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Abstract. Recommender systems (RS) play a focal position in mod-
ern user-centric online services. Among them, collaborative filtering
(CF) approaches have shown leading accuracy performance compared
to content-based filtering (CBF) methods. Their success is due to an
effective exploitation of similarities/correlations encoded in user inter-
action patterns, which is computed by considering common items users
rated in the past. However, their strength is also their weakness. Indeed,
a malicious agent can alter recommendations by adding fake user pro-
files into the platform thereby altering the actual similarity values in an
engineered way.

The spread of well-curated information available in knowledge graphs
(KG) has opened the door to several new possibilities in compromis-
ing the security of a recommender system. In fact, KG are a wealthy
source of information that can dramatically increase the attacker’s (and
the defender’s) knowledge of the underlying system. In this paper, we
introduce SAShA, a new attack strategy that leverages semantic features
extracted from a knowledge graph in order to strengthen the efficacy of
the attack to standard CF models. We performed an extensive experi-
mental evaluation in order to investigate whether SAShA is more effec-
tive than baseline attacks against CF models by taking into account the
impact of various semantic features. Experimental results on two real-
world datasets show the usefulness of our strategy in favor of attacker’s
capacity in attacking CF models.
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1 Introduction

Recommender Systems (RS) are nowadays considered as the pivotal technical
solution to assist users’ decision-making process. They are gaining momentum
as the overwhelming volume of products, services, and multimedia contents on
the Web has made the users’ choices more difficult. Among them, Collabora-
tive filtering (CF) approaches have shown very high performance in real-world
applications (e.g., Amazon [26]). Their key insight is that users prefer products
experienced by similar users and then, from an algorithmic point of view, they
mainly rely on the exploitation of user-user and item-item similarities. Unfortu-
nately, malicious users may alter similarity values. Indeed, these similarities are
vulnerable to the insertion of fake profiles. The injection of such manipulated
profiles, named shilling attack [20], aims to push or nuke the probabilities of
items to be recommended.

Recently, several works have proposed various types of attacks, classified into
two categories [9]: low-knowledge and informed attack strategies. In the former
attacks, the malicious user (or adversary) has poor system-specific knowledge
[25,28]. In the latter, the attacker has precise knowledge of the attacked recom-
mendation model and the data distribution [12,25].

Interestingly, the astonishing spread of knowledge graphs (KG) may suggest
new knowledge-aware strategies to mine the security of RS. In a Web mainly com-
posed of unstructured information, KG are the foundation of the Semantic Web.
They are becoming increasingly important as they can represent data exploit-
ing a manageable and inter-operable semantic structure. They are the pillars
of well-known tools like IBM Watson [7], public decision-making systems [34],
and advanced machine learning techniques [2,4,13]. Thanks to the Linked Open
Data (LOD) initiative1, we have witnessed the growth of a broad ecosystem of
linked data datasets known as LOD-cloud2. These KG contain detailed informa-
tion about several domains. In fact, if a malicious user would attack one of these
domains, items’ semantic descriptions would be priceless.

The main contributions envisioned in the present work is to study the pos-
sibility of leveraging semantic-encoded information with the goal to improve
the efficacy of an attack in favor/disfavor of (a) given target item(s). Particu-
larly, one of the features distinguishing this work from previous ones is that it
exploits publicly available information resources obtained from KG to generate
more influential fake profiles that are able to undermine the performance of CF
models. This attack strategy is named semantic-aware shilling attack SAShA
and extends state-of-the-art shilling attack strategies such as Random, Love-
hate, and Average based on the gathered semantic knowledge. It is noteworthy
that the extension we propose solely relies on publicly available information and
does not provide to the attacker any additional information about the system.

1 https://data.europa.eu/euodp/en/linked-data.
2 https://lod-cloud.net/.

https://data.europa.eu/euodp/en/linked-data
https://lod-cloud.net/
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In this work, we aim at addressing the following research questions:

RQ1 Can public available semantic information be exploited to develop more
effective shilling attack strategies against CF models, where the effective-
ness is measured in terms of overall prediction shift and overall hit ratio?

RQ2 Can we assess which is the most impactful type of semantic information?
Is multiple hops extraction of semantic-features from a knowledge graph
more effective than single-hop features?

To this end, we have carried out extensive experiments to evaluate the impact
of the proposed SAShA against standard CF model using two real-world rec-
ommender systems datasets (LibraryThing and Yahoo!Movies). Experimental
results indicate that KG information is a rich source of knowledge that can in
fact worryingly improve the effectiveness of attacks.

The remainder of the paper is organized as follows. In Sect. 2, we analyze the
state-of-the-art of CF models as well as shilling attacks. In Sect. 3, we describe
the proposed approach (SAShA). Section 4 focuses on experimental validation of
the proposed attacks scenarios, where we provide a discussion of the experimental
results. Finally, in Sect. 5, we present conclusions and introduce open challenges.

2 Related Work

In this Section, we focus on related literature on recommender systems and
state-of-the-art of attacks on collaborative recommender models.

2.1 Recommender Systems (RSs)

Recommendation models can be broadly categorized as content-based filtering
(CBF), collaborative filtering (CF) and hybrid. On the one hand, CBF uses
items’ content attributes (features) together with target user’s own interactions
in order to create a user profile characterizing the nature of her interest(s). On the
other hand, CF models generate recommendation by solely exploiting the similar-
ity between interaction patterns of users. Today, CF models are the mainstream
of academic and industrial research due to their state-of-the-art recommendation
quality particularly when sufficient amount of interaction data—either explicit
(e.g., rating scores) or implicit (previous clicks, check-ins etc.)—are available.
Various CF models developed today can be classified into two main groups:
memory-based and model-based. While memory-based models make recommen-
dations exclusively based on similarities in user’s interactions (user-based CF
[23,32]) or items’ interactions (item-based CF [23,33]), model-based approaches
compute a latent representation of items and users [24], whose linear interaction
can explains an observed feedback. Model-based approaches can be implemented
by exploiting different machine learning techniques. Among them, matrix fac-
torization (MF) models play a paramount role.

It should be noted, that modern RS nowadays may exploit a variety of side
information such as metadata (tags, reviews) [29], social connections [6], image
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and audio signal features [14] and users-items contextual data [3] to build more
in-domain (i.e., domain-dependent) or context-aware recommendations models.
KG are another rich source of information that have gained increased pop-
ularity in the community of RS for building knowledge-aware recommender
systems (KARS). These models can be classified into: (i) path-based meth-
ods [19,37], which use meta-paths to evaluate the user-item similarities and, (ii)
KG embedding-based techniques, that leverages KG embeddings to semantically
regularize items latent representations [16,21,35]. More recently, KG have also
been used to support the reasoning and explainability of recommendations [5,36].

For the simplicity of the presentation, in this work we step our attention
aside (shilling attacks against) CF models leveraging these side information for
the core task of recommendation, and leave it for an extension in future works.
We do however make a fundamental assumption in all considered scenarios that
the “attacker can have access to KG, given their free accessibility and use them
to shape more in-domain attacks.”

2.2 Shilling Attacks on Recommender System

Despite the widespread application of customer-oriented CF models by online
services adopted to increase their traffic and promote sales, the reliance of these
models on the so-called “word-of-mouth” (i.e., what other people like and dis-
like), makes them at the same time vulnerable to meticulously crafted profiles
that aim to alter distribution of ratings so to misuse this dependency toward a
particular (malicious) purpose. The motivation for such shilling attacks can be
many unfortunately, including personal gain, market penetration by rival compa-
nies [25], malicious reasons and even causing complete mischief on an underlying
system [20].

In the literature, one standard way to classify these shilling attacks is based
on the intent and amount of knowledge required to perform attacks. According
to the intent, generally attacks are classified as push attacks that aim to increase
the appeal of some targeted items, and nuke items, which conversely aim to lower
the popularity of some targeted items. As for the knowledge level, they can be
categorized according to low-knowledge attacks and informed attack strategies.
Low-knowledge attacks require little or no knowledge about the rating distri-
bution [25,28], while, informed attacks assume adversaries with knowledge on
dataset rating distribution, which use this knowledge to generate effective fake
profiles for shilling attacks [25,30].

A large body of research work has been devoted on studying shilling attacks
from multiple perspectives: altering the performance of CF models [12,15,25],
implementation attack detection policies [8,11,38] and building robust recom-
mendation models against attacks [28,30]. Regardless, a typical characteristic of
the previous literature on shilling attack strategies is that they usually target
the relations between users, and items, based on similarities scores estimated on
their past feedback (e.g., ratings). However, these strategies do not consider
the possibility of exploiting publicly available KG to gain more information
on the semantic similarities between the items available in the RS catalogue.
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Indeed, considering that product or service providers’ catalogues are freely acces-
sible to everyone, this work presents a novel attack strategy that exploits a freely
accessible knowledge graph (DBpedia) to assess if attacks based on semantic sim-
ilarities between items are more effective than baseline versions that rely only
on rating scores of users.

3 Approach

In this section, we describe the development of a novel method for integrating
information obtained from a knowledge graph into the design of shilling attacks
against targeted items in a CF system. We first introduce the characteristics of
KG in Sect. 3.1. Afterwards, we present the proposed semantic-aware extensions
to variety of popular shilling attacks namely: Random, Love-Hate, and Average
attacks in Sect. 3.2.

3.1 Knowledge Graph: Identification of Content from KG
A knowledge graph can be seen as a structured repository of knowledge, repre-
sented in the form a graph, that can encode different types of information:

– Factual. General statements as Rika Dialina was born in Crete or Heraklion
is the capital of Crete where we describe an entity by its attributes which are
in turn connected to other entities (or literal values);

– Categorical. These statements bind the entity to a specific category (i.e.,
the categories associated to an article in Wikipedia pages). Often, categories
are part of a hierarchy. The hierarchy lets us define entities in a more generic
or specific way;

– Ontological. We can classify entities in a more formal way using a hierarchi-
cal structure of classes. In contrast to categories, sub-classes and super-classes
are connected through IS-A relations.

In a knowledge graph we can represent each entity through the triple structure
σ

ρ−→ ω, with a subject (σ), a relation (predicate) ρ and an object (ω). Among
the multiple ways to represent features coming from a knowledge graph, we have
chosen to represent each distinct triple as a single feature [5]. Hence, given a set
of items I = {i1, i2, . . . , iN} in a collection and the corresponding triples 〈i, ρ, ω〉
in a knowledge graph, we can build the set of 1-hop features as 1-HOP -F =
{〈ρ, ω〉 | 〈i, ρ, ω〉 ∈ KG with i ∈ I}.

In an analogous way we can identify 2-hop features. Indeed, we can continue

exploring KG by retrieving the triples ω
ρ′
−→ ω′, where ω is the object of a 1-hop

triple and the subject of the new triple. Here, the double-hop relation (predicate)
is denoted by ρ′ while the new object is referred as (ω′). Hence, we define the
overall feature set as 2-HOP -F = {〈ρ, ω, ρ′, ω′〉 | 〈i, ρ, ω, ρ′, ω′〉 ∈ KG with i ∈
I}. With respect to the previous classification of different types of information
in a knowledge graph, we consider a 2-hop feature as Factual if and only if both
relations (ρ, and ρ′) are Factual. The same holds for the other types of encoded
information.
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3.2 Strategies for Attacking a Recommender System

A shilling attack against a recommendation model is based on a set of fake
profiles meticulously created by the attacker and inserted into the system. The
ultimate goal is to alter recommendation in favor of (push scenario) or organist
(nuke scenario) a single target item it. In this work, we focus on the push attack
scenario but everything can be reused also in case of a nuke one. The fake user
profile (attack profile) follows the general structure proposed by Bhaumik [8]
shown in Fig. 1. It is built up of a rating vector of dimensionality N where N is
the entire items in the collection (N = |IS | + |IF | + |I∅| + |IT |). The profile is
subdivided into four non-overlapping segments:

Fig. 1. General form of a fake user profile

– IT : This is the target item for which a rating score will be predicted by the
recommendation model. Often, this rating is assigned to be the maximum or
minimum possible score based on the attack goal (push or pull).

– I∅: This is the unrated item set, i.e., items that will not contain any ratings
in the profile.

– IF : The filler item set. These are items for which rating scores will be assigned
specific to each attack strategy.

– IS : The selected item set. These items are selected in the case of informed
attack strategies, which exploit attacker’s knowledge to maximize the attack
impact, for instance by selecting items with the higher number of ratings.

The ways IS and IF are chosen depend on the attack strategy. The attack size is
defined as the number of injected fake user profiles. Hereafter, φ = |IF | indicates
the filler size, α = |IS | the selected item set size and χ = |I∅| is the size of unrated
items. In this paper, we focus our attention on the selection process of IF since
IS is built by exploiting the attacker’s knowledge of the data distribution.

Semantic-Aware Shilling Attack Strategies (SAShA). While previous
work on RS has investigated the impact of different standard attack models on
CF system, in this work, we propose to strengthen state-of-the-art strategies via
the exploitation of semantic similarities between items.

This attack strategy generates fraudulent profiles by exploiting KG informa-
tion to fill IF . The key idea is that we can compute the semantic similarity of
the target item it with all the items in the catalog using KG-derived features.
Then, we use this information to select the filler items of each profile to generate
the set IF .

The insight of our approach is that a similarity value based on semantic
features leads to more natural and coherent fake profiles. These profiles are



SAShA 313

indistinguishable from the real ones, and they effortlessly enter the neighborhood
of users and items. In order to compute the semantic similarity between items,
in our experimental evaluation, we exploit the widely adopted Cosine Vector
Similarity [17].

To test our semantic-aware attacks to recommender systems, we propose
three original variants of low-knowledge and informed attack strategies: random
attack, love-hate attack, and s average attack.

– Semantic-aware Random Attack (SAShA-random) is an extension of Random
Attack [25]. The baseline version is a naive attack in which each fake user is
composed only of random items (α = 0, φ = profile-size). The fake ratings are
sampled from all items using a uniform distribution. We modify this attack
by changing the set to extract the items. In detail, we extract items to fill
IF from a subset of items that are most similar to it. We compute the item-
item Cosine Similarity using the semantic features as introduced in Sect. 3.1.
Then, we build a set of most-similar items, considering the first quartile of
similarity values. Finally, we extract φ items from this set, adopting a uniform
distribution.

– Semantic-aware Love-Hate Attack (SAShA-love-hate) is a low-knowledge
attack that extends the standard Love-Hate attack [28]. This attack ran-
domly extracts filler items IF from the catalog. All these items are associated
with the minimum possible rating value. The Love-Hate attack aims to reduce
the average rating of all the platform items but the target item. Indeed, even
though the target item is not present in the fake profiles, its relative rank
increases. We have re-interpreted the rationale behind the Love-Hate attack
by taking into account the semantic description of the target item and its sim-
ilarity with other items within the catalogue. In this case, we extract items
to fill IF from the 2nd, 3rd, and 4th quartiles. As in the original variant, the
rationale is to select the most dissimilar items.

– Semantic-aware Average Attack (SAShA-average) is an informed attack that
extends the AverageBots attack [28]. The baseline attack takes advantage of
the mean and the variance of the ratings. Then, it randomly samples the
rating of each filler item from a normal distribution built using the previous
mean and variance. Analogously to SAShA-random, we extend the baseline
by extracting the filler items from the sub-set of most similar items. We use
as candidate items the ones in the first quartile regarding their similarity
with it.

4 Experimental Evaluation

This section is devoted to comparing the proposed approaches against baseline
attack strategies. We first introduce the experimental setup, where we present
the two well-known datasets for recommendation scenarios. Then, we describe
the feature extraction and selection procedure we have adopted to form semantic-
aware shilling attacks. Finally, we detail the three canonical CF models we have
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analyzed. We have carried extensive experiments intented to answer the research
questions in Sect. 1. In particular, we aim to assess: (i) whether freely available
semantic knowledge can help to generate stronger shilling attacks; (ii) if KG
features types have a different influence on SAShA effectiveness; (iii) what is the
most robust CF-RS against SAShA attacks.

4.1 Experimental Setting

Datasets. In the experiments, we have exploited two well-known datasets with
explicit feedbacks to simulate the process of a recommendation engine: Library-
Thing [18] and Yahoo!Movies. The first dataset is derived from the social cat-
aloging web application LibraryThing3 and contains ratings ranging from 1
to 10. To speed up the experiments, we have randomly sampled with a uni-
form distribution the 25% of the original items in the dataset. Moreover, in
order to avoid cold situations (which are usually not of interest in attacks to
recommender systems) we removed users with less than five interactions. The
second dataset contains movie ratings collected on Yahoo!Movies4 up to Novem-
ber 2003. It contains ratings ranging from 1 to 5, and mappings to MovieLens
and EachMovie datasets. For both datasets, we have used the items-features sets
1-HOP -F and 2-HOP -F extracted from DBpedia by exploiting mappings which
are publicly available at https://github.com/sisinflab/LinkedDatasets. We show
datasets statistics in Table 1.

Table 1. Datasets statistics.

Dataset #Users #Items #Ratings Sparsity #F-1Hop #F-2Hops

LibraryThing 4816 2,256 76,421 99.30% 56,019 4,259,728

Yahoo!Movies 4000 2,526 64,079 99.37% 105733 6,697,986

Feature Extraction. We have extracted the semantic information to
build SAShA exploiting the public available item-entity mapping to DBpe-
dia. We did not consider noisy features containing the following predi-
cates: owl:sameAs, dbo:thumbnail, foaf:depiction, prov:wasDerivedFrom,
foaf:isPrimaryTopicOf, as suggested in [5].

Feature Selection. To analyze the impact of different feature types, we have
performed experiments considering categorical (CS), ontological (OS) and fac-
tual (FS) features. We have chosen to explore those classes of features since they
are commonly adopted in the community [5]. For the selection of single-hop (1H)
features, the employed policies are:

3 http://www.librarything.com/.
4 http://research.yahoo.com/Academic Relations.

https://github.com/sisinflab/LinkedDatasets
http://www.librarything.com/
http://research.yahoo.com/Academic_Relations
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– CS-1H, we select the features containing the property dcterms:subject;
– OS-1H, we consider the features including the property rdf:type;
– FS-1H, we pick all the features but ontological and categorical ones.

For the selection of double-hops (2H) features, the applied policies are:

– CS-2H, we select the features with properties equal to either
dcterms:subject or skos:broader;

– OS-2H, we consider the features including the properties rdf:type, rdf-
schema:subClassOf or owl:equivalentClass;

– FS-2H, we pick up the features which are not in the previous two categories.

Noteworthy, we have not put any categorical/ontological features into the noisy
list. If some domain-specific categorical/ontological features are not in the respec-
tive lists, we have considered them as factual features.

Feature Filtering. Following the aforementioned directions, we have extracted
1H, and 2H features for LibraryThing, and Yahoo!Movies. Due to the extent
of the catalogs, we obtained millions of features. Consequently, we removed irrel-
evant features following the filtering technique proposed in [18,31]. In detail, we
dropped off all the features with more than 99.74% (t) of missing values and
more than t of distinct values. In detail, we dropped off all the features with
more than 99.74% of missing values and distinct values. The statistics of the
resulting datasets is depicted in Table 2.

Table 2. Selected features in the different settings either for single and double hops.

Dataset CS-1H OS-1H FS-1H CS-2H OS-2H FS-2H

Tot. Selected Tot. Selected Tot. Selected Tot. Selected Tot. Selected Tot. Selected

LibraryThing 3890 458 2090 367 53929 2398 9641 1140 3723 597 4256005 306289

Yahoo!Movies 5555 1125 3036 691 102697 7050 8960 1956 3105 431 6694881 516114

Recommender Models. We have conducted experiments considering all the
attacks described in Sect. 3.2 on the following baseline Collaborative Filtering
Recommender Systems:

– User-kNN [23,32] predicts the score of unknown user-item pairs (r̂ui) con-
sidering the feedback of the users in the neighborhood. We have tested SAShA
using the formulation mentioned in [23]. It considers the user and item’s rat-
ings biases. Let u be a user inside the set of users U , and i be an item in the
set of items I, we estimate the rating given by u to i based on the following
Equation:

r̂ui = bui +

∑
v∈Uk

i (u) δ(u, v) · (rvi − bvi)
∑

v∈Uk
i (u) δ(u, v)

(1)
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where δ is the distance metric to measure the similarity between users, Uk
i (u)

is the set of k-neighborhood users v of u. We define bui as μ + bu + bi, where
μ, bu, bi are the overall average rating, the observed bias of user u and item
i, respectively. Following directions suggested in [10], we apply as distance
metric δ the Pearson Correlation and a number of neighbors k equal to 40.

– Item-kNN [23,33] estimates the user-item rating score (r̂ui) using the
recorded feedback given by u to the k-items j in the neighborhood of the
item i. Equation 2 defines the rating prediction formula for Item-kNN.

r̂ui = bui +

∑
j∈Ik

u(i)
δ(i, j) · (ruj − buj)

∑
j∈Ik

u(i)
δ(i, j)

(2)

In Eq. 2, the set of k items inside the i neighborhood is denoted as Ik
u(i). The

similarity function δ and the number of considered neighbors k are selected
as in User-kNN.

– Matrix Factorization (MF) [24] is a latent factor model used for items rec-
ommendation task that learns user-item preferences, by factorizing the sparse
user-item feedback matrix. The learned user and item representation, fitted
on previously recorder interactions, are exploited to predict r̂ui as follows:

r̂ui = bui + qT
i pu (3)

In Eq. 3, qi ∈ R
f and pu ∈ R

f are the latent vectors for item i and user
u learned by the model. We set the number of latent factors f to 100, as
suggested in [22].

Evaluation Metrics. We have evaluated our attack strategy by adopting Over-
all Prediction Shift, and Overall Hit-Ratio@k. Let IT be the set of attacked items,
and UT be the set of users that have not rated the items in IT . We define the
Overall Prediction Shift (PS) [1] as the average variation of the predicted score
for the target item.

PS(IT , UT ) =

∑
i⊂IT ,u⊂UT

(r̂ui − rui)
|IT | × |UT | (4)

where r̂ui is the predicted rating on item i for user u after the shilling attack, and
rui is the prediction without (before) attack. We define the Overall Hit-Ratio@k
(HR@k) [1] as the average of hr@k for each attacked item. Equation 5 defines
HR@k as:

HR@k(IT , UT ) =

∑
i⊂IT

hr@k(i, UT )
|IT | (5)

where hr@k(i, UT ) measures the number of occurrences of the attacked item i
in the top-k recommendation lists of the users in |UT |.
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Evaluation Protocol. Inspired by the evaluation proposed in [25,27], we have
performed a total of 126 experiments. For each dataset, we have generated the
recommendations concerning all users using the selected CF models (i.e., User-
kNN, Item-kNN and MF). Then, we have added the fake profiles generated
according to the baseline attack strategies, and we have re-computed the recom-
mendation lists. We have evaluated the effectiveness of each attack by measuring
the above-mentioned metrics on both the initial and the new recommendation
lists. After this step, we have performed a series of SAShA attacks as described
in Sect. 3. In detail, we have considered different feature types (i.e., categorical,
ontological and factual) extracted at 1 or 2 hops. Finally, we have evaluated
the HR@k and PS for each SAShA variant comparing it against baselines. It
is worth to note that, in our experiments, each attack is a push attack. Indeed,
the attacker’s purpose is to increase the probability that the target item is rec-
ommended. Moreover, by adopting the evaluation protocol proposed in [15,28],
we have performed the attacks considering a different amount of added fake
user profiles: 1%, 2.5% and 5% of the total number of users. We have tested the
attacks considering 50 randomly sampled target items.

4.2 Results and Discussion

The discussion of results is organized accordingly to the research questions stated
in Sect. 1. Firstly, we describe the influence of semantic knowledge on attack
strategies. Later, we compare the impact of the different types of semantic infor-
mation.

Analysis of the Effectiveness of Semantic Knowledge on Shilling
Attacks. The first Research Question aims to check whether the injection of
Linked Open Data as a new source of knowledge can represent a ‘weapon’ for
attackers against CF-RS. Table 3 reports the results of the HR@10 for each
attack. For both the baseline and semantic-aware variants, we highlight in bold
the best results.

Starting from the analysis of the low-informed random attack, experiments
show that the semantic-aware attacks are remarkably effective. For instance,
the semantic-attacks with ontological information at single hop (SAShA-OS-
1H ), outperforms the baselines independently of the attacked model. To support
these insights, we can observe the PS resulting from random attacks. Figure 2a
shows that any variant of SAShA has a higher prediction shift w.r.t. the base-
line for Yahoo! Movies. In Fig. 2b, we can notice that the semantic strategy is
the most effective one for each model. As an example, the PS of Rnd-SAShA-
OS-1H increases up to 6.82% over the corresponding baseline in the case of
attacks against User-kNN on Yahoo! Movies dataset. The full results are online
available5.

In Table 3, we observe that the injection of semantic information for love-
hate attack is not particularly effective. This can be due to the specific
5 https://github.com/sisinflab/papers-results/tree/master/sasha-results.

https://github.com/sisinflab/papers-results/tree/master/sasha-results
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attack strategy. A possible interpretation is that, since the rationale is to decrease
the overall mean rating of all items but the target one, exploiting similarity does
not strengthen the approach.

In the informed attacks (i.e., the average attack), results show that semantic
integration can be a useful source of knowledge. For instance, Avg-SAShA-OS-2H
improves performance on Item-kNN by 10.2% compared to the baseline.

It is noteworthy that in the semantic variant of the random attack on the
movie domain, Rnd-SAShA-CS-2H, reaches performance that is comparable with
the baseline average attack. This observation shows that even an attacker that is
not able to access system knowledge can perform powerful attacks by exploiting
public (semantic) available knowledge bases.

Analysis of the Impact of Different Semantic Information Types, and
Multi-hops Influence. In the previous analysis, we have focused on the effec-
tiveness of SAShA strategy irrespective of different types of semantic proper-
ties (Sect. 4.1). Table 3 shows that each attack that exploits ontological infor-
mation is generally the most effective one if we consider single-hop features.

Fig. 2. (a) Prediction Shift on Yahoo!Movies for random attacks at single hop. (b)
Prediction Shift on LibraryThing for random attacks at single hop.
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We motivate this finding with the ontological relation between the fake profiles
and the target item. Exploiting ontological relations we can compute similar-
ities without the “noisy” factual features. A possible interpretation is that a
strong ontological similarity is manifest for humans, but for an autonomous agent
it can be “hidden” by the presence of other features. Moreover, the exploita-
tion of items’ categorization is particularly effective to attack CF-RS since CF
approaches recommend items based on similarities.

Table 3 shows the results for double-hop features. Also in this case, the pre-
vious findings are mostly confirmed but for random attacks on Yahoo!Movies.

Finally, we focus on the differences between the impact of single-hop and
double-hops features. Experimental results show that the variants that consider
the second hop have not a big influence on the effectiveness of attacks. In some
cases, we observe a worsening of performance as in LibraryThing. For instance,
the performance of random SAShA at double-hops considering ontological fea-
tures decreases by 13.1% compared to the same configuration at single-hop (when
attacking Item-kNN).

5 Conclusion and Open Challenges

In this work, we have proposed a semantic-aware method for attacking collabora-
tive filtering (CF) recommendation models, named SAShA, in which we explore
the impact of publicly available knowledge graph data to generate fake profiles.
We have evaluated SAShA on two real-world datasets by extending three base-
line Shilling attacks considering different semantic types of features. In detail, we
have extended random, love-hate and average attacks by considering Ontological,
Categorical and Factual KG features extracted from DBpedia. Experimental eval-
uation has shown that SAShA outperforms baseline attacks. We have performed
an extensive set of experiments that show semantic information is a powerful
tool to implement effective attacks also when attackers do not have any knowl-
edge of the system under attack. Additionally, we have found that Ontological
features are the most effective one, while multi-hops features do not guarantee
a significant improvement. We plan to further extend the experimental evalua-
tion of SAShA with different sources of knowledge like Wikidata. Moreover, we
intent to explore the efficacy of semantic information with other state-of-the-art
attacks (e.g., by considering deep learning-based techniques), with a focus on
possible applications of semantic-based attacks against social networks. Finally,
we plan to investigate the possibility to support defensive algorithms that take
advantage of semantic knowledge.
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