
Cherry-Picking from Spaghetti:
Multi-range Filtering of Event Logs

Maxim Vidgof(B), Djordje Djurica, Saimir Bala, and Jan Mendling

Institute for Information Business, Vienna University of Economics
and Business (WU), Vienna, Austria

maxim.vidgof@wu.ac.at

Abstract. Mining real-life event logs results into process models which
provide little value to the process analyst without support for handling
complexity. Filtering techniques are specifically helpful to tackle this
problem. These techniques have been focusing on leaving out infrequent
aspects of the process which are considered outliers. However, it is exactly
in these outliers where it is possible to gather important insights on the
process. This paper addresses this problem by defining multi-range fil-
tering. Our technique not only allows to combine both frequent and non-
frequent aspects of the process but it supports any user-defined intervals
of frequency of activities and variants. We evaluate our approach through
a prototype based on the PM4Py library and show the benefits in com-
parison to existing filtering techniques.

Keywords: Multi-range filter · Filtering event logs · Infrequent
behavior · Process mining

1 Introduction

The goal of process mining is extracting actionable process knowledge using
event logs of IT systems that are available in the organizations [1]. Process
discovery is one of the areas of interest of process mining that is concerned with
the extracting the process models from logs. With the development of process
mining, a number of automated process discovery algorithms that address this
problem has appeared.

The problem with automated process discovery of process models from event
logs is that despite the variety of different algorithms, automated process dis-
covery methods all suffer from joint deficiencies when used for real-life event
logs [1]: they produce large spaghetti-like models and they produce models with
either low level of fitness to the event log, or have low precision or generalization.
Managing to correct these shortcomings proved to be a difficult task. Research
by Augusto et al. [2] states that for complex event logs it is highly recommended
to use filtering of the logs before automated process discovery techniques and
that without this type of filtering precision of the resulting models is close to

c© Springer Nature Switzerland AG 2020
S. Nurcan et al. (Eds.): BPMDS 2020/EMMSAD 2020, LNBIP 387, pp. 135–149, 2020.
https://doi.org/10.1007/978-3-030-49418-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49418-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-49418-6_9

136 M. Vidgof et al.

zero. The authors also highlight a research gap that is necessary to be closed
suggesting the need to develop a filter which will can be tuned at will to deal
with complex logs.

Therefore, the purpose of our study was to rectify this research gap by imple-
menting a new filter, able to capture both most frequent behavior and the rare
one. We created a prototype based on the PM4Py, process mining toolkit for
Python [3]. Our prototype is fully customizable in which the user define an
arbitrary number of ranges for both activities and variants of the process that
user wants to analyze. In this research, we demonstrate how our technique helps
to unveil new insights into the process using an illustrative example from the
real-world event log.

This paper is structured as follows. Section 2 describes the problem set-
ting and discusses common process mining techniques that rely on filtering
of the logs in order to simplify models. Further, we present different types of
filters and compare them. Finally, we derive requirements for new filter type.
Section 3 presents a conceptual description of our filter with the formal defi-
nitions, while Sect. 4 presents an example that emphasizes the benefits of this
technique. Section 5 shows the benefits of our technique against existing process
mining tools. Section 6 concludes the paper and discusses future work.

2 Theoretical Background

This section describes the problem and provides an overview on related literature
before deriving three requirements for a filtering technique.

2.1 Motivation and Problem Description

Data analysis plays a fundamental part in Business Process Management (BPM)
and allows to improve processes based on facts. Process mining is the main
technique to analyze processes using data which stem from event logs. These
event logs keep track of the history of the various runs of the business process
execute over time. Real world event logs typically contain a high number of cases,
which may or may not differ from one another in the way they were handled.
Mining such event logs usually results in models which contain an overwhelming
amount of behavior (i.e., process variants). These models are also referred to as
Spaghetti models as they make it hard to identify specific paths in their chaotic
layout.

Spaghetti models provide little value as they are hard to understand. Litera-
ture has defined several techniques to overcome this problem, such as reducing
complexity on a log level [11] and reducing complexity on a model level [6]. A
main technique for reducing complexity offered by many of the process mining
techniques is filtering. Usually process mining techniques show their results in
visual interfaces which offer sliders to set up custom parameters for filtering. By
moving these sliders the user are able to focus on specific aspects of the process.

What makes spaghetti models so complex is the fact that they show all possi-
ble behaviour, including paths that were seldom taken in the process. Therefore,

Cherry-Picking from Spaghetti 137

the focus of existing techniques from both academia and practice has been on
filtering out this infrequent behaviour. We argue that in some cases, it is the
infrequent behaviour that gives us better important insights on problems in the
process, thus helping improvement. Indeed, existing tools such as ProM1, Disco2

and Celonis3 are able to filter for specific behaviour. However, there is no way
to set these filters in such a way that multiple variants or activities are shown
together. This way of filtering leaves out important information, which might be
seen for instance by a combination of the most and the least frequent cases.

Let us illustrate the problem through a running example. Figure 1 shows a
simple complaint handling process adapted from [5]. The process works as fol-
lows. After a client files a complaint, (s)he immediately receives an automated
confirmation message. Next, an employee brings the application to a meeting
with colleagues in order to discuss a solution. The same employee is in charge
of contacting back the customer with an apology and proposes a solution. The
solution may be accepted or rejected by the client. In case of acceptance, the
solution is executed right away. In case of rejection, the employee contacts the
client to investigate on alternatives. As long as a reasonable alternative is found,
the employee has a new meeting with colleagues to discuss the solution and pro-
ceed as usual. If no alternative solutions can be found, the complaint is brought
to court and the process fails.

Complaint
received

Send automatic
reply to

customer
Discuss solution Send apology Propose solution

negative
response

Complaint
addressed

Evaluate
acceptable
alternative

Execute solution

positive
response

Positive response
received

Negative
response received

Go to court

No alternative
solutions

Alternative
solution exists

Complaint not
addressed

Fig. 1. Running example (adapted from [5])

There are several ways in which instances of the process may traverse the
depicted process model. The sunny case scenario, is the one in which an agree-
ment with the client is found right away. In a good process this case should occur
frequently. On the opposite, the rainy case scenario consists of the cases which
result in no agreement and the company is brought to court. In this case, the
costs sustained from the company may be much higher than settling for a solu-
tion. An intermediate scenario is the one in which a customer does not accept
the first proposed solution, but some iterations are done.

In order to improve the process, the company is interested to compare the
sunny case scenario in order to understand which were the decisions and the
proposed solutions that lead to the respective outcomes. Table 1a lists the activ-
ities involved in the process as well as their short labels for better readability.
1 www.promtools.org.
2 fluxicon.com/disco.
3 www.celonis.com.

www.promtools.org
https://fluxicon.com/disco/
www.celonis.com

138 M. Vidgof et al.

Typical process mining techniques retrieve variants as shows in Table 1b (i.e.,
sorted by frequency). Each variant represents one path in the output process
model. In order to simplify the model, filtering must be used. However, if we
filter out the least frequent behavior, we lose the information on the rainy case,
which is the one that bears higher costs for the company. Some process mining
tools like Celonis, would allow to select exactly the variant corresponding to the
rainy case scenario. Unfortunately, this would leave out the sunny case scenario,
which is also of interest of the company as this is the scenario in which the best
decisions were taken.

Table 1. Process activities and variants

Activity or Event Label

Complaint received A

Send automatic reply to customer B

Discuss solution C

Send apology D

Propose solution E

Positive response received F

Execute solution G

Complaint addressed H

Negative response received I

Evaluate acceptable alternative J

Go to court K

Complaint not addressed L

(a) Activities of the process

Variant Count

〈A,B,C,D,E,F,G,H 〉 807

〈A,B,C,D,E,I,J,C,D,E,F,G,H 〉 132

〈A,B,C,D,E,I,J,K,L 〉 30

〈A,B,C,D,E,I,J,C,D,E,I,J,C,D,E,F,G,H 〉 21

〈A,B,C,D,E,I,J,C,D,E,I,K,L 〉 6

〈A,B,C,D,E,I,J,C,D,E,I,J,C,D,E,I,J,C,D,E,F,G,H 〉 2

〈A,B,C,D,E,I,J,C,D,E,I,J,C,D,E,I,J,K,L 〉 2

(b) Process variants ordered by trace frequency

The same consideration also holds for events and activities. Indeed, the com-
pany might be interested in activities or events which occur within a specific
range of frequencies. For instance, the top 10 most frequent and the top 10 most
infrequent activities can play a role into guiding process redesign. In other words,
frequency of traces and activities do not necessarily reflect importance. There
may be extremely infrequent variants or activities which have a very high impact
on the process (e.g., Black Swans [10]). Hence, it is crucial that filtering does
not compromise this information.

2.2 Filtering Techniques

According to Dumas et al. [5], process mining tools use two approaches to sim-
plify event logs: abstraction and event log filtering. Abstraction is used to remove
the subset of the nodes from the process map, producing a smaller dependency
graph of the given event log. This way of simplifying process models is often
beneficial because it enables model viewers to aggregate paths or activities of
a given Spaghetti model and provides them with a better understanding about
how the process functions on a macro level. However, while abstraction can visu-
alize large event logs, it lacks the efficiency of coping with the full complexity of
real-life event logs [6].

Cherry-Picking from Spaghetti 139

Consequently, process mining offers another type of event log simplification
called event log filtering. Filtering an event log can be achieved with the use of
three types of filters that remove a subset of the traces, events, or event pairs
intending to produce a simpler log. Event filters allow users to remove or to keep
all the events that satisfy a predefined condition set by the user. They allow users
to focus only on a particular activity. Event pair filter, allow users to remove or
keep all the pairs of events that fulfill a specific condition. This type of event log
filtering is used to show a relation between two events and gather more insight
into, for instance, situations where event A is followed by event B. Finally, using
trace filters enables users to remove or retain all the traces from the log that fit
the defined criteria. This filter can be used to, for example, show all the traces
that occur with a defined level of frequency, or all traces that have a specific
duration of cycle time [6].

In their paper on filtering out infrequent behaviour from event logs, Conforti
et al. [4] mention more types of event filters mainly used in process mining tool
ProM. First such filter is Filter Log by Attribute which removes all the events
where the value of the attribute is not equal to the value defined by the user. It
can also remove all the events that do not contain a certain selected attribute.
Next, Filter on Timeframe serves to filter out all the events which fall into the
desired timeframe. Some filters serve to filter out infrequent behaviour. One such
instance is a Filter Log using Simple Heuristics which can remove all the traces
that do not start and/or end with a particular event. It also can remove all
the events related to the specific process task by calculating frequencies of event
occurrence. Another example of the infrequent behaviour filter is Filter Log using
Prefix-Close Language. This filter eliminates all the traces that are not a prefix
of another prefix in the log by using a frequency threshold defined by the user.

While both abstraction and event log filtering techniques work well with
structured processes but have problems visualizing and discovering less struc-
tured ones, recently, new techniques have been emerging that try to bridge this
gap [9,12]. Trace clustering is a technique where the event log is divided into
homogeneous subsets which are then used to create separate process models.
This approach is able to cope with real flexible environments and improve pro-
cess mining results. However, trace clustering is shown to suffer from a significant
difference between clustering and the evaluation biases. The technique that tack-
les this problem, and manages to bridge this difference is Active Trace Cluster-
ing [12] inspired by principles of active learning. This approach borrows elements
from machine learning and utilizes selective sampling strategy which enables an
active learner to decide which instances to select based on their informativeness.
Most frequently used informativeness measure is the frequency of the trace.

Several process discovery algorithms deal with noise in the logs are developed.
The most well-known ones are Heuristics Miner [13], Inductive Miner [7], and
Fuzzy Miner [6]. Heuristics miner deals with noise by introducing frequency-
based metrics, while Inductive Miner uses two types of filters that accomplish
this. The first filter applies a similar approach to Heuristics Miner and removes all
the edges from the directly-follows graphs. In contrast, the second filter removes

140 M. Vidgof et al.

edges that the first filter did not remove by using eventually-follows graphs.
However, process models mined using Inductive miner are often oversimplified.
A different approach to the previous two is Fuzzy Miner. This algorithm filters
noise directly on the discovered model using the desired level of significance and
correlation thresholds defined by users.

As we can see, there are numerous techniques and algorithms which can
be used to simplify event logs and models to help users understand the core
process better. However, all of them are achieving this by filtering out infrequent
behaviour, considering it to be the noise in the event logs [1]. We argue that this
is a substantial limitation that needs to be addressed since infrequent behaviour
can carry important information which is lost by filtering it out of the log. For
example, having an insight into rare cases can help companies detect errors in
the process or even detect fraud. Furthermore, none of the presented techniques
considers that users might want to observe a process model that comprises both
the most frequent and infrequent traces of the process.

2.3 Requirements for a Filtering Technique

Against this background, we derive the following requirements for a filtering
technique.

RQ1. (Select variants). A filtering technique must allow the user to slice
the log. That is, it must offer a way of selecting process variants relevant to
the user.
RQ2. (Select activities). A filtering technique must be able to dice the log.
That is, it must offer a way of selecting the most relevant activities for the
user.
RQ3. (Multi-range filtering). A filtering technique must be able to slice
and dice on multiple ranges. That is, it must offer a way of selecting relevant
information form several frequency intervals.

3 Technique for Multi-range Filtering

In this section we describe our filtering technique that allows to learn process
models without ruling out infrequent behaviour. We show an overview of the
technique, provide the necessary definitions and then describe the technique in
detail.

3.1 Overview of the Technique

Our technique is summarized in Fig. 2. It takes as input an event log and two
user defined multi-ranges. A multi-range is a set of intervals of frequencies. As we
use frequencies, interval boundaries are from 0 to 1, where [0,0] means that we
get the least frequent variant or activity, and [0,1] means that that we consider
all possible behavior. The aforementioned multi-ranges are used respectively by

Cherry-Picking from Spaghetti 141

two filter types: i) variants filter; and ii) activities filter. These two filters can be
used independently or consecutively. In the latter case, their application must
follow the order: variants filter first. The output of each filter is a simplified event
log, complying with filtering criteria. This event log can be used by any process
mining technique to generate a process model which allows the user to analyze
the data.

Fig. 2. Overview of the approach

3.2 Preliminaries

Definition 1 (Event, activity). Let A be the universe of events. Each event
has attributes. Let ANbe the set of attribute names. For any event e ∈ A and
name n ∈ AN , #n(e) is the value of the attribute n for event e. An activity is
a specific attribute of an event, i.e., #activity(e) is the activity associated to the
event.

For example, #activity(e) = ‘Discuss solution’.

Definition 2 (Trace, variant, event log). A trace t = 〈e1, . . . , en〉 is a finite
sequence of events. An event log L ⊆ {t}∗ is a multi-set of traces, i.e. A process
variant is a subset of traces V ⊆ L. Variants group together traces which have
similarities to one another and differences to traces in other variants.

An example of trace is t = 〈a, b, c, d, e, f, g, h〉. An example of log is
L = [〈a, b, c, d, e, f, g, h〉20, 〈a, b, c, d, e, i, j, k, l〉5]. In this event log, the first trace
occurs 20 times whereas the second one occurs 5 times.

Definition 3 (Variant frequency, Activity frequency). Variant frequency
vf(V) is defined as the frequency occurrence of its constituting traces t ∈ V .
Activity frequency af(a) is defined as the sum of the number of times activity a
in the event log L.

For example, given L = [〈a, b, c, d, e, f, g, h〉20, 〈a, b, c, d, e, i, j, k, l〉5], then
vf(〈a, b, c, d, e, f, g, h〉) = 20 and af(a) = 25.

A filtering technique is a function f : L → L′ which transforms an event log
L into a simpler event log L′. Next, we use the given definitions to describe the
algorithms used by our technique.

142 M. Vidgof et al.

3.3 Implementation

Our implementation provides two filters: the variants filter and the activities
filter. These two filters are composable but their application is not commutative,
i.e. it has to be performed in strictly defined order. Namely, first the variants filter
is applied and then the activities filter is applied on the results of the variants
filter. In case the former one filtered out some variants, only the activities present
in the remaining variants can be used in the latter one.

We are interested in filtering at multiple ranges in the event log. These ranges
represent frequencies expressed by the user in the form of sets of intervals. That
is, R = {[min0,max0], [min1,max1], . . . [minn,maxn]} with mini <= maxi,
i = 1, . . . , n signifies that the user want to retain from the log an amount of
information that falls into either of the intervals [min0,max0], . . . , [minn,maxn].
Ranges can be applied to both filtering on the variants level - referred to as Rv -
and filtering on the activities level - Ra. Since the range boundaries are specified
as frequency percentages, the minimum value of mini is 0, and the maximum
value of maxi is 1. We also establish that [min,max] means that the boundaries
of the interval are included and (min,max) means the boundaries are excluded.
With this definition we can express the non-overlaps condition on the ranges
specified by the user as ∀i, j ∈ [0...n] ⇒ [mini,maxi] ∩ [minj ,maxj] = ∅. This
is a precondition for applying both the activity and the variants filters. In other
words, ranges may share boundaries but they must not overlap.

Our implementation consists of three main blocks. First, the ranges specified
by the user for each of the applied filters are checked for overlaps. If the ranges
are incorrect, an error is produced and the filtering is not applied.

Second, if the ranges are correct, the variants filter can be applied. The
variants are filtered according to Algorithm1.

Third, we can apply Algorithm 2 on the resulting log. First, it builds a list
of activities sorted by their frequency, analogous to Algorithm1. Then, a range
filter is applied in the same manner. Finally, we iterate over all traces in the
input log and rebuild them in such a way that only filtered activities remain in
the trace. The new trace is appended to the output log only in case it is not
empty, i.e. it contains at least one of the activities that should remain.

Algorithm 1. Filter variants
Input: Event log L. Ranges V = {(min0,max0) . . . (minm,maxm)}, m ∈ N0

Result: A new event log L′ ⊆ L
1 variants ← ∀ variants ∈ L;
2 variants ← sort variants by vfL(variant);
3 nr variants ← |variants|;
4 indices ←

m⋃

i=0

{n ∈ N0|n ∈
[round(mini × nr variants), round(maxi × nr variants)]};

5 filtered variants ← ⋃

i∈indices

variantsi;

6 L′ ← ∀trace ∈ L ∩ filtered variants;

Cherry-Picking from Spaghetti 143

Algorithm 2. Filter activities
Input: Event log L′. Ranges A = {(min0,max0), . . . , (minp,maxp)},

p ∈ N0

Result: A new event log L′′ ⊆ L′

1 activities ← dict(key = activity, value = afL(activity));
2 forall variant ∈ L′ do
3 forall activity ∈ variant do
4 if activity /∈ activities then
5 activities = activities ∪ {activity};
6 afL(activity) ← vfL(variant);
7 else
8 afL(activity) ← afL(activity) + vfL(variant)
9 end

10 end
11 end
12 activities ← sort activities by afL(activity);
13 nr activities ← |activities|;
14 indices ←

p⋃

i=0

{n ∈ N0|n ∈
[round(mini × nr activities), round(maxi × nr activities)]};

15 filtered activities ← ⋃

i∈indices

activitiesi;

16 L′′ ← [];
17 forall trace ∈ L′ do
18 new trace ← [];
19 forall activity ∈ trace do
20 if activity ∈ filtered activities then
21 new trace = new trace ∪ {activity};
22 end
23 end
24 if new trace �= ∅ then
25 L′′ ← L′′ ∪ {new trace};
26 end
27 end

4 Results

Next, we built a prototype to evaluate our technique. This section presents the
results. First, we describe the experimental setup. Then we demonstrate that
our technique addresses all the requirements by applying our technique to the
running example we provided in Sect. 2.1. Last, we show the usefulness of our
technique in a real-life log.

144 M. Vidgof et al.

4.1 Experimental Setup

We implemented our technique as a prototype. We built our prototype using the
PM4Py [3] library. It is a library for process mining implemented in the Python
programming language. We used Jupyter notebook for our implementation. We
tested on a laptop with Intel®Core ™ i7-8565U CPU @ 4.60 GHz x 4 machine
with 16 GB of DDR4 RAM and Linux kernel 4.15.0-88-generic 64-bit version.

By default, our tool takes an event log in XES format as input but it can be
also configured to accept event log in CSV format. The output is a filtered log,
again, in XES or CSV format. The output of our tool can be used with any other
process process mining tool. Apart from mining the resulting log in PM4Py, the
user can export it and work on it with other tools like ProM, Disco, Celonis, etc.
We used PM4Py and ProM in our evaluation. Our prototype is publicly available
as open source software on GitHub4.

4.2 Results on Artificial Log

We generated a log of our example process in Fig. 1 using BIMP5. The log con-
tains 1000 cases and was built with the following rules: i) positive response is
received with 80% probability; ii) negative response is received with 20% prob-
ability; iii) alternative solution exists with 80% probability; iv) no alternative
solutions exist with 20% probability.

In order to evaluate our technique, let us apply our prototype on this artifi-
cial log. As already mentioned, the two filters can be used both separately and
combined. First, we can use the variants filter to keep process behaviour that is
of interest to us. Let us say, we are interested in the most frequent and the least
frequent variants. To do that, we apply Algorithm1 and specify two ranges for
the filter: Rv = {[0, 0.15], [0.9, 1]}. It means we want to keep the 15% least fre-
quent paths as well as 10% most frequent ones. It is very important to interpret
these ranges correctly: by saying we take 15% most infrequent paths we do not
mean taking 15% of the cases. Instead, we mean here paths that are between
the 0th and the 15th percentile in a list of all variants in the input log sorted by
their frequency.

We do not want to filter out any activities at this point, thus we specify
one range Ra = [0, 1] for the activities filter, meaning we want to keep 100%
of activities. This gives us a filtered log L′ that we can use further either in
PM4Py or in any other tool. Figure 3 shows a Petri net resulting from applying
Heuristics miner in ProM on the filtered log and adapted for better readability.

However, we may also want to filter activities at this point. Note that as
we already applied the first filter on our log, only the activities present in the
selected variants will be available for us to pick from. Let us say, we want to
see the least frequent activities as well as the ones of medium frequency but
not the most frequent ones. In order to do that, we can set multiple ranges for

4 https://github.com/MaxVidgof/cherry-picker.
5 http://bimp.cs.ut.ee.

https://github.com/MaxVidgof/cherry-picker
http://bimp.cs.ut.ee

Cherry-Picking from Spaghetti 145

Fig. 3. Model from the artificial log in Table 1 with variants ranges Rv =
{[0, 0.15], [0.9, 1]} produced by heuristics miner and transformed into a Petri net.

the activities filter: Ra = {[0, 0.1], [0.1, 0.3], [0.4, 0.6]}. You can also see that the
range boundaries are allowed to be the same but an overlap between ranges is
not allowed.

Figure 4 shows the resulting model, again, adapted to improve readability.
As we can see, it only includes the activities that are in the specified range: 40%
least frequent activities and some activities with medium frequency. However,
the new model does not contain the most frequent activities as they are outside
of the specified range. This allows the user to concentrate on the less frequent
and presumably more interesting activities.

Fig. 4. Model from the artificial log in Table 1 with variants ranges Rv =
{[0, 0.15], [0.9, 1]} and activities ranges Ra = {[0, 0.1], [0.1, 0.3], [0.4, 0.6]} produced by
heuristics miner and transformed into a Petri net.

In conclusion, the proposed technique fulfills the requirements for an
information-preserving filtering technique. More specifically, the requirements
identified in Sect. 2.3 are addressed as follows.

RQ1. (Select variants) is addressed as the resulting model only shows the
least frequent behaviour and the most frequent one.

RQ2. (Select activities) is addressed by the activities filter. Here the less
frequent activities such as Evaluate acceptable alternative (J), Go to court (K)
as well as the ones with medium frequency like Complaint received are present
whereas the most frequent ones like Discuss solution (C) and Send apology (D)
are filtered out.

RQ3. (Multi-range filtering) is addressed by our novel range specifica-
tion approach. Instead of only selecting one threshold or manually picking some
variants, the user can now specify multiple non-overlapping frequency ranges,
and the union of sets of entities (variants or activities, depending on the filter) is
written to the filtered log. The models above not only contain the least frequent
traces like 〈A,B,C,D,E,I,J,C,D,E,I,J,C,D,E,I,J,K,L〉 but also the most frequent
one such as 〈A,B,C,D,E,F,G,H〉. However, the traces with medium frequency are
not included in the filtered log L′.

146 M. Vidgof et al.

4.3 Results on Real-Life Logs

Next, we applied our technique on a real-life event log of sepsis cases [8]. This
is a publicly available log containing more than 1000 traces and 15000 events,
each trace corresponding to a pathway through the hospital.

By exploring the log, we can find out that there are 846 different variants,
the most frequent of which includes only 35 cases that corresponds to slightly
more than 3% of all traces in the log. There are also 784 variants having only a
single conforming trace in the log. This means that the term frequent variant is
not applicable to this log. Thus, it makes little sense to apply the variants filter
on the log so we can set the range of the first filter to [0,1].

What is really of interest to us is the activities filter. While the filters of the
traditional process mining tools only allow to keep the most frequent activities,
which we will discuss in more detail in Sect. 5, our filter gives us more oppor-
tunities. Fir instance, we can decide to take a deeper look only into the least
frequent activities. For this, we would set the activities filter to a range of [0,
0.25]. But we can also add additional ranges to these filter. Let us say, apart
from the least frequent activities we are also interested in the one activity lying
at the 65th percentile of frequency. This is also possible, for this we just set the
second range to [0.65,0.65].

Fig. 5. Model from the real-life log with activities ranges [0,0.25] and [0.65,0.65] pro-
duced by heuristics miner and transformed into a Petri net

Now, if we apply the Heuristics miner on the filtered log and convert it to
a Petri net, we will get a model in Fig. 5. Again, here we only see the activities
that are in the specified range of frequency, and this picture cannot be achieved
by any other process mining tool.

Cherry-Picking from Spaghetti 147

5 Discussion

Process mining allows the users to turn event logs into process models. However,
real-life behaviour captured in these event logs of the process may be complex
and exhibit notable variability. This leads to so-called spaghetti models (Fig. 6a)
that are difficult to comprehend. Filtering reduces the complexity of such models
by limiting the number of traces used to produce the model or the number of
activities shown in the resulting model.

However, the users have little options to decide what information stays in the
model and what can be left out for the moment, since existing process mining
tools treat frequency as an ultimate measure of importance of a variant or an
activity. Due to this, they only offer the user to keep the most frequent activities
or paths. We claim, however, that a process can contain activities that are still
very important despite infrequency but the tools provide virtually no possibility
to include them and reduce complexity at the same time. Some of the tools
provide the option to focus on any single path - also possibly an infrequent
one - but then the big picture is lost and the process analyst has to manually
incorporate this path in the model in case it is important. Moreover, no tool
offers an option to focus on infrequent activities.

Our novel technique increases the utility of filtering event logs for the process
analysts by allowing to set multiple ranges of frequency both for filtering variants
and activities. Let us provide an illustrative example. Figure 6b shows a model
produced by PM4Py heuristics miner from the real-life log about sepsis cases that
we used in the previous section. Here, we used single-range filtering with Rv =
[0.65, 1] for the variants filter and Ra = [0.6, 1] for the activities filter. Figure 6c
is generated from a log where multi-range filtering was applied. In fact, only
a slight modification was done to the activities filter: Ra = {[0.3, 0.3], [0.6, 1]}.
This modification leads to the new activity Return ER - the patient returning
to the hospital - appearing in the model. This activity, judging from the name,
may be extremely important for the domain expert, although it does not happen
frequently.

As this example shows, our filtering technique fills the gap that other tech-
niques cannot fill. It does so by allowing the user to set multiple frequency ranges
for both variants and activities, which in turn makes it possible to focus on previ-
ously disregarded behaviour and gain insights about the process behaviour that
no other tool can provide. This can be beneficial in scenarios like monitoring
of safety-critical processes, or controlling for possible fraudulent behaviour in
companies. In such cases, it is of utmost importance that a filtering technique
does not leave out information about potentially harmful cases.

148 M. Vidgof et al.

(a) No filtering resulting in Spaghetti model

(b) single-range filtering (c) multi-range filtering

Fig. 6. Impact of filtering on the resulting process models

6 Conclusion

In this paper we provide a novel filtering technique which sacrifices infrequent
occurrence neither of process variants nor of process activities. We leveraged the
PM4Py libraries to build a prototype which can work with multiple event logs
formats. As well, the result of our technique can be input to several process
mining algorithms. We tested our technique both on a synthetic log generated
from a well known process model as well as with real-world event logs. Our
evaluation shows that we can obtain new insights which were either too hard to
implement or not offered by existing process mining tools.

Our work has limitations. At current stage, intervals are defined as lists of
tuples in Jupyter notebooks. This does not target end users with limited pro-
gramming skills. In future work, we plan to implement a user-friendly interface.
Furthermore, we plan to apply our technique in real-world scenarios, such as
auditing, in which multi-range filtering may unveil possible pattern of fraud or
non-compliance. Finally, we plan to extend state of the art techniques by enrich-
ing them with multi-range capabilities.

Cherry-Picking from Spaghetti 149

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

2. Augusto, A., et al.: Automated discovery of process models from event logs: review
and benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686–705 (2019)

3. Berti, A., van Zelst, S.J., van der Aalst, W.M.P.: Process mining for python
(PM4PY): bridging the gap between process - and data science. CoRR
abs/1905.06169 (2019)

4. Conforti, R., La Rosa, M., ter Hofstede, A.H.M.: Filtering out infrequent behavior
from business process event logs. IEEE Trans. Knowl. Data Eng. 29(2), 300–314
(2017)

5. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management, 2nd edn. Springer, Heidelberg (2018). https://doi.org/10.
1007/978-3-642-33143-5

6. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplifi-
cation based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75183-0 24

7. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38697-8 17

8. Mannhardt, F.: Eindhoven University of Technology. Dataset. Sepsis Cases - Event
Log (2016). https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460

9. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process
mining. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008. LNBIP, vol.
17, pp. 109–120. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
00328-8 11

10. Taleb, N.N.: The Black Swan: The Impact of the Highly Improbable, vol. 2. Ran-
dom house, New York (2007)

11. Veiga, G.M., Ferreira, D.R.: Understanding spaghetti models with sequence clus-
tering for ProM. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009.
LNBIP, vol. 43, pp. 92–103. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-12186-9 10

12. Weerdt, J.D., vanden Broucke, S.K.L.M., Vanthienen, J., Baesens, B.: Active trace
clustering for improved process discovery. IEEE Trans. Knowl. Data Eng. 25(12),
2708–2720 (2013)

13. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible Heuristics Miner (FHM). In: CIDM,
pp. 310–317. IEEE (2011)

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-642-33143-5
https://doi.org/10.1007/978-3-642-33143-5
https://doi.org/10.1007/978-3-540-75183-0_24
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.1007/978-3-642-00328-8_11
https://doi.org/10.1007/978-3-642-00328-8_11
https://doi.org/10.1007/978-3-642-12186-9_10
https://doi.org/10.1007/978-3-642-12186-9_10

	Cherry-Picking from Spaghetti: Multi-range Filtering of Event Logs
	1 Introduction
	2 Theoretical Background
	2.1 Motivation and Problem Description
	2.2 Filtering Techniques
	2.3 Requirements for a Filtering Technique

	3 Technique for Multi-range Filtering
	3.1 Overview of the Technique
	3.2 Preliminaries
	3.3 Implementation

	4 Results
	4.1 Experimental Setup
	4.2 Results on Artificial Log
	4.3 Results on Real-Life Logs

	5 Discussion
	6 Conclusion
	References

