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Abstract. Microservice Architecture (MSA) is an approach to archi-
tecting service-based software systems, which aims for decreasing ser-
vice coupling to enable independent service development and deploy-
ment. Consequently, the adoption of MSA is expected to particularly
benefit the scalability, maintainability, and reliability of monolithic sys-
tems. However, MSA adoption also increases architectural complexity
in service design, implementation, and operation. As a result, Soft-
ware Architecture Reconstruction (SAR) of microservice architectures
is aggravated. This paper presents a modeling method that systematizes
SAR of microservice architectures with the goal to facilitate its execu-
tion. The method yields reconstruction models for certain architecture
viewpoints in MSA to enable efficient architecture analysis. We validate
the method’s applicability by means of a case study architecture and
the assessment of its risk in technical debt using derived reconstruction
models.

Keywords: Microservice architecture · Software Architecture
Reconstruction · Model-driven engineering · Modeling languages

1 Introduction

Microservice Architecture (MSA) is a novel approach to architecting service-
based software systems that puts a strong emphasis on service-specific indepen-
dence [11]. MSA promotes to (i) tailor services to exactly one, distinct capability;
(ii) shift responsibilities in a service’s design, development, and deployment to
a single team composed of members with heterogeneous professional skills; and
(iii) keep services executable, testable, and deployable in isolation [10,11].

MSA is expected to benefit quality attributes like scalability, maintainability,
and reliability [11]. Thus, it is frequently used to refactor monolithic systems for
which these quality attributes decreased critically [16].
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However, MSA adoption increases architectural complexity significantly. For
example, MSA architects and developers need to make sure that microservices
do not become too fine-grained to lower network load [4]. Additionally, MSA
allows for choosing different technologies per technical concern and microser-
vice, which can increase learning curves for developers and the risk for technical
debt [15]. Moreover, MSA requires a sophisticated operation infrastructure to
enable independent service deployment and DevOps practices [17], as well as
the provisioning of components for, e.g., service discovery and monitoring [2].

The different degrees in complexity aggravate software architecture recon-
struction (SAR) [3] of MSA-based software systems [1]. While SAR is key
to architecture verification, conformance checking, and trade-off analysis [3],
research on SAR of microservice architectures is still formative [1,6].

In this paper, we present a modeling method that systematizes SAR of
microservice architectures with the goal to guide its structured execution. The
method builds upon our previous research on model-driven MSA engineering, in
which we developed a set of modeling languages for the specification of microser-
vice architectures [12,13] based on architecture viewpoints [3]. Our modeling
method exploits these languages to capture reconstructed architecture informa-
tion in reconstruction models. They aim to facilitate architecture analysis in the
context of MSA. We validate the applicability of our SAR modeling method by
means of a case study microservice architecture and the assessment of its risk in
technical debt [14] leveraging the derived reconstruction models.

The remainder of the paper is organized as follows. Section 2 presents back-
ground information on SAR and our languages for model-driven MSA engineer-
ing. Section 3 introduces our method for systematic SAR of microservice archi-
tectures. In Sect. 4, we apply the method to a case study architecture and assess
its risk in technical debt using the reconstruction models. Section 5 discusses our
approach. Section 6 presents related work and Sect. 7 concludes the paper.

2 Background

This section presents background information on SAR and an overview of our
modeling languages for viewpoint-based, model-driven MSA engineering.

2.1 Software Architecture Reconstruction

SAR is an iterative reverse engineering process that derives a representation of a
software architecture from artifacts like documentation or source code [3]. It aims
to document architecture implementations, which lack thorough documentation,
and enable subsequent architecture analysis. SAR consists of four phases [3]:

1. Raw view extraction: Gathers architecture information from architecture-
related artifacts. Each set of artifact-specific information can be considered a
view that represents certain architecture elements and their relations [3].

2. Database construction: Transforms views into a canonical representation and
stores them in a structured form like a database.
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3. View fusion and manipulation: Combines views to improve accuracy of recon-
structed information. For instance, a domain view may be associated with a
component view to document runtime processing of domain data.

4. Architecture analysis: Aims for answering hypotheses about architecture
implementations from reconstructed architecture information.

2.2 Viewpoint-Based Modeling of Microservice Architectures

In our previous works, we developed a set of modeling languages for model-driven
MSA engineering [12,13]. Each language focuses on an architecture viewpoint in
MSA and thus addresses the concerns of certain MSA stakeholder groups [3]. In
the following, we provide an overview of our modeling languages per viewpoint.

Domain Viewpoint. This viewpoint addresses the concerns of domain experts
and service developers in MSA engineering. Its Domain Data Modeling Language
[13] enables both stakeholder groups to collaboratively construct domain models
and augment them with patterns from Domain-driven Design (DDD) [7,11].

Technology Viewpoint. This viewpoint focuses on service developers and opera-
tors. Its Technology Modeling Language [12] allows for constructing technology
models that prescribe available technologies for microservice implementation and
operation. In addition, generic technology aspects may be modeled to augment,
e.g., microservices with technology-specific access means and configuration.

The viewpoint also comprises the Technology Mapping Language. Mapping
models extend domain and service models with technology information.

Service Viewpoint. The viewpoint’s Service Modeling Language [13] targets the
Dev perspective in DevOps-based MSA teams [10]. It enables service developers
to construct service models that specify microservices, interfaces, and endpoints.

Operation Viewpoint. The Operation Modeling Language [13] targets the Ops
perspective [10]. It enables service operators to construct operation models that
describe service deployment and infrastructure for, e.g., service discovery and
monitoring [2].

The modeling languages integrate an import mechanism to connect viewpoints’
models and create coherent architecture descriptions. For example, service mod-
els may import domain models to relate domain concepts with microservices.
Moreover, operation models may import service models to express service deploy-
ment and infrastructure usage.

3 A Modeling Method for Systematic Reconstruction
of Microservice Architecture

It is the goal of our modeling method to systematize SAR of microservice archi-
tectures. To this end, we explore the application of our viewpoint-based lan-
guages (cf. Subsect. 2.2), which were originally developed to enable model-driven
MSA engineering [13], for realizing the SAR process described in Subsect. 2.1.
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Figure 1 shows our SAR modeling method in a UML activity diagram. The
sequence of its six activities follows the relationships between MSA viewpoints
(cf. Subsect. 2.2). Each activity targets certain phases of the SAR process (cf.
Subsect. 2.1) and is described in the following subsections together with example
reconstruction models expressed in corresponding modeling languages.

Fig. 1. Definition of our SAR modeling method in a UML activity diagram.

3.1 Activity 1: Preparation

Each instance of the SAR modeling method starts with the Preparation activ-
ity (cf. Fig. 1). In its first action, a set of input files, from which the examined
microservice architecture shall be reconstructed, is selected. Such files may con-
tain, e.g., documentation, source code, build scripts, or configuration values [1].

In the second action, technology models (cf. Subsect. 2.2) are selected or
created. In case the technologies employed by the examined architecture are
known, already existing technology models, e.g., constructed in previous method
instances, may be reused. If no such models exist or the technology stack is
unknown, empty technology models are created. A reasonable default is the
creation of three technology models for domain-, service-, and operation-related
technologies to be discovered (cf. Subsects. 3.2 to 3.4).

The Preparation activity contributes to Phase 1 of the SAR process as they
identify the sources to extract architecture information from (cf. Subsect. 2.1).

3.2 Activity 2: Domain Modeling

This activity examines the selected input file set for domain concepts (cf. Fig. 1).
In object-oriented programming languages like Java, domain concepts may be
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realized by POJOs1, i.e., classes that implement concepts of the application
domain independent of external frameworks. Discovered domain concepts are
captured in reconstruction domain models via our Domain Data Modeling Lan-
guage (cf. Subsect. 2.2). Listing 1 shows a reconstruction domain model excerpt.

The reconstruction domain model excerpt captures a reconstructed
domain concept called Address as a structure with three string fields, i.e.,
streetAddress, postalCode, and city. The structure carries the semantics
of a DDD Value Object [7]. Value Objects are typically immutable and lack
a domain-specific identity. Hence, they may act as value containers for data
exchange.

The Address structure belongs to the customer Bounded Context. In DDD,
a Bounded Context is a means to cluster domain concepts and constrain their
scope [7]. Bounded Contexts are crucial to MSA, since each microservice should
be responsible for exactly one context [11]. Thus, when the input file set of
an instance of our SAR modeling method (cf. Subsect. 3.1) belongs to a single
service, the Domain Modeling activity should yield a domain model with only one
context. In case the input files concern several services, ambiguous assignment
of discovered domain concepts to contexts hints at wrong service tailoring.

During the examination of input files for domain concepts, technology-related
information, e.g., for mapping concept instances to database tables, may be
discovered. In this case, our modeling method delegates to a technology modeling
sub-activity via activity edge connector “B” (cf. Fig. 1). It handles the occurrence
of technology-related information in domain concepts and is shown in Fig. 2.

Fig. 2. Domain-related technology modeling sub-activity

Starting at connector “B”, the sub-activity checks if the discovered technology
information was already captured in a technology model. Otherwise, it is added
to a suitable existing technology model (cf. Subsect. 3.6) or to the domain-related
technology model created in Activity 1 (cf. Subsect. 3.1). Next, the domain con-
cept itself is captured in a domain model if it was not yet, which may happen,
e.g., for Java code where annotations like @Table from the Java Persistence

1 https://www.martinfowler.com/bliki/POJO.html.

https://www.martinfowler.com/bliki/POJO.html
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API (JPA)2 are placed before class definitions. Finally, the discovered technol-
ogy information is assigned to the captured domain concept within a mapping
model (cf. Subsect. 2.2). Listing 2 shows a reconstruction domain-related tech-
nology model and mapping model derived during the Domain Modeling SAR
activity.

Line 2 specifies an aspect in a technology model [12]. The aspect reflects
the discovered @Table annotation. The mapping model in Lines 4 to 6 imports
the technology model and assigns the aspect to the Address data structure (cf.
Listing 1) to prescribe address storage in a database table called “addresses”.

The Domain Modeling activity and its successor Activities 3 to 5 (cf. Sub-
sects. 3.3 to 3.5) cover SAR Phases 2 and 3 (cf. Subsect. 2.1). Discovered archi-
tecture information is transformed into canonical forms, i.e., models (Phase 2),
which are then combined via imports to reflect architectural relations (Phase 3).

3.3 Activity 3: Service Modeling

The Service Modeling activity (cf. Fig. 1) examines the input file set for microser-
vices and related information, which are then to be captured in service models
(cf. Subsect. 2.2). In Java-based microservice architectures such information may
be found, e.g., in classes that employ annotations for web-based data binding
like @RestController and @GetMapping from the Spring3 framework. Docker
Compose4 and build scripts also support microservice identification [1].

Similarly to Activity 2 (cf. Subsect. 3.2), discovered technology information
is handled in a dedicated sub-activity. This service-related technology modeling
sub-activity is entered via activity edge connector “E” (cf. Fig. 1). It proceeds
analogously to the domain-related technology modeling sub-activity of Activity 2
(cf. Fig. 2), but captures newly discovered microservices in service models and
returns to the current method instance via edge connector “F” (cf. Fig. 1).

Listing 3 shows reconstruction models that result during the Service Mod-
eling activity, i.e., a service-related technology model, a service model, and a
mapping model (cf. Subsect. 2.2).

2 https://jakarta.ee/specifications/platform/8/apidocs/javax/persistence/Table.
html.

3 https://spring.io.
4 https://docs.docker.com/compose.

https://jakarta.ee/specifications/platform/8/apidocs/javax/persistence/Table.html
https://jakarta.ee/specifications/platform/8/apidocs/javax/persistence/Table.html
https://spring.io
https://docs.docker.com/compose
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The technology model in Lines 2 to 4 comprises discovered protocols and
technology aspects [12]. Line 3 captures the HTTP protocol and JSON data for-
mat. Line 4 defines the PutMapping aspect for the eponymous Spring annotation.
Lines 6 to 8 show a service model, which imports the domain model in Listing 1
to refer to the Address domain concept. Lines 7 to 8 capture the discovered
CustomerCore service. Its management interface clusters the changeAddress
operation, whose address parameter is typed with the Address concept.

Lines 10 to 17 of Listing 3 show a mapping model. According to the exam-
ined input files, it specifies that the CustomerCore service (i) uses the HTTP
protocol from the service-related technology model (Line 14); (ii) has an HTTP
endpoint in the form of a URI path (Line 15); and (iii) enables invocation of
the changeAddress operation via Spring’s @PutMapping annotation (Lines 16
and 17).

3.4 Activity 4: Operation Modeling

This activity captures discovered operation nodes (cf. Fig. 1) in reconstruction
operation models (cf. Subsect. 2.2). Operation nodes may represent containers
for service deployment [10] or provide infrastructure capabilities to the examined
architecture [2]. From the input file set, containers and infrastructure nodes may
be discovered in Dockerfiles5, or Docker Compose or build files [1], respectively.

The Operation Modeling activity invokes a sub-activity when operation-
related technology is discovered (cf. activity edge connector “H” in Fig. 1). The
sub-activity proceeds analogously to the domain-related technology modeling
sub-activity (cf. Fig. 2), but captures newly discovered operation nodes in oper-
ation models. It returns to a method instance via connector “I” (cf. Fig. 1).

Listing 4 shows reconstruction models derived during the execution of the
Operation Modeling SAR activity.

5 https://docs.docker.com/engine/reference/builder/.

https://docs.docker.com/engine/reference/builder/
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Lines 2 to 8 of Listing 4 capture discovered technology information in an
operation-related technology model. Line 3 specifies the HTTP protocol with
the JSON format. Lines 4 to 5 model the discovered deployment technology
Docker6. Its default operation environment (Line 5) corresponds to the Docker
image discovered as being used to execute microservices. Lines 6 to 8 define the
Dockerfile aspect. It can be used in combination with the Docker deployment
technology to capture reconstructed Dockerfile contents in operation models.

Lines 10 to 17 of Listing 4 show a reconstruction operation model for the
CustomerCore microservice. The service’s reconstruction model (cf. Listing 3) is
imported in Line 10. The CC_Container uses the Docker deployment technology
(Line 13) from the operation-related technology model to deploy the service
(Line 14). In Line 15, the Dockerfile aspect captures discovered Dockerfile
contents, and Lines 16 and 17 determine a discovered container endpoint.

3.5 Activity 5: Technical Refinement

This activity focuses on discovering technology information (cf. Fig. 1), which
was yet not captured in Activities 2 to 4 (cf. Subsects. 3.2 to 3.4). For exam-
ple, the Spring framework allows for keeping microservice configuration separate
from source code in distinct configuration files. Thus, these files may not have
been examined in Activity 3 and are hence explicitly targeted by the Technical
Refinement activity. In the event of discovering a yet not reconstructed tech-
nology information, the technology modeling sub-activity corresponding to the
type of the new information is invoked via activity edge connectors “B”, “E”, or
“H” (cf. Fig. 1 and the descriptions of the sub-activities in Subsects. 3.2 to 3.4).

The Technical Refinement SAR activity focuses on extending previously cap-
tured reconstruction models. Thus, it specifically targets Phase 3 of the SAR
process (cf. Subsect. 2.1), i.e., the manipulation of derived architecture models.

6 https://www.docker.com.

https://www.docker.com
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3.6 Activity 6: Post-processing

The Post-processing activity comprises two SAR actions (cf. Fig. 1). The Refac-
tor action is concerned with refactoring reconstruction models and thus con-
tributes to SAR Phase 3 (cf. Subsect. 2.1). For example, when conducting Activ-
ities 2 and 3 (cf. Subsects. 3.2 and 3.3) it is convenient to collect all discovered
Bounded Contexts and their domain concepts, as well as all discovered microser-
vices, in a single domain and a single service model, respectively. However,
when adopting DDD in MSA engineering, domain and service models should
be aligned to Bounded Contexts [11]. That is, a domain model should specify
a single context and a related service model should only comprise microservices
being responsible for concepts from that context (cf. Listings 1 and 3). Another
Refactor task is to derive reusable technology models from domain-, service-,
and operation-related technology models (cf. Subsect. 3.1). For instance, both
service- and operation-related technology models in Listings 3 and 4 define the
HTTP protocol. Both protocol specifications may therefore be merged into a
technology model dedicated to clustering protocol specifications only.

The Post-processing activity concludes with executing actions, e.g., for archi-
tecture verification, conformance checking, or trade-off analysis [3], on recon-
struction models. Hence, it covers Phase 4 of the SAR process (cf. Subsect. 2.1).
Subsection 4.2 illustrates the processing of reconstruction models to assess indi-
cators for the risk in technical debt of reconstructed microservice architectures.

4 Validation

In the following, we validate the applicability of our SAR modeling method (cf.
Sect. 3) on a case study microservice architecture (cf. Subsect. 4.1). Moreover, we
illustrate the usage of the reconstruction models in the Post-processing activity
of our method (cf. Subsect. 3.6) on the example of assessing certain indicators
for the risk in technical debt of the reconstructed architecture (cf. Subsect. 4.2).

4.1 Executing the Modeling Method on a Case Study Architecture

We validated the applicability of our SAR modeling method with a case study
microservice architecture called “Lakeside Mutual” (LM)7. LM realizes an appli-
cation for a fictitious insurance company. For the validation of our modeling
method, we focused on LM’s backend microservices, because they implement
LM’s domain concepts and business logic. Table 1 describes the capabilities of
the examined microservices according to their documentation on GitHub (See
footnote 7).

The following paragraphs summarize, per activity (cf. Sect. 3), the results
from executing our SAR modeling method on the LM architecture. To enable
reproducibility, we provide a comprehensive validation package on GitHub8. It
includes the examined source code and the derived reconstruction models.
7 https://github.com/Microservice-API-Patterns/LakesideMutual.
8 https://github.com/SeelabFhdo/emmsad2020.

https://github.com/Microservice-API-Patterns/LakesideMutual
https://github.com/SeelabFhdo/emmsad2020
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Table 1. Overview of the backend microservices of the LM case study architecture.

# Service name Capabilities

1 Customer Core Manages LM customer data. The service
provides REST endpoints [8] to interact with
Services 2, 3, and 4

2 Customer Management
Backend

Enables employees of LM’s customer service to
interact with customers

3 Customer Self-Service
Backend

Allows customers for registering to an LM web
portal, change their address, and view their
insurance policy

4 Policy Management Backend Provides management functionalities to LM
employees regarding customers’ insurance policies

Activity 1: Preparation. We used the files in the source code folders of LM,
which correspond to the examined microservices (cf. Table 1), and the files on
the top-level folder hierarchy of LM’s repository (See footnote 7), e.g., “docker-
compose.yml”, as input file set. Together, the set comprised 160 files with 8858
lines of code (LOC). Moreover, we created empty technology models for Activi-
ties 2, 3, and 4 (cf. Subsect. 3.1), because we were not aware of the technologies
employed by LM.

Activity 2: Domain Modeling. We created a reconstruction domain model with
a Bounded Context for each LM backend microservice (cf. Subsect. 3.2 and
Table 1). The domain concepts in the contexts were reconstructed from Java
classes found in the corresponding services’ source code folders. Whenever recog-
nizable from their classes, DDD information were added to domain concepts. For
example, classes that represent Data Transfer Objects (DTOs) [5] were modeled
as DDD Value Objects, since in MSA they are used to prescribe data exchange
[13]. In total, we reconstructed 99 domain concepts from the input files.

We also discovered that LM uses JPA for database mapping of domain con-
cepts and Spring for DTO serialization. Hence, technology aspects were created
in the domain-related technology model (cf. Subsect. 3.2). They reflect, e.g.,
JPA’s @Table annotation and Spring’s @ResourceParam9 annotation. Aspects
were then assigned to domain concepts in mapping models (cf. Listing 2).

Activity 3: Service Modeling. We created a reconstruction service model for each
examined microservice (cf. Subsect. 3.3 and Table 1). Microservice elements were
reconstructed from Java classes that employed Spring annotations for web con-
trollers and mapping of HTTP methods (cf. Subsect. 3.3). For all four services,
we discovered 13 interfaces with 39 operations.

Based on the Spring annotations for HTTP mapping, we reconstructed 16
operations with an explicit REST endpoint (cf. Listing 3). The annotations

9 https://docs.spring.io/spring-hateoas/docs/0.25.3.BUILD-SNAPSHOT/api.

https://docs.spring.io/spring-hateoas/docs/0.25.3.BUILD-SNAPSHOT/api
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were captured in the service-related technology model and assigned to modeled
microservices via mapping models (cf. Listing 3).

Activity 4: Operation Modeling. This activity discovered that each microservice
source code folder of LM exhibits a Dockerfile (cf. Subsect. 3.4). Hence, we cre-
ated a reconstruction operation model for each LM backend service (cf. Table 1)
and specified a Docker container for each reconstructed microservice (cf. List-
ing 4). To capture Dockerfiles’ contents, we modeled a dedicated Dockerfile
technology aspect. From the source code of Service 4, we also reconstructed an
ActiveMQ10 broker as infrastructure node and the AMQP11 protocol, which was
added to the operation-related technology model (cf. Subsect. 3.4).

Activity 5: Technical Refinement. In this activity, we reconstructed information
from yet unconsidered input files (cf. Subsect. 3.5). For example, from Spring-
related configuration files like “application.properties” we extracted information
about URIs and ports of microservice containers (cf. Listing 4). Moreover, LM’s
“docker-compose.yml” file provided us with information about service interac-
tions. As a result, we extended the reconstruction models of Services 2, 3, and 4
(cf. Table 1) to require Service 1 for their operation. For this purpose, our Service
Modeling Language defines the required microservices statement [13].

Activity 6: Post-processing. We refactored the domain-, service-, and operation-
related technology models created during Activities 2 to 4 (cf. Subsect. 3.6). To
this end, we first merged all three models and removed duplicate information.
Next, we split the merged technology model into six models, each dedicated to a
certain technology. For example, the “java” technology model only clusters Java-
and Spring-related information, while the “activemq” and “docker” technology
models only focus on the eponymous technologies. The refactored technology
models can thus be reused in future instances of the SAR modeling method.

Next, we processed the reconstruction models for assessing certain indicators
of LM’s architecture concerning its risk in technical debt (cf. Subsect. 4.2).

4.2 Post-processing Example: Technical Debt Assessment

Toledo et al. discovered indicators for MSA-specific architectural technical debt
(ATD), which can be examined by analyzing service communication character-
istics [14]. We illustrate the processing of reconstruction models derived by our
SAR modeling method (cf. Subsect. 4.1) to assess these indicators and thus a
part of LM’s risk in technical debt. The following paragraphs describe, per ATD
type [14], our findings from processing LM’s reconstruction models.

10 https://activemq.apache.org.
11 https://www.amqp.org.

https://activemq.apache.org
https://www.amqp.org
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Too Many Point-to-Point (PtP) Connections. PtP connections between microser-
vices are identifiable from reconstruction models by two characteristics. First, an
infrastructure node realizes a communication layer [14] used only by a small subset
of services. Second, services not using the node require other services. LM defines
a communication layer with an ActiveMQ node used by Service 4 only (cf. Activ-
ity 4 in Subsect. 4.1). It is thus likely that Services 2 to 4, which require Service 1
(cf. Activity 5 in Subsect. 4.1), interact with it via PtP connections.

Business Logic Inside Communication Layer. Reconstruction domain and map-
ping models may indicate this ATD type. For instance, the Domain Data Mod-
eling Language (cf. Subsect. 2.2) allows for declaring function signatures in data
structures. Thus, functions conveying the semantics of data format conversions
hint at this ATD type [14]. These functions usually take a single input parameter
typed by a Value Object that reflects a DTO (cf. Activity 2 in Subsect. 4.1) and
return an instance of another data structure within the Bounded Context of the
function. Moreover, this ATD type is also indicated by protocol assignments in
mapping models (cf. Listing 3). Microservices, that convert requests for use by
other services, exhibit endpoints, whose protocols differ from the majority of ser-
vices in the same Bounded Context. Our analysis of the reconstruction models
showed that LM does not exhibit conversion domain functions or microservices.

No Standardized Communication Model. This ATD type is identifiable from
reconstruction domain models (cf. Subsect. 3.2). They capture business-related
communication models [14]. For example, data structures, which cannot be
unambiguously assigned to a single Bounded Context, violate the principle of a
canonical domain model [14]. We did not find such violations for LM.

Reconstruction domain models also allow for efficient analysis of the con-
sistency of shared domain concepts [11]. For instance, the domain models of
Services 2 to 4 (cf. Table 1) all specify the Value Object CustomerProfileDto
as a DTO for the CustomerProfileEntity of Service 1. LM thus exhibits the
risk that the Value Objects evolve differently from the Entity [7], although they
are meant to be shareable representations of it. Our analysis of the three ver-
sions of CustomerProfileDto showed, however, that they all exhibit the same
structure. Hence, they could be refactored into a single shared domain model.

Weak Source Code and Knowledge Management. Our SAR modeling method
does not directly support in assessing this ATD type. However, reconstruction
models provide a well-defined means for documenting views on microservice
architectures (cf. Subsect. 2.1). Consequently, they can accompany centralized
MSA documentation [14] as they capture architecture knowledge in a concise
format.

Different Middleware Technologies for Service Communication. Reconstruc-
tion technology and mapping models facilitate identification of this ATD type,
because they capture discovered communication technologies and their usage
(cf. Listing 3). LM employs different means for synchronous and asynchronous
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communication, i.e., REST and ActiveMQ (cf. Activities 3 and 4 in Subsect. 4.1).
We consider LM’s risk in this ATD type to only be slightly increased, as in MSA
it is common to employ at most one protocol for each communication kind [11].

However, our analysis of reconstruction mapping models showed that more
REST operations are invokable via an HTTP method (26) than explicit REST
endpoints were specified (16). Such inconsistencies in services’ communication
specifications are likely to cause communication failures at runtime.

5 Discussion

For the validation of our SAR modeling method (cf. Sect. 4), we executed it man-
ually on the input file set. We then ensured the correctness of the reconstruc-
tion models by comparing them with LM’s documentation and double-checking
their consistency with LM’s source code. Consequently, we perceive our method
to be basically applicable on microservice architectures. Nonetheless, a current
threat to validity is the increased error-proneness given the manual execution
of the method. However, this weakness may be mitigated by employing auto-
mated source code analysis techniques, particularly in SAR Activities 2 to 4 (cf.
Subsects. 3.2 to 3.4). For example, in case of Java-based microservice architec-
tures, class bodies and employed annotations, as well as Dockerfiles in general,
represent valuable analysis targets (cf. Sect. 4).

The input file set selected in Activity 1 of our SAR modeling method (cf.
Subsect. 3.1) depends on the availability of artifacts in the targeted microservice
architecture. For instance, due to the structure of the case study architecture,
the input file set for the method’s validation mainly consisted of Java files (cf.
Sect. 4). Hence, the reconstruction effort was relatively high, because all LOC
needed to be examined. However, source code files that reflect domain concepts or
service implementations may also be replaced, e.g., by concise models of database
structures or API documentation. Like the SAR process (cf. Subsect. 2.1), our
modeling method does not constrain input file types.

In its current form, the SAR modeling method directly aligns its activi-
ties to the viewpoints being addressed by our languages for model-driven MSA
engineering and their relationships (cf. Fig. 1 and Subsect. 2.2). As a result, the
method does not take the perspective of stakeholders like business analysts or
project managers into account, yet. To this end, the set of SAR activities would
need to be extended with modeling approaches tailored to stakeholders, who do
not directly participate in software engineering in the context of MSA. Further
research is necessary to identify the concerns of these stakeholders and derive
corresponding SAR activities.

Since our method anticipates reconstruction of technology information, the
degree of abstraction in reconstruction models may be comparatively close to
that of source code. However, due to the usage of mapping models, reconstruction
domain and service models are basically technology-agnostic (cf. Subsects. 3.2
and 3.3). Thus, the execution of sub-activities, which capture technology infor-
mation, may be omitted in Activities 2 and 3, depending on the goal of the
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conducted SAR process (cf. Subsect. 2.1) and technology information being irrel-
evant to its achievement.

6 Related Work

Alshuqayran et al. [1] conduct an empirical study on eight open source microser-
vice architectures to derive a metamodel for SAR in MSA. They also analyze a
set of heterogeneous input files that contain, e.g., Java source code, build scripts,
and configuration files (cf. Sects. 3 and 4). The derived metamodel is similar to
the ones of our Service and Operation Modeling Languages [13]. However, it does
not support the reconstruction of domain concepts. Furthermore, technologies
like Asynchronous Message Bus are fixed metamodel concepts, while with our
Technology Modeling Language [12] they can flexibly be integrated in recon-
struction models as they occur in input files. In addition, Alshuqayran et al.
do not present a concrete syntax for their metamodel, nor do they specify its
systematic usage in a SAR process like our modeling method.

MicroART [9] is a tool for reconstructing microservice architectures. It
extracts service-related information, e.g., services’ names, ports, and develop-
ers from source code repositories. Moreover, it performs a runtime analysis of
log files in order to determine containers, network interfaces, and service inter-
action relationships. From the gathered information, MicroART instantiates a
model from a specifically designed metamodel. Like our approach, MicroART
is model-based. On the contrary, it does not consider the Domain, Operation,
and Technology viewpoints (cf. Subsect. 2.2) when gathering architecture infor-
mation. Furthermore, a systematic method and concrete syntax for facilitating
architecture analyses is not presented.

Zdun et al. introduce an approach towards assessing MSA conformance [18].
Therefore, existing microservice architectures are reconstructed leveraging a
formal model with MSA-specific component and connector types. MSA con-
formance of reconstructed architectures is then assessed via metrics and con-
straints defined by the relationships between these types. Like for our SAR
modeling method, reconstructed formal models also need to be derived manu-
ally from existing architecture implementations. However, no modeling language
with MSA-specific abstractions is employed to facilitate the creation of the for-
mal models. Moreover, a systematic reconstruction method is not presented and
domain-specific information is not considered.

7 Conclusion and Future Work

In this paper, we presented a modeling method for systematic Software Architec-
ture Reconstruction (SAR) of software systems based on Microservice Architec-
ture (MSA). The method employs a set of modeling languages for model-driven
MSA engineering to capture reconstructed information in viewpoint-specific
architecture models. Consequently, method instances yield domain, technology,
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service, and operation reconstruction models for examined microservice archi-
tectures. These models aim to facilitate architecture analysis in the context of
MSA. We validated our SAR modeling method with a case study microservice
architecture and showed the applicability of derived reconstruction models on
the example of assessing certain indicators of the case study’s risk in technical
debt.

In future works, we plan to investigate the extension of our SAR modeling
method with automation capabilities. First, the derivation of the reconstruction
models may be facilitated by automated source code analysis. Second, post-
processing of reconstruction models would benefit from static model analysis
in order to automatically gather metrics like the diversity of communication
technologies, their usage by microservices, or the existence of duplicate domain
concepts. Moreover, we are currently working on a code generator to produce
source code and configuration files from reconstruction models. With the gener-
ator, architecture design and refactoring based on reconstruction models would
become feasible, because architecture models and architecture implementation
could be automatically kept consistent.
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