
Handling Impossible Derivations During
Stream Reasoning

Hamid R. Bazoobandi, Henri Bal, Frank van Harmelen, and Jacopo Urbani(B)

Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
h.bazoubandi@vu.nl, {bal,frankh,jacopo}@cs.vu.nl

Abstract. With the rapid expansion of the Web and the advent of the
Internet of Things, there is a growing need to design tools for intel-
ligent analytics and decision making on streams of data. Logic-based
frameworks like LARS allow the execution of complex reasoning on such
streams, but it is paramount that the computation is completed in a
timely manner before the stream expires. To reduce the runtime, we can
extend the validity of inferred conclusions to the future to avoid repeated
derivations, but this is not enough to avoid all sources of redundant com-
putation. To further alleviate this problem, this paper introduces a new
technique that infers the impossibility of certain derivations in the future
and blocks the reasoner from performing computation that is doomed to
fail anyway. An experimental analysis on microbenchmarks shows that
our technique leads to a significant reduction of the reasoning runtime.

1 Introduction

In highly dynamic environments like the Web or the Internet of Things, there
are many use cases that require an efficient processing of large streams of data to
provide complex data analytics or intelligent decision making. For instance, the
content of the stream can be used to make predictions about future behaviors
(e.g., financial market movement), or to build an accurate representation of the
current environment (e.g., crowd control).

In some cases, a semantic-oriented approach is needed to process the stream.
An example is given by autonomous driving, which is currently one of the most
prominent frontiers of AI. As it was recently shown by Suchan et al. [31], there are
situations that cannot (yet) be handled by deep-learning-based computer vision
techniques, and this can lead to safety concerns. The occlusion scenario is an
example of such a situation. This scenario occurs when another vehicle, which is
clearly visible in close proximity, suddenly disappears and reappears shortly after
(e.g., due to the steering of a third vehicle). When this event occurs, a system
that relies only on the input provided by computer vision might erroneously
conclude that the vehicle is no longer in close proximity, and consequently act
on this false premise. Humans, in contrast, (usually) apply some logic-based
reasoning and conclude that the vehicle is still nearby although it is hidden.

Suchan et al. mention this scenario to motivate the need for semantics and
logic-based reasoning of temporal data. Currently, one of the most prominent
c© Springer Nature Switzerland AG 2020
A. Harth et al. (Eds.): ESWC 2020, LNCS 12123, pp. 3–19, 2020.
https://doi.org/10.1007/978-3-030-49461-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49461-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-49461-2_1

4 H. R. Bazoobandi et al.

frameworks for this type of processing is LARS [5]. LARS is ideal for use cases
like the aforementioned one. First, its semantics is grounded on Answer Set
Programming (ASP); thus it provides an AI that is explainable by design, which
means that it can be used also by non experts or audited by regulators. Second,
LARS offers a variety of operators that are specifically designed for modeling
streams to allow the execution of complex reasoning without making it harder
than it is in ASP. For instance, LARS offers window operators that allow the
restriction of the analysis to the last data in the stream, or other operators like
@ which specifies when a derived conclusion will be valid.

Since often the data in the stream expires after a short amount of time, it
is paramount that reasoning is performed in a timely manner. Recently, sev-
eral works have used LARS to implement stream reasoning that reconciles the
expressivity of LARS with high performance. One of such reasoner is Ticker [6],
while a more recent distributed implementation is presented in [14]. Another of
such reasoners is Laser, which we presented in a previous paper [4]. Laser distin-
guishes itself from the previous two by focusing on a smaller and more tractable
fragment of LARS called Plain LARS. Another distinctive feature is that Laser
introduces a new technique that annotates the formulae with two timestamps,
called consideration and horizon times, to extend the validity of the formulae in
the future to avoid that they are re-derived at each time point. This technique
is particularly effective when the body of the rules contains the LARS operators
� (validity at some time point) or @ (validity at one specific time point), and it
can lead to significantly faster runtimes. However, this technique does not work
with the operator � (validity at all time points) because the semantics of this
operator is such that the validity cannot be guaranteed in the future.

In this paper, we present a new technique to further limit the number of
redundant derivations. Our technique targets formulae for which the consider-
ation and horizon timestamps are not effective (i.e., the rules that use the �

operator). The main idea is to identify the cases when it will be impossible to
produce some derivations in the future and to use this knowledge to disable rules
that won’t be able to produce any new conclusion. For example, consider the
LARS rule �3�p(a) → q(a). This rule specifies that if the fact p(a) appears in
the stream in last three time points, then we can infer q(a). In this case, if the
stream does not contain p(a) at the current time point, then we can conclude
that for the next three time points the rule will never be able to infer q(a), thus
making it an “impossible derivation”. Since we know that it is impossible that
q(a) will be derived, we can disable the rule and simplify reasoning. Moreover, if
other rules use q(a) in their body, then they can also be disabled, with a further
improvement of the performance.

We have implemented our technique in a new reasoner called Laser2, which
is a completely rewritten Plain LARS reasoner in Golang. Our experiments show
that our technique returns significant improvements in terms of runtime. The
code of Laser2 and other evaluation data can be found at at https://bitbucket.
org/hrbazoo/laser.

https://bitbucket.org/hrbazoo/laser
https://bitbucket.org/hrbazoo/laser

Handling Impossible Derivations During Stream Reasoning 5

2 Background

We start our discussion with some background notions on logic programming
and LARS [5]. Let C,V,P be disjoint sets of constants, variables, and predicates.
A predicate p can be either extensional or intensional and it is associated to
a fixed arity ar(p) ≥ 0. A term is either a constant or variable. An atom is an
expression of the form p(t) where p is a predicate, t = t1, . . . , tn is a list of terms
and n = ar(p). A ground expression is an expression without any variable. A
fact is a ground atom.

Let A be the set of all facts we can construct from P and C and let AE ⊆ A
be the subset of facts with extensional predicates. A timeline T is a closed non-
empty interval in the set of natural numbers N. We refer to each member in a
timeline as a time point. Abusing notation, we write t ∈ T to indicate a generic
time point in T. We are now ready to define the notion of stream.

Definition 1. A stream S = (T, v) is a pair of a timeline and evaluation func-
tion v : N �→ 2A, which maps integers to set of atoms in A with the constraint
that v(t) �→ ∅ for each t /∈ T.

Intuitively, v is used to map time points to sets of facts. We say that S is a
data stream if v maps only to atoms in AE . Also, a stream is ground if v maps
only to facts. Finally, we say that S′ = (T, v′) is a substream of S = (T, v),
denoted as S′ ⊆ S, if v′(t) ⊆ v(t) for each time point in T. A window function
w is a computable function which receives in input a stream S and a time
point t and returns in output a stream S′ ⊆ S. LARS proposes several window
functions: a time-based window function wn returns a substream that filters out
all the atoms that are not in t or in the previous n− 1 time points; a tuple-based
window function returns a substream with the last n facts, etc. In this paper,
we consider only time-based windows functions, and leave an extension of our
technique to other types of window functions as future work.

In this paper, we focus on a fragment of LARS called Plain LARS [4]. Plain
LARS restricts some features of LARS in order to enable a fast computation. In
Plain LARS, an extended atom α is a formula that complies with the grammar

α ::= a | @ta | �n@ta | �n�a | �n�a

where t ∈ N, a is an atom, @ is an operator that specifies that a holds at t, �n

is used to restrict the stream using the time-based window wn, � states that
a should hold at least in one time point, while � states that a should hold at
every time point. A (ground) rule is an expression of the form:

B1 ∧ . . . ∧ Bm → H (1)

where B1, . . . , Bm are (ground) extended atoms, and H is a (ground) extended
atom that is either an atom or of the form @ta. A (ground) program is a finite
set of (ground) rules. Let r be a rule as shown in (1). Throughout, we use the
shortcut B(r) (body) to refer to the left-side of the rule and H(r) (head) for the
right-side.

6 H. R. Bazoobandi et al.

We first define the semantics for ground programs. Let M = 〈S,wn,B〉 be a
structure where S = (T, v) is a ground stream of facts in A, wn is the time-based
window function, B ⊆ A is a set of facts called background knowledge. Then, M
entails α at time point t, denoted as M, t � α, as follows:

if α = a then M, t � α iff a ∈ v(t) or a ∈ B,
if α = �a then M, t � α iff M, t′ � a for some t′ ∈ T,
if α = �a then M, t � α iff M, t′ � a for all t′ ∈ T,
if α = @t′a then M, t � α iff M, t′ � a and t′ ∈ T,
if α = �nβ then M, t � α iff M ′, t � β where M ′ = 〈wn(S, t), wn, B〉,
if α = ∧m

i=1Bi then M, t � α iff M, t � Bi for all 1 ≤ i ≤ m,
if α = B → H then M, t � α iff M, t �� B ∨ M, t � H.

Given a data stream D = (T, vD), we say that M is a model of P (for D)
at time point t, denoted as M, t |= P , if M, t � r for every r ∈ P and M and S
coincides with D on AE , i.e., S ⊇ D and every fact with extensional predicate
in S at time point x is also in D at x. If no other model M ′ = 〈S′, wn,B〉 �= M
exists such that S′ = (T, v′) and v′(t) ⊆ v(t) for any t ∈ T, then M is minimal.

The semantics of a non ground program P (i.e., a program where some rules
contain variables) equals to the semantics of the ground program that is obtained
by grounding all rules in P with all possible substitutions in C. For instance, if
C = {c1, c2} and P = {p(X) → q(X)} where X is a variable, then M, t |= t
iff M, t |= P ′ where P ′ = {p(c1) → q(c1), p(c2) → q(c2)}. Given an input data
stream and a program, our goal is to compute answer streams and return the
derivations to the user.

Definition 2. Stream S is an answer stream of program P for data stream D
at time point t if M = 〈S,wn,B〉 is a minimal model of the reduct PM,t = {r ∈
P | M, t |= B(r)}.
We have now all the elements to define the output of our computation.

Definition 3. Let S = (T, v) be the answer stream of program P (for D) at
time point t. Then, the output is the set v(t)\AE , that is, the set of all the
atoms with intensional predicates that can be inferred by P at t.

3 Intuition

The example below illustrates the computation performed during LARS reason-
ing and is useful to provide an intuitive description of our technique.

Example 1. Let P = {highTemp,warning, error, shutdown} be a set of pred-
icates where only highTemp is extensional and C = {b1, b2}. We consider an
input stream D = (T, v) which is defined with the timeline T = 〈1, . . . , 15〉 and

v = {2 �→ {highTemp(b1), highTemp(b2)}, 3 �→ {highTemp(b2)}},

Handling Impossible Derivations During Stream Reasoning 7

that is, a high temperature is observed only at time points 2 and 3 (all other
time points are mapped to the empty set).

Moreover, let us consider a ground program P with the rules

�10�highTemp(b1) → warning(b1) (r1)

�3�highTemp(b2) → error(b2) (r2)
error(b2) → shutdown(b2) (r3)

Given this input, an answer stream of P for D at time point 2 is the stream
S2 = (T, v′) where

v′ = {2 �→ {highTemp(b1), highTemp(b2), warning(b1)}, 3 �→ {highTemp(b2)}}

while S3 = (T, v′′) where

v′′ = {2
→ {highTemp(b1), highTemp(b2)}, 3
→ {highTemp(b2), warning(b1)}}

is an answer stream at time point 3. In this case, the output will be the set
{warning(b1)} both at time point 2 and 3.

Since the output of a LARS program is defined with respect to a single time
point, the framework does not put any restriction on the order in which the time
points should be considered. In Example 1, for instance, a user could decide to
compute first the output at time point 3 and then at time point 2. In practice,
however, streams are typically evaluated time point after time point.

This evaluation criterion can be exploited to avoid triggering redundant
derivations. In Example 1, a näıve application of rule r1 will derive warning(b1)
twice; both at time point 2 and 3. However, the second derivation can be avoided
since we know that warning(b1) will hold at least until time point 12 because
r1 fires if highTemp(b1) appears at least once in the last 10 time points.

In [4], it has been shown how we can exploit this observation by annotating
the formulae with two timestamps: a consideration and a horizon time. The
consideration time identifies the first time point where the formula holds, while
the horizon time identifies the last time point where the formula is guaranteed to
hold. For instance, at time point 2 the formula �10�highTemp(b1) is annotated
with a consideration time equals to 2 (i.e., the first time point where this formula
is inferred). Instead, the horizon time equals to 12 since we know that the body
of the rule will hold until 12. The annotated formula with these timestamps
is denoted as �10�highTemp(b1)[2,12]. From these annotations, it also follows
that the fact warning(b1) can be annotated as warning(b1)[2,12]. Since these
two formulae will hold in the future, they are kept in the working memory until
the current time point is greater than the horizon time. When this occurs, they
expire and can be removed.

When we execute a rule, we can use the annotations to perform a check that
is similar to the one of Semi Näıve Evaluation (SNE) [1] – a well-known Datalog
technique to reduce the number of duplicate derivations. The idea behind SNE
is to block the firing of the rule if no atom that instantiates the body was derived

8 H. R. Bazoobandi et al.

in the previous step. In our setting, we can apply a similar principle and enforce
that at least one formula used in the body has a consideration time equal to the
current time point. In our example, this constraint will block the application of
r1 at time point 3 because �10�highTemp(b1)[2,12] has already been considered.

While the consideration and horizon timestamps are useful to reduce the
runtime [4], their introduced benefit cannot be extended to formulae that use
the operator �. In fact, a formula like �a holds only if a holds at every time
point. Because of this constraint, we are unable to guarantee that it will hold in
the future, hence we cannot extend the horizon time.

The technique presented in this paper aims precisely at overcoming this lim-
itation. The main idea is the following: Although we cannot guarantee that a
formula with � will hold in the future, sometimes we can guarantee that the
formula will not hold. Let us consider again Example 1. At time point 1, the
absence of facts with the predicate highTemp in the data stream tells us that
rule r2 will never fire for at least the following three time points. Consequently,
also r3 will never fire and therefore can be safely ignored until time point 4.
By doing so, our technique complements the usage of consideration and horizon
times by covering the formulae where these two time stamps are not beneficial.

4 Formal Description

Algorithm 1 describes the reasoning procedure with our technique enabled to
compute the output of a Plain LARS program. Function reason receives in input
a data stream D = (T, vD), background knowledge B and a program P and
returns the output on T, i.e., a data structure (Out in Algorithm 1) that contains
the output at each time point in T (Out[t1] contains the output at time point
t1, Out[t2] contains the output at time point t2, etc.). The presented algorithm
assumes that the user is interested in computing the output at each time point.
If this is not the case, then the algorithm can be easily adapted.

The computation of reason can be divided into four parts:

• Init (lines 1–7): In this phase the algorithm initializes various data structures;
• EnableRules (lines 9–11): Rules that were previously disabled are re-enabled;
• Reasoning (lines 12–14): Computes the derivations at a given time point;
• DisableRules (lines 15–23): Rules that won’t fire in the future are disabled.

Init. The procedure uses four global variables. PA contains the active rules,
i.e., that are considered during reasoning while PI contains the disabled rules.
Initially, PA equals to P while PI is empty (line 7). R is a multimap used to
collect the rules that can be invalidated for some time points in the future. We
use R to retrieve these rules after we observe that there are no facts derived in
the current time point. These rules have a formula of the form �x�p(t) in their
body. Let r be such a rule. In this case, R maps p to one tuple of the form 〈r, x〉
which indicates that r can be disabled for x time points (line 5). The variable S
refers to another multimap that point to the rules that derive formulae with a
given predicate. We use S to decide whether the exclusion of a rule can trigger
the exclusion of other ones.

Handling Impossible Derivations During Stream Reasoning 9

Algorithm 1: reason(D,B, P)
Input : data stream D = (T, vD), background data B, program P
Output : Output on T
Global vars : PA, PI , R, S

1 R := ∅ S := ∅
2 foreach r ∈ P
3 Let q be the predicate used in H(r)
4 S[q] := S[q] ∪ {r}
5 foreach α ∈ B(r) such that α := �x�p(t) do R[p] := R[p] ∪ 〈r, x〉
6 Let T be of the form 〈t1, . . . , tn〉
7 PA := P PI := ∅ ti := t1
8 while ti ≤ tn do
9 foreach 〈r, t〉 ∈ PI and t = ti

10 PA := PA ∪ {r}
11 PI := PI \ {〈r, t〉}
12 Out[ti] := ∅
13 Compute answer stream S = (T, v) of PA for D at ti
14 Out[ti] := v(ti) \ vD(ti)
15 foreach p ∈ P that does not appear in v(ti)
16 foreach 〈r, t〉 ∈ R[p] such that r ∈ PA

17 PA := PA \ {r}
18 if 〈r, y〉 ∈ PI

19 PI := PI \ {〈r, y〉}
20 l := max(ti + t, y)

21 else l := ti + t
22 PI := PI ∪ {〈r, l〉}
23 disable(r, l, ti)

24 ti := ti + 1

25 end
26 return Out

EnableRules. The procedure considers each time point in a sequence (line 8).
Before reasoning starts, it checks whether some rules that were previously dis-
abled can be included again. To this end, the procedure considers all rules in PI

which have expired, re-add them to PA, and remove them from PI (lines 10–11).
Reasoning. Reasoning is computed in lines 12–14. First, it initializes the data
structure Out. Then, it computes the answer stream according to Definition 2
and the corresponding output as specified in Definition 3. Note that these are
computed using only the rules in PA. Our method is agnostic to the procedure
that is used to compute the derivations. In our implementation, we rely on the
reasoning procedure specified in [4], that is the one that uses consideration and
horizon timestamps, but one could in principle use any other routine, as long as
it computes a valid answer stream.
DisableRules. After the answer stream is computed, we check whether some
rules can be disabled. First, we identify all the predicates which do not appear in

10 H. R. Bazoobandi et al.

Algorithm 2: disable(rd, l, ti)
Input : rd is the rule that was deactivated, l the length of the

deactivation, ti is the current time point
Output : Modified PA and PI

27 Let q be the predicate used in H(rd)
28 if |S[q]| = 1
29 foreach r ∈ PA

30 rm := false g := l
31 foreach α ∈ B(r)
32 if α = q(t) rm := true
33 if α = �n�q(t)
34 g := max(l, ti + n)
35 rm := true

36 if rm = true
37 PA := PA \ {r}
38 PI := PI ∪ {〈r, g〉}
39 disable(r, g, ti)

the output at the current time point (line 15). If there is a body atom with the
operator � in a rule in PA (line 16), then we remove the rule from PA (line 17)
and add it to PI (line 22). When we add r to PI , we also specify the number of
time points for which the rule should remain disabled. This number corresponds
to the size of the window. If the rule is already disabled (this can occur if r has
multiple body atoms with �), then we use the maximum time point (line 20).

If a rule is disabled, then other rules can be disabled as well. To this purpose,
we invoke the function disable, reported in Algorithm 2. The function receives
in input the rule that was just removed, i.e., rd, the time point until rd will be
disabled, and the current time point. First, we consider further rules only if rd
is the only rule that derives facts with the predicate in the head (q, see line 28).
If this occurs, then some rules that use q in the body won’t be able to fire as
well. These are the rules where q appears either as body atom or used with the
� operator (with other operators, the rule can still fire). We identify such rules
in the loop in lines 31–35 with the flag rm. If the flag is enabled, then the rule
is disabled until the time point g (lines 36–39). Note that if the body atom is
used inside a window, then g is updated considering the maximum time point as
expiration time point (line 34). After this, the procedure is invoked recursively
(termination is ensured because in the worst case all rules in PA are removed
and then the recursive call will not occur).

Example 2. Let us consider the input in Example 1. At time point 1, the stream
is empty. Thus, Out[1] will be equal to vD(1). Therefore, predicate highTemp
will be considered in the loop in line 16. The tuple 〈r2, 3〉 is selected and r2 is
disabled by removing it from PA (line 17) and adding the tuple 〈r2, 4〉 to PI

(line 22). Then, function disable is invoked. The if condition in line 28 succeeds
and the for loop selects rule r3 to be deactivated. Therefore, in line 37 rule r3 is

Handling Impossible Derivations During Stream Reasoning 11

also removed and the tuple 〈r3, 4〉 is added to PI . After reasoning at time points
2 and 3, rules r2 and r3 will be re-activated at time point 4 by adding them back
to PA (line 10) and removing them from PI (line 11). In fact, it is only at this
time point that these two rules can fire and produce some derivations.

The application of our method to Example 1 as shown before illustrates
the benefit of our technique: The facts that some atoms were missing in one
time point resulted in disabling two rules and for two time points reasoning was
performed considering only r1, and this can result in a better runtime.

5 Evaluation

We implemented a new reasoner in Golang which includes the optimization intro-
duced in Laser and the technique proposed in this paper. The re-implementation
was necessary since the pre-existing implementation of Laser was too prototyp-
ical to be extended. Throughout, we refer to the old Laser as “Laser1” and to
the new implementation as “Laser2”.

Below, we report the results of a number of experiments that we executed
to illustrate the benefit introduced by our technique. The experiments can be
grouped into four classes:

• Ours vs. Laser1 : We compare the runtime vs. our old implementation;
• Runtime single rule (best case): We study the runtime in the best case;
• Runtime single rule (worst case): We study the runtime in the worst case;
• Runtime multiple rules: We observe the runtime with multiple rules.

Inputs. Although several benchmarks for stream processing exist (e.g., SRBench
[38]) we are not aware of any that supports the operators in LARS and that can
be used to stress the techniques introduced in this paper. In order to have full con-
trol on the experimental setting and to accurately measure the effects with the
various configurations, we created, in a similar fashion as done in [4], a number of
microbenchmarks that are specifically designed to evaluate our technique.
Evaluation Setup. We ran all the experiments on an iMac equipped with
8-core Intel(R) 2.60 GHz CPU and 8 GB of memory. We used Golang 1.13 to
compile and run our system and Pypy 7.2.0 to run Laser1. To minimize the
footprint of external effects (e.g., memory garbage collection, etc.) in our results,
we run each experiment ten times over 300 time points and report the average
result.
Ours vs. Laser1. Before we evaluate our proposal, we report some experiments
where we compare the performance of Laser1 and Laser2 (the latter is executed
without our proposed optimization). The motivation for doing so is to show that
our new implementation is more performant than the old one, and this justifies
its usage in the following experiments when we evaluate our technique.

In this set of experiments, we created a number of programs Pn where n ∈
{10, 50, 100} which contain a single rule of the form �n�p(X,Y) → q(X,Y).

12 H. R. Bazoobandi et al.

100 Atoms 500 Atoms 1000 Atoms

w10 w50 w100 w10 w50 w100 w10 w50 w100

0

25

75

100

Window Length

Laser1

Laser2

(a) (b)

100 Atoms 500 Atoms 1000 Atoms

w10 w50 w100 w10 w50 w100 w10 w50 w100

0

5

10

15

20

25

Window Length

E
va

lu
at

io
n

 T
im

e
(u

s)

50

Fig. 1. Runtime of Laser1 and Laser2. In (a), wn refers to Pn. In (b), wn refers to P ′
n.

Similarly, we have also created other programs P ′
n with the rule �n�p(X,Y) →

q(X,Y). Intuitively, P10,50,100 test the performance of the reasoner with a rule
that uses the � operator while P ′

10,50,100 does the same but with the � operator.
In each experiment, we instruct the data generator to create, at each time

point, the set of facts
⋃m

i:=1{p(ai, ai)} where m ∈ {100, 500, 1000}. In this way,
we can stress the system both varying the window size and the number of facts in
input. The average reasoning runtime for processing one input fact with P10,50,100

is reported in Fig. 1a while the one with P ′
10,50,100 is reported in Fig. 1b.

From the figures, we can see that in both cases Laser2 outperforms Laser1.
In addition, we can make some interesting observations about the operators �

and �. In Fig. 1a, we can see that if the number of input atoms increases and
the window size remains constant, then the average runtime remains relatively
constant or even decreases. This behavior is due to the usage of the horizon time
introduced in [4] which extends the validity of a formula for as many time points
as the window size. Moreover, reasoning at each time point has a fixed cost that
is amortized over the input facts. If there are more input facts, this cost becomes
less prominent. This explains the slight decrease in the runtime when the input
size increases.

The results in Fig. 1b show a different behaviour. In this case, the validity
of the body of the rule cannot be extended to the future. Consequently, the
runtime increases both when the window size increases (since the reasoner has
to check that the facts hold at more time points) and when the size of the stream
increases. This shows that the evaluation of � can be much more challenging
than �. The increase of the runtime is observed with both implementations
although with Laser2 it is less pronounced. The reason behind this difference is
purely technical and due to the fact that the new implementation does not have
the overhead introduced by the interpretation layer of Python.
Runtime Single Rule (Best Case). We now compare the runtime on a simple
benchmark with and without activating our technique. We consider a series of

Handling Impossible Derivations During Stream Reasoning 13

100 Atoms 500 Atoms 1000 Atoms

w10 w50 w100 w10 w50 w100 w10 w50 w100

0

200

400

600

Window Length

To
ta

l N
u

m
b

er
 o

f
F

o
rm

u
la

e
E

va
lu

at
io

n
s

100 Atoms 500 Atoms 1000 Atoms

w10 w50 w100 w10 w50 w100 w10 w50 w100

0

50

100

150

Window Length

E
va

lu
at

io
n

 T
im

e
(u

s)

Without IP

With IP

(a) (b)

Fig. 2. Total number of evaluated formulae (a) and average runtime per input fact (b)
in a best-case scenario.

programs which contain a single rule of the form �n�p(X,Y),�n�q(X,Y) →
m(X,Y) where n ∈ {10, 50, 100}. We apply the programs on different streams. At
time point i, the various streams contain the facts

⋃m
i:=1{p(ai, ai)} if i mod n = 0

or
⋃m

i:=1{p(ai, ai), q(ai, ai)} otherwise, where m ∈ {100, 500, 1000}. In essence,
the idea is to use a stream where every n time points there are no q−facts so that
�n�q(X,Y) does not hold and consequently the rule is disabled. This scenario
represents the best case for our method because without it the reasoner would
need to evaluate the rule at each time point.

Figures 2a and 2b report the total number of formulae evaluations and the
average runtime per input fact with different window and stream sizes. The
results marked with “With IP” (“Without IP”) use (don’t use) our technique.
The results show that with our approach the reasoner evaluates many fewer
formulae (because the rule is disabled most of the time). Note that when our
technique is enabled the number of evaluated formulae is non-zero. The reason
is that every n time points the counter for disabling the rule expires and the
rule is re-added to the set of active rules. This event occurs less frequently if
the window size is larger. This explains why the number of evaluated formulae
decreases in Fig. 2a.

As a consequence that some rules are disabled, the runtime decreases to the
point it is barely visible in Fig. 2b. It is worth to point out that in Fig. 2b the
runtime with our technique is almost constant while, without our technique, it
increases with the window size (this behavior was observed also in Fig. 1b). This
comparison illustrates the effectiveness of our approach in disabling rules.
Runtime Single Rule (Worst Case). In the previous set of experiments, we
evaluated our technique in a best-case scenario. We now present some experi-
ments in a worst-case scenario. To simulate this case, we consider programs with
the rule �10�p(X,Y),�n�q(X,Y) → m(X,Y) where n (i.e., the window size)
is very small. In particular, we considered n ∈ {1, 2, 3}. If n = 1 and the rule is

14 H. R. Bazoobandi et al.

(a) (b)

100 Atoms 500 Atoms 1000 Atoms

w1 w2 w3 w1 w2 w3 w1 w2 w3

0

1

2

3

Window Length

E
va

lu
at

io
n

 T
im

e
(u

s)

Without IP

With IP

100 Atoms 500 Atoms 1000 Atoms

w1 w2 w3 w1 w2 w3 w1 w2 w3

0

200

400

600

Window Length

To
ta

l N
u

m
b

er
 o

f
F

o
rm

u
la

e
E

va
lu

at
io

n
s

Fig. 3. Total number of evaluated formulae (a) and average runtime per input fact (b)
in a worst-case scenario.

disabled, then our approach immediately re-adds it in the next iteration since
its invalidity has expired. For this reason, we can use this type of program to
measure the overhead of our approach with an input where it is not effective.
As input streams, we consider those that add the facts

⋃m
i:=1{p(ai, ai)} at each

time point where m ∈ {100, 500, 1000}. Note that since no fact with predicate
q appears in the stream, the rule will always try to disable it (unless it was
already previously disabled) but in the next 1, 2, or 3 time points the rule will
be re-activated.

Figures 3a and 3b report, similarly as before, the number of formulae evalu-
ations and the runtime per input fact. From these results, we observe that when
the window size is one (which is the worst scenario), the number of evaluations
is the same as when our technique is disabled. However, the overhead incurred
by our approach significantly increases the runtime. If the window size increases,
then the performance improves because the overhead is less prominent.

Note that there is a simple optimization to overcome the problem observed in
this experiment: When we populate R in line 5 of Algorithm 1, we can consider
only the formulae where the window size is sufficiently large (e.g., x > 10). In
this way, we can restrict the application only to the cases whether the saving
introduced by our technique outweighs the overhead.
Runtime Multiple Rules. We have shown that sometimes disabling a rule
can have a cascading effect that leads to the disabling of more rules. To test the
performance in this scenario, we consider a series of programs of the form

�n�p(X,Y) ∧ �n�q(X,Y) → h1(X,Y) (r1)
h1(X,Y) → h2(X,Y) (r2)

. . . (r3...w−1)
hw−1(X,Y) → hw(X,Y) (rw)

where n ∈ {10, 50, 100} and w ∈ {10, 20}. As input, we use a fixed stream which
contains the facts

⋃300
i:=1{p(ai, ai)} at each time point.

Handling Impossible Derivations During Stream Reasoning 15

(a) (b)

10 Rules 20 Rules

w10 w50 w100 w10 w50 w100

0

2000

4000

6000

Window Length

To
ta

l N
u

m
b

er
 o

f
F

o
rm

u
la

e
E

va
lu

at
io

n
s

10 Rules 20 Rules

w10 w50 w100 w10 w50 w100

0

50

100

150

Window Length

E
va

lu
at

io
n

 T
im

e
(u

s
se

co
n

d
s)

Without IP
With IP

Fig. 4. Total number of evaluated formulae (a) and average runtime per input fact (b)
with multiple rules.

Figures 4a and 4b report the total number of formulae evaluations and the
average runtime per input fact respectively. We observe a similar trend as in the
previous cases: Without our technique, at each time point the reasoner evaluates
many more formulae and the runtime is significantly higher. With our technique,
the average runtime drops and remains reasonably constant with different win-
dow sizes and number of rules (the slight increase is due to the overhead incurred
by larger programs). The saving can be very high: In the best case (with n = 100
and w = 20), the runtime is 31 times faster. Although these numbers are obtained
with artificially created datasets, they nevertheless indicate the effectiveness of
our proposal in speeding up stream reasoning.

6 Related Work and Conclusion

Related Work. The problem of stream reasoning in the context of the Seman-
tic Web was first introduced by Della Valle et al. in [11,12]. Since then, numerous
works have been focused on different aspects of this problem and yearly work-
shops1 have further fostered the creation of an active research community.

The surveys at [13,21] provide a first overview of the various techniques.
A few influential works have tackled this problem by extending SPARQL with
stream operators [2,3,7–9]. Additionally, other stream reasoners either propose
a custom processing model [20] or rely on (probabilistic) ASP [15,25,38] or
on combinations of the two [22]. Finally, some works focus on improving the
scalability [16,26,27] by distributing the computation on multiple machines or
with incremental techniques [19]. Since these works support different semantics,
it is challenging to compare them. Indeed, providing a fair and comprehensive
comparison of the various proposal remains an open problem, despite notable
efforts in this direction [30,33,34].
1 The last one was in Apr.’19: https://sr2019.on.liu.se/.

https://sr2019.on.liu.se/

16 H. R. Bazoobandi et al.

The problem of stream reasoning has been studied also by the AI community.
In [18], Koopmann proposes a new language to provide OBQA on temporal and
probabilistic data. In [32], the authors investigate stream reasoning with Metric
Temporal Logic (MTL) and later extend it with approximate reasoning [10]. In a
similar setting, in [36], the authors consider stream reasoning in datalogMTL – an
extension of Datalog with metric temporal operators. Finally, Ronca et al. [29]
introduced the window validity problem, i.e., the problem of determining the
minimum number of time points for which data must be kept in main memory
to comply with the window sizes. None of these works address the problem of
exploiting the impossibility of future derivations for improving the performance,
as we do in this paper.

Finally, a research area that is closely related to stream reasoning is incre-
mental reasoning [17,23,24,28,35,37]. The major difference between incremental
reasoning and stream reasoning is that the latter is characterized by the usage
of windows functions to focus on the most recent data. Moreover, in a typical
stream reasoning scenario data expires after a relatively short amount of time.
Conclusion. In this paper, we tackled the problem of providing efficient stream-
based reasoning with (plain) LARS programs. In our previous work [4] we pro-
posed a technique to reduce the number of redundant derivations by extending
the time validity of formulae which will hold in the future. Here, we presented
a technique to extend the time validity of formulae which will not hold. This is
meant to target formulae where the previous technique is not effective.

Future work can be done in multiple directions. First, it is interesting to
study whether more advanced techniques can determine a longer time validity
(or invalidity) for formulae which are beyond plain LARS (e.g., nested windows).
Moreover, a dynamic strategy can be designed to detect whether for some for-
mulae a näıve recomputation is faster. Such a strategy could be used to mitigate
the performance decrease observed in the worst-case scenario. Finally, our tech-
nique is triggered when no atoms with a certain predicate appear in the stream.
It is possible that a more fine-grained technique, which considers facts rather
than predicates, leads to improvements in more cases, but it is not trivial to
implement it without introducing significant overhead.

Our experimental evaluation on artificially created microbenchmarks shows
that the performance gain is significant. This makes our proposal a valuable addi-
tion to the portfolio of techniques for computing logic-based stream reasoning
efficiently and at scale.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases, vol. 8. Addison-
Wesley Reading, Boston (1995)

2. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language
for event processing and stream reasoning. In: Proceedings of WWW, pp. 635–644
(2011)

Handling Impossible Derivations During Stream Reasoning 17

3. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: C-SPARQL: a
continuous query language for RDF data streams. Int. J. Seman. Comput. 4(1),
3–25 (2010)

4. Bazoobandi, H.R., Beck, H., Urbani, J.: Expressive stream reasoning with laser.
In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 87–103. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68288-4 6

5. Beck, H., Dao-Tran, M., Eiter, T.: Lars: a logic-based framework for analytic rea-
soning over streams. Artif. Intell. 261, 16–70 (2018)

6. Beck, H., Eiter, T., Folie, C.: Ticker: a system for incremental ASP-based stream
reasoning. Theory and Practice of Logic Programming 17(5–6), 744–763 (2017)

7. Bolles, A., Grawunder, M., Jacobi, J.: Streaming SPARQL - extending SPARQL to
process data streams. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis,
M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 448–462. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68234-9 34

8. Bonte, P., Tommasini, R., De Turck, F., Ongenae, F., Valle, E.D.: C-Sprite: efficient
hierarchical reasoning for rapid RDF stream processing. In: Proceedings of DEBS,
pp. 103–114 (2019)

9. Calbimonte, J.-P., Corcho, O., Gray, A.J.G.: Enabling ontology-based access to
streaming data sources. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS,
vol. 6496, pp. 96–111. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17746-0 7

10. de Leng, D., Heintz, F.: Approximate stream reasoning with metric temporal logic
under uncertainty. In: Proceedings of AAAI, pp. 2760–2767 (2019)

11. Della Valle, E., Ceri, S., Barbieri, D.F., Braga, D., Campi, A.: A first step towards
stream reasoning. In: Domingue, J., Fensel, D., Traverso, P. (eds.) FIS 2008. LNCS,
vol. 5468, pp. 72–81. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00985-3 6

12. Valle, E.D., Ceri, S., Van Harmelen, F., Fensel, D.: It’s a streaming world! reasoning
upon rapidly changing information. IEEE Intell. Syst. 24(6), 83–89 (2009)

13. Dell’Aglio, D., Della Valle, E., van Harmelen, F., Bernstein, A.: Stream reasoning:
a survey and outlook. Data Sci. 1(1–2), 59–83 (2017)

14. Eiter, T., Ogris, P., Schekotihin, K.: A distributed approach to LARS stream rea-
soning (System paper). Theor. Pract. Logic Program. 19(5–6), 974–989 (2019)

15. Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.:
Answer set programming for stream reasoning. CoRR, abs/1301.1392 (2013)

16. Hoeksema, J., Kotoulas, S.: High-performance distributed stream reasoning using
S4. In: Ordring Workshop at ISWC (2011)

17. Hu, P., Motik, B., Horrocks, I.: Optimised maintenance of datalog materialisations.
In: Proceedings of AAAI, pp. 1871–1879 (2018)

18. Koopmann, P.: Ontology-based query answering for probabilistic temporal data.
In: Proceedings of AAAI, pp. 2903–2910 (2019)

19. Le-Phuoc, D.: Operator-aware approach for boosting performance in RDF stream
processing. J. Web Semant. 42, 38–54 (2017)

20. Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and adap-
tive approach for unified processing of linked streams and linked data. In: Aroyo, L.,
et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 370–adaptive approach for unified388.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6 24

21. Margara, A., Urbani, J., Van Harmelen, F., Bal, H.: Streaming the web: reasoning
over dynamic data. J. Web Semant. 25, 24–44 (2014)

https://doi.org/10.1007/978-3-319-68288-4_6
https://doi.org/10.1007/978-3-540-68234-9_34
https://doi.org/10.1007/978-3-642-17746-0_7
https://doi.org/10.1007/978-3-642-17746-0_7
https://doi.org/10.1007/978-3-642-00985-3_6
https://doi.org/10.1007/978-3-642-00985-3_6
https://doi.org/10.1007/978-3-642-25073-6_24

18 H. R. Bazoobandi et al.

22. Mileo, A., Abdelrahman, A., Policarpio, S., Hauswirth, M.: StreamRule: a non-
monotonic stream reasoning system for the semantic web. In: Faber, W., Lembo,
D. (eds.) RR 2013. LNCS, vol. 7994, pp. 247–252. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39666-3 23

23. Motik, B., Nenov, Y., Piro, R., Horrocks, I.: Incremental update of datalog mate-
rialisation: the backward/forward algorithm. In: Proceedings of AAAI, pp. 1560–
1568 (2015)

24. Motik, B., Nenov, Y., Piro, R., Horrocks, I.: Maintenance of datalog materialisa-
tions revisited. Artif. Intell. 269, 76–136 (2019)

25. Nickles, M., Mileo, A.: Web stream reasoning using probabilistic answer set pro-
gramming. In: Kontchakov, R., Mugnier, M.-L. (eds.) RR 2014. LNCS, vol. 8741,
pp. 197–205. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11113-
1 16

26. Pham, T.-L., Ali, M.I., Mileo, A.: Enhancing the scalability of expressive stream
reasoning via input-driven parallelization. Semant. Web 10(3), 457–474 (2019)

27. Ren, X., Curé, O., et al.: Strider R: massive and distributed RDF graph stream
reasoning. In: Proceedings of International Conference on Big Data, pp. 3358–3367
(2017)

28. Ren, Y., Pan, J.Z.: Optimising ontology stream reasoning with truth maintenance
system. In: Proceedings of CIKM, pp. 831–836 (2011)

29. Ronca, A., Kaminski, M., Grau, B.C., Horrocks, I.: The window validity problem
in rule-based stream reasoning. In: Proceedings of KR, pp. 571–580 (2018)

30. Scharrenbach, T., Urbani, J., Margara, A., Della Valle, E., Bernstein, A.: Seven
commandments for benchmarking semantic flow processing systems. In: Cimiano,
P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS,
vol. 7882, pp. 305–319. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38288-8 21

31. Suchan, J., et al.: Out of sight but not out of mind: an answer set programming
based online abduction framework for visual sensemaking in autonomous driving.
In: Proceedings of IJCAI, pp. 1879–1885 (2019)

32. Tiger, M., Heintz, F.: Stream reasoning using temporal logic and predictive prob-
abilistic state models. In: 23rd International Symposium on Temporal Represen-
tation and Reasoning, pp. 196–205 (2016)

33. Tommasini, R., Della Valle, E., Balduini, M., Dell’Aglio, D.: Heaven: a frame-
work for systematic comparative research approach for RSP engines. In: Sack, H.,
Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC
2016. LNCS, vol. 9678, pp. 250–265. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-34129-3 16

34. Tommasini, R., Della Valle, E., Mauri, A., Brambilla, M.: RSPLab: RDF stream
processing benchmarking made easy. In: d’Amato, C., et al. (eds.) ISWC 2017.
LNCS, vol. 10588, pp. 202–209. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-68204-4 21

35. Urbani, J., Margara, A., Jacobs, C., van Harmelen, F., Bal, H.: DynamiTE: parallel
materialization of dynamic RDF data. In: Alani, H., et al. (eds.) ISWC 2013. LNCS,
vol. 8218, pp. 657–672. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-41335-3 41

36. Walega, P.A., Kaminski, M., Grau, B.C.: Reasoning over streaming data in metric
temporal datalog. In: Proceedings of AAAI, pp. 3092–3099 (2019)

https://doi.org/10.1007/978-3-642-39666-3_23
https://doi.org/10.1007/978-3-319-11113-1_16
https://doi.org/10.1007/978-3-319-11113-1_16
https://doi.org/10.1007/978-3-642-38288-8_21
https://doi.org/10.1007/978-3-642-38288-8_21
https://doi.org/10.1007/978-3-319-34129-3_16
https://doi.org/10.1007/978-3-319-34129-3_16
https://doi.org/10.1007/978-3-319-68204-4_21
https://doi.org/10.1007/978-3-319-68204-4_21
https://doi.org/10.1007/978-3-642-41335-3_41
https://doi.org/10.1007/978-3-642-41335-3_41

Handling Impossible Derivations During Stream Reasoning 19

37. Wang, Y., Luo, J.: An incremental reasoning algorithm for large scale knowledge
graph. In: Liu, W., Giunchiglia, F., Yang, B. (eds.) KSEM 2018. LNCS (LNAI),
vol. 11061, pp. 503–513. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-99365-2 45

38. Zhang, Y., Duc, P.M., Corcho, O., Calbimonte, J.-P.: SRBench: a streaming
RDF/SPARQL benchmark. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012.
LNCS, vol. 7649, pp. 641–657. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-35176-1 40

https://doi.org/10.1007/978-3-319-99365-2_45
https://doi.org/10.1007/978-3-319-99365-2_45
https://doi.org/10.1007/978-3-642-35176-1_40
https://doi.org/10.1007/978-3-642-35176-1_40

	Handling Impossible Derivations During Stream Reasoning
	1 Introduction
	2 Background
	3 Intuition
	4 Formal Description
	5 Evaluation
	6 Related Work and Conclusion
	References

