, DO may generate:

σV ={Alice → 5,Bob → 3,Charlie → 0,David → 1,Milan → 2,Paris → 4}
σΣ ={Follows → 1,ReadsAbout → 2,TravelsTo → 0}.

Then, DO uses these two functions to hide the graph edges. As shown in Fig. 4(a),
by ̂E we denote the hidden set of edges generated from E, where the nodes are
replaced using σV , and the edge labels are replaced using σΣ . On our exam-
ple graph in Fig. 2, edge (Alice, Follows, Bob) becomes (5, 1, 3), edge (Alice,
ReadsAbout, Paris) becomes (5, 2, 4), etc., and finally:

̂E = {(5, 1, 3), (5, 2, 4), (5, 0, 4), (3, 1, 5), (3, 1, 1), (3, 0, 2), (0, 0, 4), (1, 1, 0), (1, 2, 2)}.

As shown in Figs. 3 and 4(a), DO sends σΣ , σV , and ̂E to cloud nodes QT,
AT, and SE, respectively. Each message sent over the network is encrypted with
the key shared between DO and the corresponding cloud participant, which
can decrypt the message upon reception. Messages are encrypted to avoid that
an external observer that sees them in clear is able to learn the graph G, thus
violating one of the desirable security properties stated in Sect. 3.1. Moreover, the
distribution of graph storage among cloud participants makes that none of them
can learn the graph G, which is also a desirable security property cf. Sect. 3.1.

We next discuss query evaluation i.e., steps 1–4 cf. Fig. 3, done for each query
submitted by U. Similarly to graph outsourcing, each message exchanged over
the network during query evaluation is encrypted with the key shared between
corresponding participants, such that an external observer cannot learn the query
and its answers to satisfy another desirable security property cf. Sect. 3.1.

A Secure Framework for Graph Outsourcing and SPARQL Evaluation 355

Let σΣ = random bijection : Σ → {0, . . . , |Σ|−1}
Let σV = random bijection : V → {0, . . . , |V |−1}
Let Ê = {(σV (s), σΣ(p), σV (o)) | (s, p, o) ∈ E}
Send EncDO QT(σΣ) to QT
Send EncDO AT(σV) to AT

Send EncDO SE(Ê) to SE

(a) Pseudocode of outsourcing graph G = (V, E) by DO (step 0).

Generate query Q̂ from Q by replacing each occurrence of a label p with σΣ(p)
Send EncQT SE(Q̂) to SE

(b) Pseudocode of QT during query evaluation (step 2).

Let Ĝ = (
⋃

(ŝ,p̂,ô)∈ ̂E{ŝ, ô}, Ê)

Let Ans(Ĝ, Q̂) be the answers of Q̂ on Ĝ, computed with some SPARQL engine
Send EncAT SE(Ans(Ĝ, Q̂)) to AT

(c) Pseudocode of SE during query evaluation (step 3).

Let Ans(G, Q) = {(σ−1
V (v1), . . . , σ−1

V (vn)) | (v1, . . . , vn) ∈ Ans(Ĝ, Q̂)}
Send EncU AT(Ans(G, Q)) to U

(d) Pseudocode of AT during query evaluation (step 4).

Fig. 4. Pseudocode of the non-trivial steps of GOOSE cf. Fig. 3.

Step 1. U submits query Q to QT. For example, recall the query (?x, ?z) ←
(?x,Follows+, ?y), (?y,TravelsTo, ?z) from Sect. 2.
Step 2. QT translates the received query Q by replacing all labels used in Q
using the function σΣ received from DO, as shown in Fig. 4(b). By ̂Q we denote
the query Q translated using σΣ . On our running example, the query from step
1 becomes (?x, ?z) ← (?x, 1+, ?y), (?y, 0, ?z).
Step 3. As shown in Fig. 4(c), SE evaluates translated query ̂Q received from
QT at step 2 on the graph with hidden nodes and edge labels as defined
by ̂E received from DO during step 0. To do so, SE simply uses some stan-
dard SPARQL engine as a black-box, without any change to the query engine.
We denote the result of SE by Ans(̂G, ̂Q), where the true answers Ans(G,Q)
are still hidden using function σV . On our running example, Ans(̂G, ̂Q) =
{(5, 2), (5, 4), (3, 2), (3, 4), (1, 4)}.
Step 4. AT uses the function σV −1 to translate the received hid-
den query answers Ans(̂G, ̂Q) into the true query answers, as shown in
Fig. 4(d). On our running example, AT recovers Ans(G,Q) = {(Alice,Milan),
(Alice,Paris), (Bob,Milan), (Bob,Paris), (David,Paris)} that AT sends to U.

356 R. Ciucanu and P. Lafourcade

3.3 Correctness of GOOSE

To show the correctness, we point out a reduction from GOOSE to the standard
SPARQL evaluation engine used as a black-box in SE. Take a graph G outsourced
by DO and a query Q submitted by U. If we remove all encryptions/decryptions
of GOOSE, hence all messages are communicated in clear between participants,
then we obtain protocol GOOSE′ that yields exactly the same result as GOOSE.
This happens because of the consistency property of AES-CBC i.e., if we encrypt
message M using Enc to obtain ciphertext C, then if we decrypt C using Dec
we obtain exactly M . Next, take the SE participant of GOOSE′, which evaluates
query ̂Q (cf. Fig. 4(b)) over graph ̂G (cf. Fig. 4(c)). Since DO and QT use the
same function σΣ for hiding edge labels, then Ans(̂G, ̂Q) = Ans(̂G′, Q), where
̂G′ = ({0, . . . , |V | − 1}, {(σV (s), p, σV (o)) | (s, p, o) ∈ E}). Then, AT inverses the
function σV on each value of each tuple of Ans(̂G, ̂Q) cf. Fig. 4(d) and generates
exactly Ans(G,Q) because AT uses the same function σV that is used in ̂G′. In
conclusion, U receives the correct answers Ans(G,Q).

3.4 Security of GOOSE

We next show that GOOSE satisfies the desirable properties outlined in Sect. 3.1,
proven as Theorems 1, 2, and 3. In the sequel, by dataA, we denote the data to
which A has access, where A can be a cloud participant (QT,SE,AT) or an
external network observer (ext). We first characterize data for all participants.
Given a graph G = (V,E) and a workload of k queries Q1, . . . , Qk:

dataQT = {σΣ} ∪
⋃

1≤i≤k

{Qi},

dataSE = { ̂E} ∪
⋃

1≤i≤k

{ ̂Qi, Ans(̂G, ̂Qi)},

dataAT = {σV } ∪
⋃

1≤i≤k

{Ans(G,Qi)},

dataext = {EncDO QT(σΣ),EncDO SE(̂E),EncDO AT(σV)} ∪
⋃

1≤i≤k

{EncU QT(Qi),

EncQT SE(̂Qi),EncAT SE(Ans(̂G, ̂Qi)),EncU AT(Ans(G,Qi))}.

We next show that GOOSE satisfies Property 1 from Sect. 3.1.

Theorem 1. For each cloud participant A ∈ {QT,SE,AT}, A cannot guess
from dataA the graph G = (V,E) with probability better than random under
the assumption that bijections σΣ and σV are pseudorandom.

Proof. • QT. By construction, dataQT does not include information on the
nodes of G. In particular, QT does not know V or even |V |. Moreover,
although dataQT include σΣ from which QT can infer Σ, there is no other
information available on E, not even |E|. Hence, if QT wants to guess G, its

A Secure Framework for Graph Outsourcing and SPARQL Evaluation 357

best strategy is random i.e., pick random set of nodes V ′ and edges (s, p, o),
with s, o ∈ V ′ and p ∈ Σ.

• SE. By construction, SE can learn, from dataSE, a graph ̂G (cf. Fig. 4(c)) iso-
morphic to G. If SE can learn G from ̂G, this implies that SE can learn the
two pseudorandom bijections σΣ and σV . This cannot be done with prob-
ability better than random because dataSE does not include information on
the nodes and edges of G hence SE sees no information on the domains of σΣ

and σV .
• AT. By construction, σV ∈ dataAT thus AT can infer V . However, dataAT does

not include information on the edges of G, not even |E| or |Σ|. Hence, if AT
wants to guess G, its best strategy is random i.e., pick random alphabet Σ′

and random edges (s, p, o), with s, o ∈ V and p ∈ Σ′.
�
We next show that GOOSE satisfies Property 2 from Sect. 3.1.

Theorem 2. For each cloud participant A ∈ {QT,SE,AT}, A cannot guess from
dataA, at the same time, a query Q and its answers Ans(G,Q) with probability
better than random under the assumption that bijections σΣ and σV are pseu-
dorandom.

Proof. • QT. By construction, QT knows the query Q, but does not see any
information on Ans(G,Q). Its best strategy to guess Ans(G,Q) is random
i.e., pick a random set of nodes V ′ and output a random set of tuples of the
same arity as Q using nodes of V ′.

• SE. By construction, SE knows the number of answers |Ans(G,Q))|, without
knowing to which true nodes the answers correspond and what is query Q.
The best strategy of SE for guessing Ans(G,Q) is random, similar to the QT
case.

• AT. By construction, AT knows the query result Ans(G,Q), but does not see
any information on Q or on alphabet Σ. Hence, if AT wants to guess Q, its
best strategy is random i.e., pick a random alphabet Σ′ and output a random
query over Σ′ that has the same arity as Ans(G,Q).
�

We next prove the security of an external observer, more precisely we show that
GOOSE satisfies Property 3 from Sect. 3.1.

Theorem 3. Given dataext , then the graph G = (V,E), any query Q, and any
query answers Ans(G,Q) are indistinguishable of random for an external net-
work observer of GOOSE under the assumption that the symmetric encryption
used is IND-CPA.

Proof. This proof relies on the notion of IND-CPA security as defined in Sect. 2.
Before proving the theorem, we first need to introduce some notation:

• By Apb(dataext) we denote the guess of a Probabilistic Polynomial Time
(PPT) adversary A that knows dataext and tries to solve problem pb among:
guessE (that returns the A’s guess of some graph edge in E), guessQ (that

358 R. Ciucanu and P. Lafourcade

returns the A’s guess of some query Q in the workload), guessAns (that
returns the A’s guess of the answers Ans(G,Q) of some query Q in the work-
load).

• By construction of dataext , we infer that ext can learn, based on dataext , size
estimates of the graph components |E|, |V |, |Σ| (from the messages exchanged
at step 0), and size estimates |Q| for each query and |Ans(G,Q)| for its
query answers (from the messages exchanged at steps 1–4). By pE(dataext),
pQ(dataext), pAns(dataext), we denote the probability that ext randomly out-
puts, based on dataext , a correct graph edge, a correct query, or a correct
query answers set, respectively.

Hence, to prove the theorem, we need to prove that, for a graph G = (V,E)
and a query workload

⋃

1≤i≤k{Qi}, for all PPT adversaries A,

|Pr[AguessE (dataext) ∈ E] − pE(dataext)| is negligible in λ,

|Pr[AguessQ(dataext) ∈
⋃

1≤i≤k

{Qi}] − pQ(dataext)| is negligible in λ,

|Pr[AguessAns(dataext) ∈
⋃

1≤i≤k

{Ans(G, Qi)}] − pAns(dataext)| is negligible in λ.

Each of the 3 statements can be proven separately by contradiction. We prove
here only the first statement, the other two proofs being similar and omitted
here due to space constraints, but available in AppendixA.

We assume, toward a contradiction, that there exists a PPT adversary A
able from dataext to find a correct edge in E with a non-negligible advantage x:

|Pr[AguessE (dataext) ∈ E] − pE(dataext)| = x + negl(λ).

If dataext does not correspond to an actual collection of encrypted messages as
ext sees during an execution of GOOSE, then the advantage for such an input is
naturally negligible.

We show that by using the adversary A, we can construct an adversary B able
to break the IND-CPA property of AES-CBC [1,5]. We build an IND-CPA game,
in which B chooses two values m0,m1, and sends them to the challenger. The
challenger randomly selects b ∈ {0, 1} and answers with EncDO QT(mb). Adver-
sary B wins the IND-CPA game if B guesses b with a non-negligible advantage.

To do so, B simulates a GOOSE execution i.e., B chooses a graph (over
alphabet Σ = {a1, . . . , an}), a query workload, and the functions (σΣ and
σV) used by DO during graph outsourcing; B does not know the keys shared
among the participants of GOOSE. Let dataB be the set of encrypted messages
exchanged during the GOOSE simulation (including EncDO QT(σΣ), among oth-
ers). As input for the IND-CPA game, B chooses m1 = σΣ and m0 = σ′

Σ ,
where for a ∈ Σ, if σΣ(a) �= 0, then σ′

Σ(a) = σΣ(a), else σ′
Σ(a) = −1. Then,

B sends m0,m1 to the challenger, and receives EncDO QT(mb). Next, B calls
AguessE (dataB \{EncDO QT(σΣ)}∪{EncDO QT(mb)}). The strategy of B is as fol-
lows: if A returns a true edge having the label a for which σΣ(a) = 0, then B
answers 1. Otherwise, B answers randomly. We next derive the probability of a
correct answer by B:

A Secure Framework for Graph Outsourcing and SPARQL Evaluation 359

• If b = 0 (probability 1
2), then A does not receive a correct simulation because

the functions used during graph outsourcing to compute the pieces sent to
QT and SE are not the same. According to our assumption, A does not give
any advantage. B answers randomly and is right with probability 1

2 , hence
the probability of success of this branch is 1

4 .
• If b = 1 (probability 1

2), then B can leverage the advantage given by A.
• If A returns a true edge having the label a for which σΣ(a) = 0 (probabil-

ity pE(dataB)+x+negl(λ)), then B correctly answers 1. The probability
of success of this branch is 1

2 (pE(dataB) + x + negl(λ)).
• Otherwise, (probability 1−pE(dataB)−x−negl(λ)), B answers randomly

and is correct with probability 1
2 . This branch yields a probability of

success of 1
2 (1 − pE(dataB) − x − negl(λ))12 .

By aggregating these cases, the probability α of success of B is:

α =
1
4

+
1
2
(pE(dataB) + x + negl(λ)) +

1
2
(1 − pE(dataB) − x − negl(λ))

1
2

=
1
4

+
pE(dataB)

2
+

x

2
+

1
4

− pE(dataB)
4

− x

4
+ negl(λ)

=
1
2

+
pE(dataB)

4
+

x

4
+ negl(λ)

Note that pE(dataB) ≥ 0 (since it is a probability) and recall that x is non-
negligible (by hypothesis). Hence, B has a non-negligible advantage of pE(dataB)

4 +
x
4 in the IND-CPA game, which contradicts the fact that AES-CBC is IND-CPA
secure. Hence, we conclude that there does not exist any PPT adversary A that
violates the property stated in the theorem.
�

3.5 Complexity of GOOSE

The number of cryptographic operations used by GOOSE is linear in the input’s
and output’s size:

Theorem 4. Given a graph G = (V,E) over an alphabet Σ and a workload of
k queries Q1, . . . , Qk, the total size that GOOSE encrypts, as well as the total
size that it decrypts, is

|Σ| + |V | + |E| + 2
∑

1≤i≤k

(|Qi| + |Ans(G,Qi)|).

Proof. This follows from the construction of GOOSE. During graph outsourcing,
the size of encrypted data by DO is |Σ| + |V | + |E|, which is also the size of
data decrypted by the cloud participants. For evaluating query 1 ≤ i ≤ k in the
workload, the size of encrypted data is |Qi|+ |Qi|+ |Ans(G,Qi)|+ |Ans(G,Qi)|,
done sequentially by U,QT,SE,AT, and the size of decrypted data is the same,
done sequentially by QT,SE,AT,U. By summing up the size for all queries in
the workload, we obtain exactly the formula in the theorem statement.
�

360 R. Ciucanu and P. Lafourcade

4 Experiments

We present a large-scale empirical evaluation devoted to showing the practi-
cal feasibility and scalability of GOOSE, for both graph outsourcing and query
evaluation. We also compare GOOSE query evaluation with standard SPARQL
evaluation and we zoom on the running time shares of each GOOSE participant.

Implementation. We implemented GOOSE in Python 3. For AES-CBC we
used keys of 256 bits with the PyCryptodome library5. As SPARQL engine, we
used Apache Jena6. We carried out our experiments on a system with CPU Intel
Xeon of 3 GHz and 755 GB of RAM, running CentOS Linux 7.

Open-Source Code. For reproducibility reasons, we make available on a public
GitHub repository7 our source code, together with scripts that install needed
libraries, run the large-scale experiment, and generate the plots. This experiment
took 8 days on our system and generated 46 GB of data (total size for graphs,
queries, and query answers).

Datasets. We relied on gMark8 [3,4], a schema-driven benchmark that allows
generating synthetic graphs and queries with finely-tuned constraints. gMark
provided us a large quantity of diverse data and queries to stress-test GOOSE as
we used all 4 use cases that we found on the gMark repository: uniprot (biological
data where proteins interact with other proteins, are encoded on genes, etc.),
shop (online shop selling different types of products to users, etc.), social-network
(social network where persons know other persons, work in companies, etc.),
and bib (bibliographical data about researchers that author papers published in
journals or conferences, etc.). Each use case encodes different types of constraints,
which make the generated graphs and queries have different characteristics, that
we detail when necessary to explain experimental results.

Scalability of Graph Outsourcing. For each of the 4 use cases, we consider
5 scaling factors, from 103 to 107, where a scaling factor n means that gMark
should generate a graph with n nodes. For each combination (use case, scaling
factor), we report the GOOSE graph outsourcing time, averaged over 10 graphs,
each of them outsourced 3 times. We show the result of this experiment in
Fig. 5(a), where we observe a smooth, linear-time behavior. We next explain the
running times difference between the use cases by detailing their characteristics.
In particular, the number of generated nodes for a scaling factor depends on
how large is n and what constraints are specified in the use case. This is why,
to help understanding the behavior in Fig. 5(a), we also plot in Fig. 5(b) the
size (# of nodes vs # of edges) for the generated graphs. To simulate realistic
graph constraints, each use case specifies how the number of nodes of some type
increases: there are types of nodes whose number increases when the graph size

5 https://pycryptodome.readthedocs.io/en/latest/src/cipher/classic.html.
6 https://jena.apache.org/.
7 https://github.com/radu1/goose.
8 https://github.com/graphMark/gmark.

https://pycryptodome.readthedocs.io/en/latest/src/cipher/classic.html
https://jena.apache.org/
https://github.com/radu1/goose
https://github.com/graphMark/gmark

A Secure Framework for Graph Outsourcing and SPARQL Evaluation 361

(a) Scalability of graph outsourcing. (b) Size of graphs in dataset.

(c) Scalability of query evaluation, and comparison standard vs GOOSE.

(d) Zoom on end-to-end solution i.e., graph outsourcing and query evaluation for a
workload of 5 queries, for graphs of fixed scaling factor 104. The shares of participants
DO, U, and QT are barely visible.

Fig. 5. Experimental results.

increases (e.g., users and purchases in shop), and types of nodes whose number
is constant for all graph sizes (e.g., cities and countries in shop). When we take
a small scaling factor and a use case with strong constraints on the types with
constant number of occurrences, gMark may have to add nodes beyond the size
specified by the scaling factor to satisfy the number of nodes for each type. This
explains the behavior for small scaling factors in Fig. 5(b) for shop (12 types of
constant node types), and uniprot (3 types of constant node types, among which
one with 15K occurrences, hence for the scaling factor 103, the generated graphs
have at least 15 times more nodes). For large scaling factors (105, 106, 107),
the number of constant node types is dominated by the nodes with types that
increase with the graph size, hence the hierarchy of the use cases in terms of
size is clear and determined by the number of edges that should be generated

362 R. Ciucanu and P. Lafourcade

in each use case. We conclude this experiment by observing that the GOOSE
graph outsourcing time is strongly correlated to the graph size: if you take any
two graphs A and B, if A has more edges than B (cf. Y axis in Fig. 5(b)),
then the time to outsource A is larger than the time to outsource B (cf. Y
axis in Fig. 5(a)). This is particularly visible for large scaling factors, where the
hierarchy of the generated graph sizes (in terms of # of edges) is strictly followed
by the hierarchy of use cases in terms of graph outsourcing times.

Scalability of Query Evaluation. For each of the 4 use cases, for each of the
scaling factors 103 and 104, we generate with gMark 200 graphs and a workload
of 5 queries coupled to each graph. Hence, we have run a total number of 8000
queries, having diverse properties specified in the gMark use cases. In partic-
ular, for each use case the generated queries are unary/binary, recursive/non-
recursive (i.e., contain Kleene stars or not), linear/constant (i.e., return a num-
ber of answers that depend or not on the size of the graph), and have various
shapes (chain, star, cycle, star-chain). Although we were able to easily scale the
GOOSE graph outsourcing up to scaling factor 107, for the query evaluation
experiment we evaluated queries only up to 104 because the bottleneck of this
experiment is the standard SPARQL engine. Indeed, if we simply evaluate a
generated query on a generated graph of scaling factor 104, it may happen that
this takes already up to a minute, without any GOOSE security. This limitation
of current SPARQL engines, in particular for evaluating recursive queries, has
been already pointed out in the literature e.g., in [4]. Hence, we were able to
benchmark GOOSE query evaluation vs standard query evaluation only on scal-
ing factors 103 and 104, and we run 3 times each query with each system before
averaging. We show our results in Fig. 5(c). We observe that the running times
depend on the use case in the sense that if a graph has more nodes, it is more
likely that a query has more results hence it may take more time to enumerate
all results. This is why uniprot and shop take more time than the others. If we
compare the relative performance of standard SPARQL evaluation vs GOOSE
query evaluation, we observe that the overhead due to cryptographic primitives
in GOOSE is dominated by the time taken by the GOOSE SPARQL engine. We
also plot the relative overhead, which obviously increases when there are more
query answers to encrypt and decrypt during steps 3 and 4 in GOOSE. Hence,
a large overhead in this experiment is correlated to a large share of the answers
translator in the next one.

Zoom of End-to-End Solution. In this last experiment, we see GOOSE as an
end-to-end solution consisting of outsourcing a graph and then evaluating sev-
eral queries on it. In Fig. 5(d), we show the time shares taken by each GOOSE
participant, for each of the 4 use cases, for fixed scaling factor 104, after summing
up the times needed for graph outsourcing (cf. the first experiment) and for eval-
uating all 5 queries in the workload (cf. the second experiment). As expected,
the SPARQL engine takes the lion’s share. Moreover, the next most visible par-
ticipant is the answers translator, which has to decrypt hidden answers received
from the SPARQL engine, translate the answers, and re-encrypt the true answers
before sending them to the user. Without surprise, the time shares taken by the

A Secure Framework for Graph Outsourcing and SPARQL Evaluation 363

two participants outside the cloud (data owner and user) are negligible, the bulk
of the computation being outsourced to the cloud.

5 Conclusions and Future Work

We presented the design and implementation of the GOOSE secure framework
for outsourcing graphs and querying them with SPARQL queries defined by
UCRPQ. We formally proved that GOOSE enjoys desirable security properties
and that its overhead due to cryptographic primitives is linear in the input’s
and output’s size. Our large-scale experimental study confirms the scalability of
GOOSE. As future work, we plan to extend GOOSE to support other practical
SPARQL features such as aggregates and comparisons, for which we need to use
cryptographic schemes such as Paillier [17] and order-preserving encryption [6].

A Appendix: Proof of Theorem3 (Continued)

Recall that Theorem 3 states: Given dataext , then the graph G = (V,E), any
query Q, and any query answers Ans(G,Q) are indistinguishable of random for
an external network observer of GOOSE under the assumption that the symmetric
encryption used is IND-CPA.

In the main body of the paper (Sect. 3.4), we started the proof of Theorem 3,
where we have first shown that proving the theorem boils down to proving that
for a graph G = (V,E) and a query workload

⋃

1≤i≤k{Qi}, for all PPT adver-
saries A,

|Pr[AguessE (dataext) ∈ E] − pE(dataext)| is negligible in λ,

|Pr[AguessQ(dataext) ∈
⋃

1≤i≤k

{Qi}] − pQ(dataext)| is negligible in λ,

|Pr[AguessAns(dataext) ∈
⋃

1≤i≤k

{Ans(G, Qi)}] − pAns(dataext)| is negligible in λ.

In the main body of the paper (Sect. 3.4), we have proven the first of the afore-
mentioned statements, and we omitted the other two due to space constraints.
We prove here the other two statements.

We assume, toward a contradiction, that there exists a PPT adversary A
able from dataext to find a correct query Qi with a non-negligible advantage x:

|Pr[AguessQ(dataext) ∈
⋃

1≤i≤k

{Qi}] − pQ(dataext)| = x + negl(λ).

If dataext does not correspond to an actual collection of encrypted messages as
ext sees during an execution of GOOSE, then the advantage for such an input is
naturally negligible.

We next show that by using the adversary A, we can construct an adver-
sary B able to break the IND-CPA property of AES-CBC [1,5]. We build an
IND-CPA game, in which B chooses two values m0,m1, and sends them to

364 R. Ciucanu and P. Lafourcade

the challenger. The challenger randomly selects b ∈ {0, 1} and answers with
EncU QT(mb). Adversary B wins the IND-CPA game if B guesses b with a non-
negligible advantage.

To do so, B simulates a GOOSE execution i.e., B chooses a graph, a query
workload consisting of a single query Q1 that is ?x ← (?x, a+, ?y), such that
Ans(G,Q1) �= ∅, and the functions used by DO during graph outsourcing; B
does not know the keys shared among the participants of GOOSE. Let dataB be
the set of encrypted messages seen by an external observer of the simulation of
GOOSE done by B, which includes, among others, EncU QT(Q1).

As input for the IND-CPA game, B chooses m1 = Q1 and m0 = Q′
1 obtained

by replacing a in Q1 by a fresh label a′ /∈ Σ. Then, B sends m0,m1 to the chal-
lenger, and receives EncU QT(mb). Next, B calls AguessQ(dataB \{EncU QT(Q1)}∪
{EncU QT(mb)}). The strategy of B is as follows: if A returns Q1, then B answers
1. Otherwise, B answers randomly. We next derive the probability of a correct
answer by B:

• If b = 0 (probability 1
2), then A does not receive a correct simulation because

a′ /∈ Σ, hence Ans(G,Q′
1) = ∅ that is different from Ans(G,Q1) �= ∅ that

also belongs to dataext . According to our assumption, in such a case A does
not give any advantage. B answers randomly and is right with probability 1

2 ,
hence the probability of success of this branch is 1

4 .
• If b = 1 (probability 1

2), then B can leverage the advantage given by A.
• If A returns Q1 (probability pQ(dataB) + x + negl(λ)), then B correctly

answers 1. The probability of success of this branch is 1
2 (pQ(dataB)+x+

negl(λ)).
• Otherwise, (probability 1−pQ(dataB)−x−negl(λ)), B answers randomly

and is correct with probability 1
2 . This branch yields a probability of

success of 1
2 (1 − pQ(dataB) − x − negl(λ))12 .

By aggregating these cases, the probability α of success of B is:

α =
1
4

+
1
2
(pQ(dataB) + x + negl(λ)) +

1
2
(1 − pQ(dataB) − x − negl(λ))

1
2

=
1
4

+
pQ(dataB)

2
+

x

2
+

1
4

− pQ(dataB)
4

− x

4
+ negl(λ)

=
1
2

+
pQ(dataB)

4
+

x

4
+ negl(λ)

Note that pE(dataB) ≥ 0 (since it is a probability) and recall that x is non-
negligible (by hypothesis). Hence, B has a non-negligible advantage of pQ(dataB)

4 +
x
4 in the IND-CPA game, which contradicts the fact that AES-CBC is IND-CPA
secure. Hence, we conclude that there does not exist any PPT adversary A that
violates the property stated in the theorem.

Next, we assume, toward a contradiction, that there exists a PPT adversary A
able from dataext to find correct query answers Ans(G,Qi) with a non-negligible
advantage x:

|Pr[AguessAns(dataext) ∈
⋃

1≤i≤k

{Ans(G,Qi)}] − pAns(dataext)| = x + negl(λ).

A Secure Framework for Graph Outsourcing and SPARQL Evaluation 365

Similarly to the previous statement, if dataext does not correspond to an actual
collection of encrypted messages as ext sees during an execution of GOOSE, then
the advantage for such an input is naturally negligible.

We next show that by using the adversary A, we can construct an adversary
B able to break the IND-CPA property of AES-CBC [1,5]. We build an IND-CPA
game, in which B chooses two values m0,m1, and sends them to the challenger.
The challenger randomly selects b ∈ {0, 1} and answers with EncU AT(mb). Adver-
sary B wins the IND-CPA game if B guesses b with a non-negligible advantage.

To do so, B simulates a GOOSE execution i.e., B chooses a graph G, a query
workload consisting of a single query Q1 such that Ans(G,Q1) = {(v1)}, and
the functions used by DO during graph outsourcing; B does not know the keys
shared among the participants of GOOSE. Let dataB be the set of encrypted
messages seen by an external observer of the simulation of GOOSE done by B,
which includes, among others, EncU AT(Ans(G,Q1)).

As input for the IND-CPA game, B chooses m1 = Ans(G,Q1) and m0 =
{(v′

1)}, where v′
1 is a fresh node /∈ V . Then, B sends m0,m1 to the challenger, and

receives EncU AT(mb). Next, B calls AguessAns(dataB \ {EncU AT(Ans(G,Q1))} ∪
{EncU AT(mb)}). The strategy of B is as follows: if A returns Ans(G,Q1), then
B answers 1. Otherwise, B answers randomly. We next derive the probability of
a correct answer by B:

• If b = 0 (probability 1
2), then A does not receive a correct simulation because

v′ /∈ V , hence v′ could not belong to the answer set of a query from the
workload. According to our assumption, in such a case A does not give any
advantage. B answers randomly and is right with probability 1

2 , hence the
probability of success of this branch is 1

4 .
• If b = 1 (probability 1

2), then B can leverage the advantage given by A.
• If A returns Ans(G,Q1) (probability pAns(dataB) + x + negl(λ)), then

B correctly answers 1. The probability of success of this branch is
1
2 (pAns(dataB) + x + negl(λ)).

• Otherwise, (probability 1−pAns(dataB)−x−negl(λ)), B answers randomly
and is correct with probability 1

2 . This branch yields a probability of
success of 1

2 (1 − pAns(dataB) − x − negl(λ))12 .

By aggregating these cases, the probability α of success of B is:

α =
1
4

+
1
2
(pAns(dataB) + x + negl(λ)) +

1
2
(1 − pAns(dataB) − x − negl(λ))

1
2

=
1
4

+
pAns(dataB)

2
+

x

2
+

1
4

− pAns(dataB)
4

− x

4
+ negl(λ)

=
1
2

+
pAns(dataB)

4
+

x

4
+ negl(λ)

Note that pE(dataB) ≥ 0 (since it is a probability) and recall that x is
non-negligible (by hypothesis). Hence, B has a non-negligible advantage of
pAns(dataB)

4 + x
4 in the IND-CPA game, which contradicts the fact that AES-

CBC is IND-CPA secure. Hence, we conclude that there does not exist any PPT
adversary A that violates the property stated in the theorem.
�

366 R. Ciucanu and P. Lafourcade

References

1. Advanced Encryption Standard (AES), FIPS Publication 197 (2001). https://
nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

2. Aburawi, N., Lisitsa, A., Coenen, F.: Querying encrypted graph databases. In:
ICISSP, pp. 447–451 (2018)

3. Bagan, G., Bonifati, A., Ciucanu, R., Fletcher, G.H.L., Lemay, A., Advokaat,
N.: Generating flexible workloads for graph databases. PVLDB 9(13), 1457–1460
(2016)

4. Bagan, G., Bonifati, A., Ciucanu, R., Fletcher, G.H.L., Lemay, A., Advokaat, N.:
gMark: schema-driven generation of graphs and queries. IEEE TKDE 29(4), 856–
869 (2017)

5. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: FOCS, pp. 394–403 (1997)

6. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric
encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 13

7. Bonifati, A., Martens, W., Timm, T.: An analytical study of large SPARQL query
logs. VLDB J. 29(2), 655–679 (2020)

8. Curino, C., et al.: Relational cloud: a database service for the cloud. In: CIDR, pp.
235–240 (2011)

9. Delanaux, R., Bonifati, A., Rousset, M.-C., Thion, R.: Query-based linked data
anonymization. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp.
530–546. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6 31

10. Fernández, J.D., Kirrane, S., Polleres, A., Steyskal, S.: Self-enforcing access control
for encrypted RDF. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R.,
Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 607–622. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-58068-5 37

11. Fernández, J., Kirrane, S., Polleres, A., Steyskal, S.: HDTcrypt : compression and
encryption of RDF datasets. Semant. Web J. (2018)

12. Giereth, M.: On partial encryption of RDF-graphs. In: Gil, Y., Motta, E., Ben-
jamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 308–322.
Springer, Heidelberg (2005). https://doi.org/10.1007/11574620 24

13. Goldreich, O.: The Foundations of Cryptography - Volume 2: Basic Applications.
Cambridge University Press, Cambridge (2004)

14. Kasten, A., Scherp, A., Armknecht, F., Krause, M.: Towards search on encrypted
graph data. In: PrivOn@ISWC (2013)

15. Kirrane, S., Abdelrahman, A., Mileo, A., Decker, S.: Secure manipulation of linked
data. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 248–263. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-41335-3 16

16. Kirrane, S., Villata, S., d’Aquin, M.: Privacy, security and policies: a review of
problems and solutions with semantic web technologies. Semant. Web 9(2), 153–
161 (2018)

17. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

18. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: protect-
ing confidentiality with encrypted query processing. In: SOSP, pp. 85–100 (2011)

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.1007/978-3-030-00671-6_31
https://doi.org/10.1007/978-3-319-58068-5_37
https://doi.org/10.1007/11574620_24
https://doi.org/10.1007/978-3-642-41335-3_16
https://doi.org/10.1007/3-540-48910-X_16

	GOOSE: A Secure Framework for Graph Outsourcing and SPARQL Evaluation
	1 Introduction
	2 Preliminaries
	2.1 Graph Data and Queries
	2.2 Cryptographic Tools

	3 Secure Graph Outsourcing and SPARQL Evaluation
	3.1 Security Model
	3.2 Overview of GOOSE
	3.3 Correctness of GOOSE
	3.4 Security of GOOSE
	3.5 Complexity of GOOSE

	4 Experiments
	5 Conclusions and Future Work
	A Appendix: Proof of Theorem3 (Continued)
	References

