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Abstract. Robotic process automation is evolving from robots mimick-
ing human workers in automating information acquisition tasks, to robots
performing human decision tasks using machine learning algorithms. In
either of these situations, robots or automation agents can have distinct
characteristics in their performance, much like human agents. Hence, the
execution of an automated task may require adaptations with human
participants executing the task when robots fail, to taking a supervi-
sory role or having no involvement. In this paper, we consider differ-
ent levels of automation, and the corresponding coordination required
by resources that include human participants and robots. We capture
resource characteristics and define business process constraints that sup-
port process adaptations with human-automation coordination. We then
use a real-world business process and incorporate automation agents,
compute resource characteristics, and use resource-aware constraints to
illustrate resource-based process adaptations for its automation.

Keywords: Robotic process automation · Declarative constraints ·
Resource characteristics

1 Introduction

Business process automation (BPA) provides the ability to coordinate tasks and
distribute them to resources (humans or software systems) according to certain
logical or temporal dependencies [1]. Tasks in a business process are often either
manual and performed by human participants, or system-supported and executed
by software systems. Robotic process automation (RPA) strives to automate
frequent and repetitive manual tasks performed by human participants using
robots by mimicking their interactions with IS systems [2,3].

Until recently, one of the criteria for the selection of tasks for automation
has been a high level of repetition requiring limited human judgment. How-
ever, advances in artificial intelligence and learning algorithms have extended
the ambit of automation capabilities [3]. The type of automation can vary
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in complexity with an automation agent or robot simply mimicking a human
information acquisition activity (such as logging into a website and retrieving
information for a warehouse management system), to providing decision sup-
port to human participants (e.g. a learning algorithm predicting inventory in
a warehouse), to carrying out the necessary action (e.g. ordering and updating
inventory). RPA technology focuses on the development of robots or ‘software
programs’ having limited support for the design and characterisation of robots
performing a task. As an example, in a real world process, a robot (or bot)
extracting educational qualifications from a tax exemption request document
may have lower accuracy when dealing with acronyms entered by claimants
resulting in erroneous output. In such situations, the case execution needs to
adapt suitably by having a human participant supervise the task performed by
the robot.

There are several reasons why it is important to characterize robots in addi-
tion to human participants. First, the characteristics of robots and human par-
ticipants influencing the execution of a process can be distinct and it is necessary
to acquire an understanding during the design phase. For example, considering
and characterizing the resource based on the ability to manage workload is crit-
ical for human participants but is of little significance for the design of robots
(given their capacity is much larger than humans). Second, in line with human-
automation studies that detail human interactions with automation agents [4,5],
business process execution requires adaptation based on the resources and their
characteristics to support different levels of automation: 1) with a robot not
capable for performing a task, or 2) capable of performing a task with human
assistance or 3) act autonomously and perform a task independently. Process
tasks, process participants (humans and robots), and the coordination between
process participants needs to be modelled as part of the design phase of the
RPA development life-cycle [6]. Third, by taking resource characteristics and
process adaptation into account during process design one is able to systemat-
ically determine the degree to which automation of the process is feasible. The
paper makes the following contributions:

– It outlines a design approach that considers distinct resources (humans and
robots) and their characteristics to support different levels of automation,
and

– It describes a real-world business process based on a process event log and
realizes it using different robots.

The paper is organised as follows. A brief overview of previous studies on resource
characteristics and their extension in the context of RPA (Sect. 2) is followed by
the introduction of distinct levels of automation and resource-based constraints
required to support such levels of automation (Sect. 3). Different levels and types
of automation are presented using a real world process and its event log (Sect. 4).
Related work (Sect. 5) is followed by a brief conclusion and avenues for future
work.
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2 Resource Types and Characteristics

The organizational perspective of a business process tends to focus on the human
participants and the constraints that need to be met at both design time (assign-
ment) and run time (allocation) for tasks to be performed by certain human
resources [7]. Our work broadens the typical focus of the organizational perspec-
tive by considering various other types of resources and how they can be involved
in the execution of tasks.

Resource Types. We consider three types of resources participating in a busi-
ness process:

– Human Agent (HA): A human resource is capable of executing all types of
(manual) tasks of the process.

– Robotic Agents (RA): Robotic agents are robots, i.e. specialised software pro-
grams, that automate information acquisition tasks or information gathering
tasks. In many scenarios, the RA mimics human interactions on user inter-
faces by reading the output of interface screens and entering values into such
screens [3]. The RA functions like any software system and does not change
(or learn) unless the software program is re-written. As observed by Scheep-
ers, Lacity, and Willcocks [3], RAs often automate a subset of tasks and hence
are used in conjunction with other resources.

– Intelligent Agents (IA): The notion of an intelligent agent has been envisioned
for over three decades. Intelligent agents automate information analysis and
decision-making tasks. IAs improve their performance through learning [8]. In
the scope of this paper, we refer to intelligent agents as agents that use statis-
tical machine learning techniques and learn from observed data [9]. However,
the approach scales to agents using other approaches to learning and decision
making.

There can be other types of resources needed for executing a business process
such as data resources, hardware resources, and other information systems. The
focus of this work is limited to the resources automating tasks performed by
human participants.

Resource Characteristics. Previous studies have presented various charac-
teristics of human resources for allocation of tasks (referred to as criteria, ability,
or profiles in existing literature). Table 1 summarizes different characteristics of
a resource based on a prior systematic literature review [14]. Pika, Leyer, Wynn,
et al. [10] present a detailed and fine-grained definition of various resource char-
acteristics or behaviour, but for our study, we refer to those presented in the
aforementioned literature review.

The significance of each of the resource characteristics for different types of
resources is presented in Table 1. By significance, we mean the importance of
the various characteristics when allocating a task to a resource. Preference and
Collaboration are not primary characteristics for an IA or an RA as automation
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Table 1. Literature-based resource characteristics for assigning or allocating tasks

Resource characteristics Significance Description

HA IA RA

Expertise, skills ✓ ✓ ✓ The demonstrated capability of a resource to
perform a task [10]

Preference ✓ ✗ ✗ The tendency for choosing particular types of
work or for involving particular resources [11]

Collaboration ✓ ✗ ✗ The degree to which resources work well
together [12]

Workload ✓ ✗ ✗ The average number of activities started by
a given resource but not completed at a
moment in time [10]

Availability ✓ ✗ ✗ The resource is available to perform an
activity within a specific time frame [12]

Suitability ✓ ✓ ✓ The inherent qualification of the resource to
perform a task [13]

Authorization ✓ ✓ ✓ Constraints on, or privilege of, a specific
person or role to execute a task or case [14]

Experience ✓ ✓ ✓ Experience is collected by performing the
task [15]

Performance (quality) ✓ ✓ ✓ Number of activities/cases completed with a
given outcome by the resource [10]

Duration (time) ✓ ✗ ✗ The average duration of activities or cases
completed by a resource [10]

resources do not have a personal preference or choice (unless programmed as a
part of the software code). Duration and Workload are constant and known at
design time for an IA and RA, as compared to human participants with vary-
ing completion times [16]. Furthermore, unlike human participants with work
schedules, an IA or an RA is always available. Resource characteristics such
as expertise, preference, workload, or suitability may influence other resource
characteristics such as experience, performance (quality) and duration (time).

In the context of automation, we present a subset of important resource char-
acteristics relevant for the three types of resources to enable human-automation
interactions. These measures can be determined using distinct data sources:
process event logs, IA test results, or RA software specifications. Given a set of
tasks A, a set of resources R executing the tasks, and a set of process attributes
D = {d1, . . . , d|D|}, a subset of resource characteristics are presented:

Suitability is the inherent quality of a resource r ∈ R, to perform a task a ∈ A.
The suitability of a resource [13] can be determined for a process attribute value
di ∈ D, with a value Dval(di) = vi.

suitability(r, a, di, vi) → [0, 1], is the suitability of resource r for task a, for
an attribute di with its value vi

For example, in an IT support process, a resource of type RA may not be
suitable to perform the task ‘apply patch’ for a specific operating system. ‘Oper-
ating system’ is the process attribute which could take its value from the set
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{ubuntu, redhat, . . . , windows10}. Similarly, in a loan application process, a loan
approval task for a higher amount may mandate an HA due to a business require-
ment. Suitability can be determined based on agent specification and implemen-
tation, or can be determined based on the organization model attributes such as
role, department, or cost of the resource.

Experience: Performing a task activates the experience of a resource [15].
“Experience can be possessed and increased by a [resource] through performing
that task”[15]. Event logs can be used to compute the experience of a resource.
Consider an event log L consisting of a set of events occurring during window
length κ. Each event e ∈ L, is associated with a resource res(e) = r, task
task(e) = a and process attribute values attr val(e, di) = vi. The number of
task completions a by resource r, having a process attribute di with value vi
indicates the experience of the resource.
experience(r, a, di, vi) = |{e|res(e) = r ∧ task(e) = a ∧ attr val(e, di) = vi}|
Performance: Automation agents are more susceptible to resource specific
errors i.e. errors made by resources when performing a task [17]. Performance
measure of an IA can be computed based on the algorithms implemented such
as F1-score, root mean square error, precision, or precision@k [18]. These mea-
sures can be computed during the training and testing of the algorithms. The
performance of agent r, on task a, with a process attribute di having value vi
can be computed using the measure specific to the implemented algorithms.
performance(a, r , di , vi) → [0, 1].

We illustrate the computation of the performance measure for an IA that
uses a supervised classification algorithm [9]. A common metric for evaluating
the performance of a classifier is the F1-score which considers precision and recall
measures. These measures are computed on a test data set where the predictions
of the classifier are compared to the true values to arrive at the confusion matrix.
Table 2 shows the confusion matrix of the classifier, where each row represents
the actual true value, and each column contains the predicted value. Hence,
the values of the diagonal elements represent the degree of correctly predicted
classes. The confusion is expressed by the false predicted off-diagonal elements,
as they are confused for another class or value. Based on the confusion matrix,
it is evident that the classifier performance is poor when identifying the label or
class ‘B’. In scenarios where the IA predicts class ‘B’, it would be necessary for
an HA to intervene and verify the task completion. Hence, this section highlights

Table 2. Illustrative confusion matrix of a classifier

Predicted class

A B C F1-score

Actual class

A 25 2 3 0.69

B 10 10 10 0.47

C 7 0 23 0.69
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the need for capturing fine grained resource characteristics for specific domain
attributes and their values (di and vi), as the automation support could vary
with these characteristics.

3 Process Adaptations for Levels of Automation

The notion of human participants and robots working together and requiring
suitable interventions has been presented in human-automation studies acknowl-
edging that “... automation is not all or none but can vary across a continuum
of levels, from the lowest level of fully manual performance to the highest level
of full automation” [4]. Taxonomies proposing the categorization of automa-
tion on different point scales, referred to as Levels of automation (LOA), have
lower levels representing manual or no automation and higher levels representing
increased automation [5]. While these scales vary from 3 LOA to 11 LOA, they
can generally be broken down into three broad categories: (i) levels where the
task is primarily performed by a human, (ii) levels where the human-agent inter-
action is high during task execution and (iii) levels with low human involvement.
Table 3 summarizes the broad categories of automation levels.

Table 3. Levels of automation

Scale Description

Full automation The automation agent carries out the action

Supervisory control The automation agent carries out the action,
the human may intervene if required

Decision support The automation agent cannot perform the
action but can provide support to the human

Manual The automation agent offers no assistance

In the context of RPA, at lower levels of automation (decision support), an
HA would often be required to execute the task again after its completion by
an IA or RA. At higher levels of automation, HAs exercise a supervisory role
intervening only if necessary (failures, errors, or poor execution quality). Progress
through different levels of automation is dependent on certain characteristics
or attributes of the robots such as their performance and experience. Human
verification tasks may be added dynamically during process execution based on
resource characteristics of the IAs or RAs. Consequently, one or more resource
characteristics can be used to design conditions for an HA to intervene.

3.1 Declarative Constraints for Process Adaptation

We use Declare, a declarative business process specification language to illustrate
the process adaptations to support different levels of automation and interactions
between the different types of resources [19]. Our approach can be supported
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Fig. 1. Some Declare constraints and constraints supporting different LOA.

using any declarative specification that orchestrates control-flow through a def-
inition of constraints and is not limited by the specification language. Declare
constraints are grouped into four categories, as shown in Fig. 1: (i) Existence
constraints, (ii) Choice constraints, (iii) Relation constraints, and (iv) Negation
constraints. The different levels of automation for activity A is shown in Fig. 1:

– Manual: An HA executes activity A, which is followed by activity B even-
tually. Activity A must not be immediately executed by an IA after it was
just executed by an HA. Activity B can be performed by any resource type.
An RA is chosen in the example to illustrate the interplay between different
resource types.

– Decision Support: An IA executes activity A, which is immediately followed
by an HA executing A, and is eventually followed by the execution of activity
B. Thus, the execution by an IA is overridden by an HA (as the IA may not
have much experience with, or a poor track record, performing A).

– Supervisory Control: An IA executes activity A which can be followed by
either activity B, or an activity strongly related to A (A′ in the figure), e.g.
a redo or a quality check, this time performed by an HA. Activity A′ is
performed by an HA, and this has to be followed by activity B.

– Full Automation: An IA executes activity A, which is followed by activity B
eventually. Activity A must not be immediately executed by an HA after it
was just executed by an IA.

3.2 Syntax for Resource-Aware Declarative Constraints

To support automation based on types of resources and resource characteristics,
we extend Declare with fine-grained resource-aware constraints. Existing work
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extends Declare with multiple perspectives beyond the control-flow perspective
and includes data, resource roles, and time [20,21]. We need additional con-
straints to support human and automation agent interactions as well as process
adaptations based on resource types and their characteristics. Hence, we extend
Declare and define the syntax of resource-aware declarative specification through
key extensions to Declare using abstract syntax notation [22].

A process model consists of an ActivitySet, and a ConstraintSet applied
to the activities. An ActivitySet has one or more Activity. Each Activity has a
label, a set of one or more Resource permitted to perform the activity, input and
output Data. We use N and S to represent Integer and String types respectively.

Each Resource has a Role corresponding to role, a ResourceType, and a set
of resource characteristics, ResourceChar.

Resource � ro : Role, rt : ResourceType; ResourceCharSet � ResourceChar∗

rcs : ResourceCharSet
Role � S ResourceType � HA | RA | IA

A resource characteristic ResourceChar is an attribute name and a value pair
as discussed in Sect. 2.

ResourceChar � ra : ResourceAttribute ResourceAttribute; � identifier
rv : Value Value � [0...1]

The ConstraintSet is a set of Declare Constraint . A constraint can be a unary
or a binary constraint. Constraints operate on a set of ActivityContext .

Constraint � UnaryConstraint | BinaryConstraint

A UnaryConstraint refers to the (i) existence, and (ii) choice constraints.
Degree, states the number of times, an ActivityContext must be executed for
existence or absence constraint. For choice and exclusive choice, it is the num-
ber of activities to be executed from ActivityContextSet.

UnaryConstraint � uc : UConstraint ; UConstraint � Exist | Absence
acset : ActivityContextSet ; | Exactly | Choice
n : Degree; | Exclusive Choice

ActivityContextSet � ActivityContext∗ Degree � N

BinaryConstraint represents the Declare binary constraint and comprises of a
BConstraint, a source ActivityContext and a set of target ActivityContext.

BinaryConstraint � bc : BConstraint ; BConstraint � Response | Neg Response

ac : ActivityContext ; | Chain Response

acset : ActivityContextSet | Neg Chain Response

The ActivityContext is composed of an Activity, an ExpressionSet. Each
Expression describes conditional expressions on the ResourceAttribute of the
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ResourceChar. The Expression can be a Constant or another Binary expres-
sion. A Binary expression contains two expressions and an Operation.

ActivityContext � a: Activity; exps: ExpressionSet
ExpressionSet � Expression∗

Expression � Constant | Binary |ResourceAttribute
Binary � exp 1,exp 2: Expression; op: Operation

4 Evaluation and Results

The objective of this section is to illustrate our approach using two scenarios.
In both scenarios, an IA is simulated, and the resource characteristics of the IA
are computed using historical data. The levels of automation are configured by
defining constraints on resource characteristics. The achievable levels of automa-
tion are illustrated based on the resource constraints. For the first scenario, we
choose a business process event log and identify a task that can be automated by
an IA. We measure two resource characteristics: performance and experience and
illustrate the four levels of automation. The second scenario depicts a service-
oriented chatbot (or IA) deployment considering bot-human partnerships. Here,
we measure the performance of the chatbot and define two levels of automation.
Lack of temporal information in the data limits our ability to measure other
resource characteristics such as experience. In this experiment, we illustrate the
flexibility of defining levels of automation and identifying achievable levels of
automation with the chatbot.

1. Business Process Intelligence Challenge 2014 (BPIC 2014): The
BPIC 2014 event log1 comprises of events capturing the interaction manage-
ment and incident management of a large bank. The interaction management
process is triggered when a customer has an IT issue and calls a service desk
agent (SDA). The SDA identifies the relevant IT element having the issue (known
as configuration item or CI), the urgency and priority of the issue. If the SDA
is unable to resolve the issue, an incident is created, thus initiating the incident
management process. The incident is assigned to a team suitable for resolving
the incident. Given the data available in the event log, we choose the automa-
tion of the activity ‘Assign the team’ of an incident which in the current process
is manually done by an SDA. Identification of the activities for automation is
carried out during the design phase of an automation life-cycle [6] and is out of
the scope of this work. We choose this task for the purpose of illustration.

Resource Characteristics: In this study, the performance and experience
(both resource characteristics) of the IA executing the task ‘Assign Team’ are
presented. We use the BPIC 2014 interaction log and incident activity log for
this purpose. Each event in the interaction log represents an interaction and

1 https://www.win.tue.nl/bpi/doku.php?id=2014:challenge.

https://www.win.tue.nl/bpi/doku.php?id=2014: challenge
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contains information entered by a SDA: the type and sub-type of CI, the com-
ponent, the urgency and priority of the interaction. An incident is created using
details of the corresponding interaction. Assignment of an incident to a team
is captured in the incident activity log. The incident activity log may contain
multiple teams corresponding to a single incident. Such a scenario occurs if there
are multiple assignments, caused by an error made by an SDA, or an incident
requires several teams to resolve. For this study, we consider incidents involving
a single team. The event log contains 46086 incidents resolved over a period of 6
months, of which 13257 are handled by a single team and used to build the IA.
To simulate a real-life situation where an IA is trained using historical data and
applied to executing process instances, we split the data temporally, with the
first 10,000 incidents ( 80%) used for building the IA. The remaining 20% of the
data (2651 incidents) is considered to be unseen data replicating the scenario
of an IA when deployed. The IA is a Random Forest classifier, trained using
a training, cross-validation and test data. The overall accuracy of the classifier
is 72.6%. Any suitable machine learning classifier can be used, as depicting the
best performing classifier is not the goal of our experiment. The input features
of the classifier based on the information available in the event log, are the CI
name, CI type, and component of the incident. The team of the incident is the
class or output feature. The F1-score representing the performance of the IA is
computed. Figure 2 shows the normalized confusion matrix for a subset of the
teams (due to space constraints) on the test data as detailed in Sect. 2. The per-
formance of the classifier is high when predicting certain teams (e.g. TEAM0003,
TEAM0015) vis-a-vis others (notably TEAM0031, TEAM0044).

Fig. 2. Confusion matrix of the random forest classifier predicting teams

The experience of the IA is computed as the number of incidents handled by
the IA, having a specific type, sub-type of the CI and the component (indicating
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a specific task). The IA would start with zero experience and accumulate expe-
rience as time progresses. We use min-max normalisation to limit experience
values to a [0, 1] range. The pre-processed logs, the training data and the source
code for replicating the results are available at https://git.io/JePaI.

Resource-aware Constraints: To illustrate different levels of automation and
a progression from a low level to a higher level of automation, we present
resource-aware constraints for ‘Assign Team’ task.

When the IA is deployed, if the performance of IA is low on a task (or
incident), an HA will execute the task again with no assistance from IA (Manual).
In Fig. 3(a), this is captured as a chain response between two ‘Assign Team’
tasks, first task performed by an IA, followed by another task performed by an
HA. When an IA is deployed anew, experience is low and hence, the trust in
automation is low. In such a scenario, if the performance is high, the IA may
provide recommendations to an HA, but the task will be executed by an HA
(Fig. 3(b)). An increase in the experience of IA will result in an increase in level
of automation (Fig. 3(c)). Here, an HA performs a supervisory role and executes

Fig. 3. Configuring resource-aware constraints enables achieving different LOA

Fig. 4. (a) The mean values of resource characteristics for all incidents. (b) Levels of
automation configured using resource characteristics.

https://git.io/JePaI
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a verification task ‘Verify Team’. When the performance and experience of the IA
are higher than a threshold, the highest level of automation is possible (Fig. 3(d)).
Thus, the proposed approach suggests the possibility of having different levels
of automation for different case attributes and their values. The thresholds for
the resource characteristics are domain dependent and their choice results in
a trade-off between the performance of the overall process and the levels of
automation that can be achieved. In this experiment, we used threshold values
to illustrate the ability to configure levels of automation. Generally speaking,
such values are domain-dependent, but here they were heuristically determined.
A methodological guideline to identify thresholds, which is yet to be developed,
would take into account trade-offs between different resource characteristics and
identify the implications on process performance and automation levels.

Levels of Automation: We simulate the scenario of deploying the IA. For
every event in the new or unseen data, the performance of the IA is computed
by considering the predicted team and the f1-score (or performance) for the pre-
dicted team. The normalized experience of the IA is computed considering the
domain attributes (type, sub-type of CI, and component). The experience of the
IA is updated daily for each incident, and the average experience is presented in
Fig. 4(a). We observe a drop in the experience on day31, when new tasks with
different values of domain attributes are created by the SDA. This arrival of new
tasks causes a decrease in the experience of the IA for those tasks, thus illustrat-
ing the need for measuring resource characteristics for specific tasks. Using the
resource-aware constraints, levels of automation for the IA can be assessed for
each incident (Fig. 4(b)). The distribution of levels of automation changes as time
progresses. As shown by two markers, on day11, the experience of the IA is be
low for most domain attributes and values, and hence the automation of the task
is distributed as 38% at Manual, 53% at Decision Support, 9% at Supervisory
Control, and 0% at Full Automation. However, on day34, the distribution
changes with 37% of tasks executed manually, 10% at Decision Support, 40%
at Supervisory Control and 13% at Full automation. The thresholds used
for the purpose of illustration are: τexpmin

= 0.4, τpermin
= 0.5, τperhigh

= 0.8.
This example does not provide a benchmark on levels of automation that can
be achieved but illustrates the need for configuring such automation levels.

Fig. 5. (a), (b) resource constraints for LOA. (c) Distribution of LOA.
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2. Chatbot Intent Classification: In this scenario, we illustrate use of
resource constraints on an IA to customise LOA. Consider the scenario of a chat-
bot service answering the queries of customers. A chatbot would need to identify
the goal or intent of the customer based on the customer query or utterance,
a problem commonly referred to as ‘intent classification’. If the performance of
the chatbot in classifying the intent is high, the chatbot responds to the user
query. If the performance is lower than the threshold, the customer query is
handed over to a human participant. Hence, in this scenario there are two levels
of automation - Decision Support or Full automation (Fig. 5). It would be
useful to identify achievable levels of automation based on the frequency of dis-
tribution of user intents from past conversations and the performance achieved
by the IA in relation to these user intents. To simulate this scenario, we consider
the widely used public dataset ATIS (Airline Travel Information System) [23].
An IA is trained to classify intents and its performance is computed for each
intent using the confusion matrix. The test data of ATIS is used, the user intents
are predicted and the performance of IA is determined for each intent. Based on
the performance of the IA on the predicted user intents, and a set performance
threshold (τperhigh

≥ 0.95), the achievable distribution of LOA is determined
(Fig. 5(c)). The dataset, the training, and the testing of the classifier as well as
the source code with further explanations are available at https://git.io/JeXmt.

5 Related Work

Recent studies on RPA have focused on the design phase presenting techniques
to identify candidate tasks for automation [6]. This work similarly focuses on
the design phase of the RPA development life-cycle and proposes to consider
and broaden the organizational perspective of process automation design. Use of
Artificial Intelligence (AI) and Machine learning to enable robots to do complex
tasks has been discussed in previous work [3,24]. In this work, we distinguish
types of resources and their characteristics in terms of suitability for execution
of different types of tasks.

The need for robots and human participants to collaboratively work as part of
BPA has been discussed [24] but has not gained sufficient attention. In this work,
we present a domain-independent approach towards human-automation interac-
tions, as such interaction requirements may vary across different domains [4,5]
and thus need tailoring. The human-automation levels of interactions are sup-
ported using declarative process specification constraints.

Declarative specification supports ad-hoc compositions based on control-flow
constraints of a business process [19,25]. Declare, a declarative language for
process specification, has been further enhanced to support various perspectives
by considering constraints on data [26], organizational roles [27], time [21], and
all perspectives together [20]. Our work extends a declarative specification with
additional resource-aware constraints that are important to support different
automation levels and types of resources.

There have been extensive studies focusing on resources and their character-
istics [10–12,14,15]. Resource characteristics are used for the allocation of tasks

https://git.io/JeXmt
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to resources [13,28,29]. The focus of these studies has been human participants.
Furthermore, the primary objective of task allocation is to improve efficiency. In
this work, we consider distinct types of resources and their characteristics from
the perspective of supporting automation.

6 Conclusion and Future Work

The recent body of work on RPA has acknowledged the need to identify tasks
that can be automated by robots and the need to consider the interplay between
robots and human participants. In this paper, we introduce different types of
resources and resource characteristics. We present declarative process constraints
that enable interplay between resources taking their types and characteristics
into account, thus supporting different levels of automation. This work provides
a starting point for supporting more advanced forms of automation in business
processes and for exploring more sophisticated ways of engaging resources in
business processes.

Limitations and Future Directions: Choices made as part of run-time adap-
tation involving different resource types and different resource characteristics
represents a complex trade-off space. While the current paper does not address
this question, developing the machinery to support the identification of this space
and reasoning over this space remains an interesting direction for future work.
The monitoring machinery that flags the need for resource adaptation could,
in principle, be quite sophisticated, involving the tracking of (potentially incre-
mental) progress towards the achievement of functional goals and non-functional
objectives (key performance indicators or KPIs). This too is something that our
current proposal does not fully address and remains an avenue for future work.
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