
Dynamically Switching Execution
Context in Data-Centric BPM

Approaches

Kevin Andrews(B), Sebastian Steinau, and Manfred Reichert

Institute of Databases and Information Systems, Ulm University, Ulm, Germany
{kevin.andrews,sebastian.steinau,manfred.reichert}@uni-ulm.de

Abstract. In contemporary business process management software, the
context in which a process is executed is largely static. While the execu-
tion of the process itself may be flexible, on-the-fly changes to the con-
text, i.e., physical or logical surroundings, are either limited or impos-
sible. This paper presents concepts for enabling context switching at
runtime for the object-aware process management paradigm. Such con-
text switches are enabled at various granularity levels, such as shifting
entire process instances to different systems, or migrating sub-processes
between different parent processes. We further contribute the algorithms
employed in our proof-of-concept implementation and discuss use cases in
which context switching capabilities can be utilized. Implementing these
advanced concepts helps showcase the maturity of data-centric BPM.

Keywords: Object-aware processes · BPM · Process context switching

1 Introduction

The context in which a process is executed determines essential factors at run-
time. These range from trivial ones, e.g. whether or not a process may be
executed, to complex factors, such as the selection of sub-process variants at
runtime. Making business process management systems (BPMS) context-aware
increases the flexibility of processes they execute by supporting business rules
that are enforced based on the context [1]. Informally, process context is defined
as “the minimum set of variables containing all relevant information that impacts
the design and execution of a business process” [2], which emphasizes the impor-
tance of context for process execution. However, contemporary BPMS do not
allow changing the execution context of running process instances, even though
this would increase flexibility. Consider a recruitment process from the HR
domain, in which applicants apply for a job offer, as an example in which flexibil-
ity could be increased by allowing for process context switches at runtime. More
specifically, the context of a job application process corresponds to the job offer
an applicant applies to, as well as meta information such as the department the
respective job is allocated to. Furthermore, consider an unsolicited application.
c© Springer Nature Switzerland AG 2020
S. Nurcan et al. (Eds.): BPMDS 2020/EMMSAD 2020, LNBIP 387, pp. 3–19, 2020.
https://doi.org/10.1007/978-3-030-49418-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49418-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-49418-6_1


4 K. Andrews et al.

In the first case, while the context of the application process seems to be clear
at the beginning, during the course of a job interview, it might be decided that
the applicant would better fit a different job at another department. In the sec-
ond case, parts of the context, such as a concrete job offer, are missing entirely
and can only be determined after the process starts. Although both cases can
be partially handled in an activity-centric BPMS by adding gateways and loops
into the process model, this would make the process model unnecessarily com-
plex. Therefore, most companies handle cases like these by forcing applicants to
resubmit their application to a different job offer, which, in future, might cause
confusion due to multiple applications from the same person.

This paper presents solutions to these issues for object-aware BPM, a data-
centric process management paradigm, by enabling dynamic process context
switches without requiring process model changes. The paper builds upon previ-
ous work that led to the development of the PHILharmonicFlows process engine
and contributes fundamental research into the notion of process context in data-
centric BPM paradigms. The fundamentals of object-aware BPM are explained
in Sect. 2. The notion of process context in object-aware processes is examined
in Sect. 3. The concepts and algorithms for enabling context switching are pre-
sented in Sect. 4. An overview of our prototype implementation is given in Sect. 5.
Section 6 discusses related work and Sect. 7 summarizes the paper.

2 Backgrounds

The PHILharmonicFlows implementation of object-aware BPM, a data-centric
BPM paradigm, has been under development for many years and serves as a test-
bed for the concepts presented in this paper [3,4]. PHILharmonicFlows takes
the idea of a data-driven BPMS and enhances it with the concept of objects. An
object describes the structure of its contained data and process logic at design-
time whereas an object instance holds concrete data values and executes the
process logic at runtime. This may be compared to the concept of a table and
its rows in a relational database. For each business object present in a real-
world business process one such object exists. We further examine the concept
of objects utilizing an Application object from the HR domain. As can be seen
in Fig. 1, the object consists of data, in the form of attributes, and a state-based
process model describing the data-driven object lifecycle.

As object-aware BPM is data-driven, the lifecycle execution of an instance
of the Application object is as follows: The initial state is Created. Once an
Applicant has entered data for attributes Job Offer, Applicant, and CV, he or
she may trigger the transition to the Sent state. This causes the Application to
change its state to Sent, in which it waits until the reviewing period is over,



Dynamically Switching Execution Context in Data-Centric BPM Approaches 5

Accepted: BooleanAccepted: BooleanAccepted: Boolean Feedback: StringFeedback: StringFeedback: String CV: FileCV: FileCV: File

Created Checked

Accepted

Rejected

Job OfferJob Offer ApplicantApplicant
AcceptedAccepted

Accepted == True

Accepted == False

Application

Lifecycle
Attributes

Assignment: Applicant Assignment: Personell Officer

CVCV

Sent

Job Offer: RelationJob Offer: RelationJob Offer: Relation Applicant: RelationApplicant: RelationApplicant: Relation

State

Step

Object

Fig. 1. Example object including lifecycle process (Application)

after which it automatically enters state Checked. As Checked is assigned to
a Personnel Officer, a user with that role must input data for the Accepted
attribute. Based on the value of Accepted, the state either changes to Accepted
or Rejected.

Application – CheckedApplication – Checked
API Programmer

applicantA@example.com

CV_ApplicantA.pdf

true

Job Offer

Applicant
CV
Accepted*

Fig. 2. Form

This fine-grained approach to modeling the process-
ing of a single business object increases complexity com-
pared to the activity-centric paradigm, where the min-
imum granularity of a user action corresponds to one
atomic “black box” activity, instead of an individual
data attribute. However, as one of the major benefits,
the object-aware approach allows for automated form
generation at runtime. This is facilitated by the lifecy-
cle process of an object, which dictates the attributes to be filled out before
the object may switch states. This information is combined with permissions,
resulting in a personalized form with interaction logic. An example of such a
form, derived from the Application object from Fig. 1, is shown in Fig. 2.

Review

Person

Application

Employee

Job Offer

Interview

1:n

1:n

1:n
1:n

1:n

1:n

U
se

r O
bj

ec
ts

O
bj

ec
ts

Fig. 3. Data model (Color
figure online)

Note that a single object and its resulting forms
are only part of a complete business process. To
allow for more complex business processes, many dif-
ferent objects and users may have to be involved
[3]. It is noteworthy that users are simply special
objects in the object-aware paradigm. The entire
set of objects present in a PHILharmonicFlows pro-
cess is the data model, an example of which can be
seen in Fig. 3, with objects representing users, e.g.
Employee, marked in green.



6 K. Andrews et al.

a@exa.com –
Programmer

API 
Programmer
(Job Offer)

a@exa.com
b@exa.com

b@exa.com –
Programmer

a@exa.com –
po2@comp.itb@exa.com –

po2@comp.ita@exa.com –
po1@comp.itc@exa.com –

po1@comp.it
(Review)

c@exa.com
(Person)

c@exa.com –
Programmer
(Application)

po1@comp.it
po2@comp.it

(Employee)

a@exa.com –
Programmerc@exa.com –

Programmer
(Interview)

Fig. 4. Data model
instance

In addition to the objects and users, the data model
contains information about the relations existing between
them. A relation constitutes a logical association between
two objects, e.g., a Job Offer and an Application. At
runtime, each of the objects may be instantiated many
times as object instances. Note that the lifecycle processes
present in the various object instances may be executed
concurrently at runtime, thereby improving overall sys-
tem performance. Relations may also be instantiated at
runtime, e.g., between an instance of a Review and an
Application, thereby associating the two object instances
with each other. The resulting meta information, express-
ing that the Review in question belongs to the Application,
can be used to coordinate the processing of the two object
instances with each other at runtime [3]. Figure 4 shows
an example of a data model instance at runtime.

The coordination of object instances is necessary as business processes often
consist of hundreds or thousands of interacting business objects [5], whose con-
current processing needs to be synchronized at certain states. As object instances
publicly advertise their state information, the current state of an object instance
(e.g. Sent or Checked) can be used for coordinating its processing (i.e., execu-
tion) with other object instances corresponding to the same business process
through a set of constraints and rules, defined in a separate coordination process
[3]. As an example, consider a simple subset of constraints stating the following:

1. An Application must be in state Sent for Reviews to be Prepared for it.
2. An Application may only be Checked once its corresponding Reviews are

either in state Reject Proposed or Invite Proposed.

A coordination process with these constraints is shown in Fig. 5. The tran-
sitions describe the kind of relation that exists between the objects referenced
by the steps on either side. For example, between steps Review - Reject Pro-
posed and Application - Checked, a bottom-up coordination exists, as there is a
bottom-up many-to-one relation between Review and Application in the data
model (cf. Fig. 3). This enables advanced coordinations, based on the informa-
tion delivered by relations at runtime, e.g. that at least 5 Reviews must be either
in states Reject Proposed or Invite Proposed for an Application to enter state
Checked [3].

3 Determining Object-Aware Process Context

This section examines the concepts we developed for enabling process context
switching. To reiterate, an object-aware process instance consists of a data
model instance that comprises many object instances. Further, there are relation
instances between associated object instances. Finally, the coordination process



Dynamically Switching Execution Context in Data-Centric BPM Approaches 7

Job Offer

Prepared

Job Offer

Prepared

Job Offer

Published

Job Offer

Published

Application

Created

Application

Created

Application

Sent

Application

Sent

Job Offer

Closed

Job Offer

Closed

Review

Prepared

Review

Prepared

Review

Reject Proposed

Review

Reject Proposed

Review

Invite Proposed

Review

Invite Proposed

Interview

Prepared

Interview

Prepared

Interview

Hire Proposed

Interview

Hire Proposed

Interview

Reject Proposed

Interview

Reject Proposed

Application

Accepted

Application

Accepted

Job Offer

Position Filled

Job Offer

Position Filled

Application

Rejected

Application

Rejected

Job Offer

Position Vacant

Job Offer

Position Vacant

Top-DownSelf Self

Bottom-Up

Top-Down

Self

Self

Transverse

Bottom-Up

Bottom-Up

Bottom-Up

Self-TransverseSelf

Self Bottom-Up

Bottom-Up

Bottom-Up

Bottom-Up

Self

Application

Checked

Application

Checked

Fig. 5. Coordination process (Recruitment - Job Offer)

instance monitors the object instances and coordinates their execution. Con-
sequently, in an object-aware process instance, many different processes, such
as lifecycle processes and the coordination process, are executed concurrently.
As one can not simply determine a single process context for this collection of
largely independent processes, this section presents four points of view, or scopes,
one may use to examine the combined process context.

3.1 Process Context in the Scope of a Lifecycle Process

When examining process context, the notion of scope becomes important. In the
scope of a lifecycle process, the context is the object instance the lifecycle process
is executed in, or, more specifically, the set containing all current attribute values
present in the object instance. This complies with the definition in [2]. As an
object-aware lifecycle process is entirely data-driven, the process context, i.e., the
object instance, contains all necessary execution information, i.e., the attribute
values. As an example, take the lifecycle process instance shown in Fig. 6.

Accepted: FalseAccepted: FalseAccepted: False Feedback:
“No Experience”
Feedback:
“No Experience”
Feedback:
“No Experience” CV: CV_ApplicantA.pdfCV: CV_ApplicantA.pdfCV: CV_ApplicantA.pdf

Created Checked

Accepted

Rejected

Job OfferJob Offer ApplicantApplicant
AcceptedAccepted

Accepted == True

Accepted == False

Applica on#3

Lifecycle
A ributes

Assignment: Applicant Assignment: Personell Officer

CVCV

Sent

Job Offer:
API Programmer
Job Offer:
API Programmer
Job Offer:
API Programmer

Applicant: 
applicantA@example.com
Applicant: 
applicantA@example.com
Applicant: 
applicantA@example.com

Fig. 6. Lifecycle process of an Application object instance

The lifecycle process is currently in state Rejected, as all attribute values from
the previous states have already been written. This includes attribute Accepted
with its value False, which forced the corresponding decision step in Checked to
trigger the transition to Rejected. In turn, this led to the current state of the



8 K. Andrews et al.

object instance being Rejected. Note that these attribute values always lead to
the same state if the lifecycle process is re-executed. In summary, if the scope
of the process context is limited to a lifecycle process, the context will solely
consist of attribute values. However, this scope is too limited for most purposes.

3.2 Process Context in the Scope of a Single Object Instance

The value of the Accepted attribute of Application#3, shown in Fig. 6, is set
to False. While a personnel officer may immediately accept or reject an appli-
cant, it is more realistic that the application is first reviewed and applicants
are invited for an interview before making a decision. In the data model of the
recruitment example (cf. Fig. 3), these reviews and interviews are represented
by objects, Review and Interview, with their own lifecycle processes. Note that
Review and Interview constitute so-called lower-level objects of Application, as
level-wise they are below Application in the data model due to the layouting of
the graph that is based on incoming and outgoing relations. This layout makes
the parent/child relations between objects evident, e.g., it becomes obvious from
Fig. 3 that Reviews belong to Applications. These relations, together with the
notion of scope, are crucial when determining process context.

As stated before, the smallest scope is given by a single lifecycle process, for
which the process context is the object it is associated with. The next larger
scope is the scope of an object instance, e.g., one instance of a Review object.
Clearly, a Review is always conducted by an Employee for a specific Application,
which can be deduced by examining the relations to the higher-level objects of
Review (cf. Fig. 3). Therefore, the process context of a Review object instance
is given by the Employee and Application object instances it is related to, i.e.,
all higher-level object instances of the Review. Taking the example from Fig. 4,
the process context of one of the Reviews is shown in Fig. 7a.

a@exa.com –
Programmer
(Application)

a@exa.com –
po1@comp.it

(Review)

po1@comp.it
(Employee)

(a) Direct Context
(Review)

a@exa.com –
Programmer
(Application)

API 
Programmer
(Job Offer)

a@exa.com
(Person)

a@exa.com –
po1@comp.it

(Review)

po1@comp.it
(Employee)

po2@comp.it
(Employee)

Transitive Relation

(b) Transitive Context
(Review)

a@exa.com –
Programmer
(Application)

API 
Programmer
(Job Offer)

a@exa.com
(Person)

a@exa.com –
po2@comp.ita@exa.com –

po1@comp.it
(Review)

po1@comp.it
po2@comp.it

(Employee)

a@exa.com –
Programmer
(Interview)

Transverse Relation

(c) Coordination Context
(Interview)

Fig. 7. Process contexts



Dynamically Switching Execution Context in Data-Centric BPM Approaches 9

Note that Fig. 7a is captioned “Direct Context”, as opposed to the “Tran-
sitive Context” shown in Fig. 7b. The difference between these notions is that
the transitive context includes all object instances that are higher-level object
instances of the review object instance, not just those that are directly related.
Note that even the transitive context of an object instance does not cover the
complete process context in the scope of a single object instance, as not all object
instances are contained that can have an impact on the execution of the object
instance in question.

Specifically, the coordination process, which determines the interactions
between object instances at runtime, provides additional context for object
instances. (cf. Fig. 5). In particular, the coordination process allows process mod-
elers to define constraints, such as that an Interview may only be Prepared if
there are Reviews in state Invite Proposed, which are transversely related to
them, i.e., via the same Application (cf. Fig. 5). The existence of such a constraint
means that the execution of an Interview object instance may be impacted by
a Review object instance, which is not be part of the transitive context of the
Interview, as Review is not a higher-level object of Interview. Therefore, the
coordination context is the most complete context in the scope of an object
instance, as it contains all other object instances that may impact this instance.
Figure 7c shows an example of the coordination context of an Interview object
instance.

3.3 Process Context in the Scope of Multiple Object Instances

This section examines process context in the scope of multiple related objects.
Note, for instance, that the process context of, e.g., an instance of the Appli-
cation object, would be comprised of (1) the higher-level object instances it
is related to (e.g., a Job Offer) as well as (2) other objects that may impact
the execution of the Application, as defined in the coordination process (e.g.,
Reviews). However, when switching this process context to a completely differ-
ent one, we need to consider that an Application is not an independent entity in
a data model instance. Simply deleting all relation instances from an Applica-
tion object instance, e.g. Application#3, and attaching it to a different Job Offer
object instance, e.g. from Job Offer API Programmer to Job Offer UI Program-
mer, would leave all the Review and Interview object instances as orphans in
the current data model instance. Therefore, concepts for switching the process
context of object instances must always consider the context of all dependent
object instances as well.



10 K. Andrews et al.

a@exa.com –
Programmer
(Applica on)

a@exa.com –
po2@comp.ita@exa.com –

po1@comp.it
(Review)

a@exa.com –
Programmer
(Interview)

Fig. 8. Dependent
object instances

The set of dependent object instances can be defined as
all transitively related lower-level object instances. Note
that this is an inversion of the logic for finding transitive
process context (cf. Fig. 7b). As an example, the aggre-
gation of the dependent object instances of an Applica-
tion object instance may be algorithmically determined by
recursively evaluating incoming relations from lower-level
object instances, the result of which is shown in Fig. 8.

In summary, the process context of an individual
object must always include its dependent object instances,
as switching the context of an individual object instance
with lower-level instances attached to it would lead to
orphaned object instances. In essence, this means recur-
sively calling the functions that determine the dependent object instances and
the coordination process context of all identified instances, which, in most cases,
leads to the entire data model instance (cf. Fig. 4) being identified as the pro-
cess context of an object instance. Consequently, we must examine the notion of
process context in the scope of a data model instance.

3.4 Process Context in the Scope of the Data Model Instance

In contrast to the concept of a “process instance” from the realm of activity-
centric BPMSs, an object-aware data model instance does not have any input
parameters or meta information it holds at runtime, apart from the object
instances, relation instances, and coordination process instances it comprises.
Consequently, as opposed to an activity-centric process instance, whose con-
text would include the input parameters provided to the process instance upon
its creation, a data model instance possesses no process context information.
Returning to the recruitment management process example, there might be mul-
tiple instances of the recruitment data model running at the same time across
different departments in a company. The context in which they are executed,
such as the department, is not captured in the data model. However, this also
means that there is no conceptual challenge in changing the context of a data
model instance. Specifically, moving the data model instance from one server to
another is merely an administrative challenge.

4 Enabling Dynamic Process Context Switching

In Sect. 3, we presented the scopes one has to consider when determining what
constitutes process context in an object-aware process. There is no simple way
of taking a single object instance or other conceptual element and determining
its process context in a general fashion, as, when including all constraints and
relations, the process context of a single object instance consists of all object
instances present in a data model instance. Without additional concepts, there
is no way to remove an object instance from its process context and re-insert



Dynamically Switching Execution Context in Data-Centric BPM Approaches 11

Algorithm 1. Re-Execute Lifecycle with altered Attribute Values

Require: oi, newAttributes[] � object instance, new attribute values
1: o ← getObject(oi) � get underlying object of oi
2: oitemp ← instantiate(o) � create an empty instance of o
3: for all a in oi.attributes[] do � copy O by change log replay
4: if a not in newAttributes[] then � if a is not being replaced
5: newAttributes[] ← a � append attribute values from oi
6: end if
7: end for
8: c ← getCoordinationProcess(oi)
9: for all a in newAttributes[] do � insert attribute values from O
10: oitemp.changeAttributeV alue(a) � each value advances the lifecycle, re-executing it step

by step
11: c.update(oi) � notify coord. process if state changes
12: end for
13: delete(oi)
14: oi ← oitemp � replace all pointers to original instance

it into another, as this would also change the context of other object instances,
causing inconsistencies. This section presents concepts to enable changing or
switching only parts of the process context of one or more object instances. We
facilitate this with (a) the help of algorithms that perform the actual context
changes, and (b) the inherent execution flexibility of object-aware BPM, which
allows fixing inconsistent processes at runtime with dynamically generated forms.

4.1 Enabling Changes to the Context of a Lifecycle Process

The basic building block for enabling process context changes in object-aware
process management is to enable context changes at the smallest scope possible,
i.e., the process context of a lifecycle process (cf. Sect. 3.1). To reiterate, the
process context of the lifecycle process being executed in an object instance cor-
responds to the supplied attribute values. As the lifecycle process is data-driven,
its execution is advanced when certain data becomes available. The context of
a lifecycle process, therefore, changes continuously, which drives process execu-
tion. This data-driven approach allows for the re-execution of a lifecycle process
instance based on a replay algorithm. To be more precise, the data-driven nature
of lifecycle processes ensures that the lifecycle process is re-executed in an iden-
tical fashion if the attribute values, i.e., the process context, remains unchanged.
However, as we want to be able to change attribute values and then re-execute
the lifecycle process, we extended the algorithm for re-executing a lifecycle pro-
cess instance with the ability to alter attribute values (cf. Algorithm1).

Note that it is not necessary to allow users to trigger this kind of process
context change, as it is merely considered a building block for the higher-level
user-facing context changes. Algorithm 1 is essential as it allows the lifecycle
process to be re-executed when the object instance it belongs to switches its
process context.



12 K. Andrews et al.

4.2 Enabling Changes to the Context of an Object Instance

The context of an object instance can be considered to be the data model
instance itself. However, it is possible to alter only specific parts of the process
context identified in Sect. 3.2, i.e., direct context, transitive context, and coor-
dination context. Starting with the direct context, we developed a concept for
enabling the exchange of directly related higher-level object instances, thereby
altering or even entirely switching process context. As an example consider an
Application related to a Job Offer. During a job interview, it turns out that
Applicant a@exa.com is better qualified for a different Job Offer, e.g. UI Pro-
grammer. The personnel officer po2@comp.it may want to switch the context of
the Application object instance from API Programmer to UI Programmer as
shown in Fig. 9.

po1@comp.it

a@exa.com –
Programmer
(Applica on)

API 
Programmer
(Job Offer)

a@exa.com
(Person)po2@comp.it

(Employee)

UI 
Programmer
(Job Offer)

- Remove
+ Add

a@exa.com –
po2@comp.it

(Review)
a@exa.com –
po1@comp.it

(Review)

a@exa.com –
Programmer
(Interview)

Fig. 9. Direct process con-
text switch

The changes necessary for switching the direct
process context of the Application object instance
shown in Fig. 9 are (a) removing the relation between
the Application object instance and the API Pro-
grammer Job Offer object instance and (b) adding
a new relation between the orphaned Application
object instance and the UI Programmer object
instance.

These changes are inherently supported by
object-aware processes. However, an impact anal-
ysis becomes necessary to determine which steps
are required to restore consistency. As, up until
now, we only take the direct context of the sin-
gle object instance into account, the analysis must
merely check that the new relation to UI Program-
mer is instantiatable, adhering to any cardinality
or coordination constraints the data model may
impose. An example of a cardinality constraint could
be that each Job Offer object instance may have at most five Application object
instances attached to it. Furthermore, a coordination constraint preventing the
creation of the new relation could be that the UI Programmer object instance
is not in state Published yet, which is necessary for Applications to be attached
to it, according to the coordination process shown in Fig. 5. If none of these
constraints is violated by the new relation, it may be created, causing the direct
context of the Application to be switched to the UI Programmer object instance.

Algorithm 2 ensures that the context switch adheres to the constraints
imposed on relations between, e.g., Job Offers and Applications, i.e., the
object instances affecting the direct context of the Application object instance.
Although Algorithm 2 is not overly complex, it is an important foundation that
ensures that the direct context may be switched, thereby ensuring consistency
of the data model instance after the process context change. If the algorithm
finds a violation, the process context of the Application must not be switched.



Dynamically Switching Execution Context in Data-Centric BPM Approaches 13

Algorithm 2. Check Direct Context Constraints
Require: ois, oit � source and target of new relation
1: os ← getObject(ois) � get underlying object of ois
2: ot ← getObject(oit) � get underlying object of oit
3: r ← getRelation(os, ot) � get relation between os and ot

4: if count(oit.incomingRelations) >= r.maxCard then
5: return false � violated relation cardinality
6: end if
7: c ← getCoordinationProcess(oit)
8: for all s in c.steps do
9: if s.object = os and s.state = ois.currState then
10: if constraintPreventsRelation(s, ois, oit) then
11: return false � violated coordination constraint
12: end if
13: end if
14: end for
15: return true � allow relation instance between ois and oit

Application

Accepted

Application

Accepted

Job Offer

Position Filled

Job Offer

Position FilledBottom-Up Bottom-Up

Fig. 10. Coordination process
(cf. Fig. 5)

The direct process context change shown in
Fig. 9 may be also viewed from a different angle.
The change clearly impacts the context of the
Application object instance, but it impacts the
coordination context of both Job Offer instances
as well. Assuming that the lifecycle process of the
Application object instance is in state Accepted
when the context switch occurs, the excerpt of
the coordination process shown in Fig. 10 would

force changes to the Job Offers UI Programmer and API Programmer. The
new context, i.e., Job Offer UI Programmer, then has a lower-level Application
object instance in state Accepted, which allows it to transition to state Position
Filled as shown in the coordination process excerpt in Fig. 10. This causes the
coordination process to inform the UI Programmer object instance that it may
advance to state Position Filled as soon as the context change creating the new
relation instance occurs.

Conversely, the old context, i.e., Job Offer API Programmer, no longer has
an Application in state Accepted related to it. Therefore, if it is already in state
Position Filled, this switch would introduce an inconsistency that needs to be
resolved. This can be facilitated by re-executing the lifecycle process instance
of the API Programmer object instance. As shown in Algorithm1, a lifecycle
process instance must always notify the coordination process when a state change
occurs. This is, however, just part of the regular execution of a lifecycle process.
Furthermore, this is explicitly done when re-executing a lifecycle process as part
of a coordination context change, to ensure that state transitions, which were
allowed in the old coordination context, are still valid in the new one. To be more
precise, for the example of the Accepted Application being removed from Job
Offer API Programmer, the re-execution of the Job Offer would be blocked in a
state before Position Filled, as the coordination process no longer has knowledge
of an Accepted Application attached to Job Offer API Programmer. Once the
coordination process has been notified and all affected object instances were



14 K. Andrews et al.

advanced or reverted into the appropriate states according to the process context
changes, they were impacted by, process consistency is restored. Note that a
change to the context of one object instance might have a cascading impact on
others, requiring a re-execution or lifecycle advancement to restore consistency.

4.3 Enabling Context Changes to Multiple Object Instances

The final, and most complete, case of process context change is switching the pro-
cess context of multiple object instances at the same time. We re-use the example
of moving an Application object instance from one Job Offer to another. How-
ever, this time we assume that the new process context for the Application is a
Job Offer in a different data model instance, albeit instantiated from the same
data model. Furthermore, we employ the concept of dependent object instances
presented in Sect. 3.3 to move the applicant, i.e. Person a@exa.com, his Appli-
cation, and all other dependent object instances (Reviews, Interviews) in one
atomic operation. Figure 11 shows the concrete example of moving a@exa.com
to a different data model instance containing Job Offer C++ Programmer.

b@exa.com –
Programmer

API 
Programmer
(Job Offer)

b@exa.com
a@exa.com

(Person)

b@exa.com –
po2@comp.ita@exa.com –

po2@comp.ita@exa.com –
po1@comp.it

(Review)

po1@comp.it
po2@comp.it

(Employee)

a@exa.com –
Programmer
(Interview)

C++ 
Programmer
(Job Offer)

c@exa.com –
po3@comp.it

(Review)

c@exa.com
(Person)

c@exa.com –
Programmer
(Application)

po3@comp.it
(Employee)

c@exa.com –
Programmer
(Interview)

a@exa.com –
Programmer
(Application)

Fig. 11. Switching context of multiple object instances

While the process context changes in the previous examples were rather small
in scope, e.g., consisting of the replacement of a single relation to a parent object
instance by another, the above change is conducted in the scope of multiple
object instances at the same time. Ensuring consistency before the change would
require the user to determine replacement relations for all relation instances to
objects not existing in the new data model instance. As an example, consider the
relation between one of the Review object instances and the Employee assigned
as a reviewer, e.g. po2@comp.it (cf. Fig. 11). In the new data model instance (i.e.
the other department), po2@comp.it does not exist, causing the relation instance



Dynamically Switching Execution Context in Data-Centric BPM Approaches 15

between the Review and the Employee to be deleted. One way to solve this is to
require the determination of replacement relations for each deleted relation, as
previously suggested. Instead, once again, we leverage the flexible (re-)execution
supported by object-aware lifecycle processes to elegantly solve this problem.

To be precise, we delete the relations to all objects not present in the new
data model instance. Furthermore, we delete the attribute values referencing
the relations, e.g. the Job Offer attribute in the Application object (cf. Fig. 6).
Moreover, due to the presence of the Job Offer relation attribute as a step in
the lifecycle process, an instance of the Application object must not progress
past state Created without a value for Job Offer being provided. Coincidentally,
a value for an attribute with the data type “relation” is provided by creating
a relation to another object and vice versa. However, deleting the value of an
attribute, once execution has progressed past the state it is required in, causes
a lifecycle inconsistency. For example this happens when the Applications and
Reviews are moved between the two data model instances, causing the relations
to the no longer existing Employees and Job Offers to be deleted. If we trigger
a re-execution of the lifecycle process instance of all object instances with now
deleted relation instances (cf. Algorithm 1), the data-driven lifecycle process
reacts by executing, for example, the Application object instance until the end
of the Created state, and then waiting for user input.

Application – CreatedApplication – Created

applicantA@example.com

CV_ApplicantA.pdf

Job Offer*
Applicant
CV
Accepted

Fig. 12. Application after
context switch

Here, the dynamic form generation capabili-
ties (cf. Sect. 2) are utilized. After changing the
process context, the Application is missing a Job
Offer. The form shown in Fig. 12 is generated and
added to the worklist of a personnel officer, allowing
him to select the C++ Programmer. Once the Job
Offer is selected, the data-driven lifecycle execution
advances the Application object to its previous state.
Similar forms are generated for both Reviews, and

once all three forms are completed, process consistency is restored.

5 Prototypical Implementation and Real-World
Use-Cases

In the PHILharmonicFlows implementation of object-aware process manage-
ment, the higher level conceptual elements are implemented as microservices.
For each object instance, relation instance, or coordination process instance, one
microservice instance is created at runtime, turning the implementation into a
fully distributed object-aware process management system.



16 K. Andrews et al.

Fig. 13. PHILharmonicFlows UI

Note that all the information from
the various microservices can be uti-
lized at runtime to generate an entire
user interface, complete with naviga-
tion and form elements for a specific
data model – a goal of the object-
aware process management paradigm
from the very beginning. A screen-
shot of the current user interface
for end-users (with demo data) is
shown in Fig. 13. The engine and
user interface are currently evaluated
in a large scale real-world deploy-
ment in the context of a course
with hundreds of students, utilizing
an object-aware process representing
an e-learning platform called PHoo-
dle (PHILharmonicFlows Moodle)1.
This study enables us to evaluate scalability, usability, and advanced concepts
such as dynamic context switching. While, for the sake of brevity, we solely
offered examples in the context of the recruitment data model, there are numer-
ous scenarios from different domains in which the concepts from object-aware
process management can be useful. We found multiple use-cases in our various
data models, such as the re-assignment of a transport job from a robot to a
human worker in our logistics research2, or a student assigned to the wrong
lecture in PHoodle, both powered by the PHILharmonicFlows engine.

In the context of the real-world PHoodle deployment, we had cases of students
wishing to switch their tutorials, while retaining access to completed worksheet
submissions. As we had not thought of this possibility at design-time, it is a
perfect use-case for context switching, as it may be employed to move an Atten-
dance (representing a student), with all related Submissions, from one Tutorial
to another. Our experience has shown that supporting this additional dimen-
sion of flexibility empowers users by offering them additional actions without
increasing model complexity. For example, in PHoodle, we hide the complexity
of reassigning a Student from one Tutorial to another by offering an Employee
viewing object instance representing the Student a simple drop-down menu gen-
erated by the PHILharmonicFlows form logic for selecting a different Tutorial.
When a Tutorial is selected, PHILharmonicFlows completes the process context
change on all dependent object instances, deleting and creating relations, re-
executing lifecycle processes, and updating the coordination process, in a single
click.

1 Feel free to log in to the live instance at https://phoodle.dbis.info
Username: edoc.demo@uni-ulm.de Password: edoc.demo.

2 https://www.youtube.com/watch?v=oGKjK7K76Ck.

https://phoodle.dbis.info
https://www.youtube.com/watch?v=oGKjK7K76Ck


Dynamically Switching Execution Context in Data-Centric BPM Approaches 17

6 Related Work

LateVa [6], enables automated late selection of process fragments based on pro-
cess context. In essence, a process model does not define all possible variations
but contains variation points that are replaced with process fragments at run-
time depending on the process context. The actual replacement is done by the
“fragment recommender”, based on data mined from historical process instances.

The inclusion of “pockets of flexibility” into workflow models is proposed
in [7]. Each pocket contains multiple individual process fragments that can be
rearranged at runtime according to the needs of the process context, allowing
for greater flexibility at certain points. CaPI (context-aware process injection)
[8] analyses process context and allows injecting process fragments into exten-
sion areas. These fragments and the context in which they may be injected are
determined at design-time using a sophisticated modeling tool.

The approaches presented in [6–8] follow a similar approach, limiting process
context flexibility to predefined regions of a process model. Our approach aims
to remove this limitation through relaxation. Instead of defining regions in which
flexibility is possible, we allow for context changes except for in some situations.

Controlled evolution of process choreographies are examined in [9]. A process
choreography describes the interactions of business processes with partner pro-
cesses in a cross-organizational setting. [9] examines ways to gauge the impact
of changes to processes with respect to their partner processes. This is a similar
problem to the one examined in this paper, determining how to understand the
impact that process context changes have on other object instances that are part
of the same data model instance.

The concept of batch regions is introduced in [10]. A batch region is a part of
a process model that may be executed in a single batch if there are other process
instances available corresponding to the same context. Similar capabilities may
be introduced to object-aware process management by extending the context
switching concepts detailed in this paper to aggregate different object instances
with similar contexts and executing them in batches.

Finally, [11] presents the context-oriented programming (COP) paradigm,
which introduces a number of interesting aspects that could be incorporated
into our future research. Combining our contribution with COP, which allows
for objects in a programming language to behave differently depending on the
context they are executed in, would be an interesting research direction. COP
introduces layering for grouping behavioral variants of code with selectors that
choose the correct variant after a context switch occurs at runtime. Similar
notions could be used to extend the research presented in this paper.



18 K. Andrews et al.

7 Summary and Outlook

This paper used the running example of a recruitment data model to examine
how process context can be freely switched and changed in object-aware pro-
cesses. We presented a detailed examination of the notion of process context
in object-aware processes, as well as the concepts and algorithms we developed
to enable process context changes in our proof-of-concept implementation of
an object-aware process management system – PHILharmonicFlows. In essence,
we leverage the highly flexible execution provided by the object-aware process
management paradigm to adapt running process instances to incurred process
context changes. Some issues are still open, such as finding a generic solution
for cases in which external services (e.g. payment services or e-mails) are used.
Nonetheless, the presented concept constitutes an advancement for data-centric
BPM. Together with our work on ad-hoc changes [4], the presented research
brings us a step closer to a fully fledged data-centric process engine with which
we can demonstrate the many flexibility advantages that data-centric processes
have, thereby increasing the perceived maturity of data-centric BPM.

Acknowledgments. This work is part of the ZAFH Intralogistik, funded by the Euro-
pean Regional Development Fund and the Ministry of Science, Research and the Arts
of Baden-Wuerttemberg, Germany (F.No. 32-7545.24-17/3/1).

References

1. Saidani, O., Nurcan, S.: Context-awareness for business process modelling. In: 3rd
International Conference on Research Challenges in Information Science, pp. 177–
186. IEEE (2009)

2. Rosemann, M., Recker, J.C.: Context-aware process design. In: 18th International
Conference on Advanced Information Systems Engineering (CAiSE) Workshops,
pp. 149–158 (2006)

3. Steinau, S., Andrews, K., Reichert, M.: The relational process structure. In:
Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 53–67.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0 4

4. Andrews, K., Steinau, S., Reichert, M.: Enabling runtime flexibility in data-centric
and data-driven process execution engines. Inf. Syst. (2019)

5. Müller, D., Reichert, M., Herbst, J.: Flexibility of data-driven process structures.
In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 181–192. Springer,
Heidelberg (2006). https://doi.org/10.1007/11837862 19

6. Murguzur, A., Sagardui, G., Intxausti, K., Trujillo, S.: Process variability through
automated late selection of fragments. In: Franch, X., Soffer, P. (eds.) CAiSE 2013.
LNBIP, vol. 148, pp. 371–385. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38490-5 35

7. Sadiq, S., Sadiq, W., Orlowska, M.: Pockets of flexibility in workflow specification.
In: S.Kunii, H., Jajodia, S., Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, pp.
513–526. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45581-7 38

8. Mundbrod, N., Grambow, G., Kolb, J., Reichert, M.: Context-aware process injec-
tion. In: Debruyne, C., et al. (eds.) OTM 2015. LNCS, vol. 9415, pp. 127–145.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26148-5 8

https://doi.org/10.1007/978-3-319-91563-0_4
https://doi.org/10.1007/11837862_19
https://doi.org/10.1007/978-3-642-38490-5_35
https://doi.org/10.1007/978-3-642-38490-5_35
https://doi.org/10.1007/3-540-45581-7_38
https://doi.org/10.1007/978-3-319-26148-5_8


Dynamically Switching Execution Context in Data-Centric BPM Approaches 19

9. Rinderle, S., Wombacher, A., Reichert, M.: On the controlled evolution of pro-
cess choreographies. In: 22nd International Conference on Data Engineering, ICDE
2006, p. 124. IEEE (2006)

10. Pufahl, L., Meyer, A., Weske, M.: Batch regions: process instance synchronization
based on data. In: 18th International Enterprise Distributed Object Computing
Conference, pp. 150–159. IEEE (2014)

11. Hirschfeld, R., Costanza, P., Nierstrasz, O.M.: Context-oriented programming. J.
Object Technol. 7(3), 125–151 (2008)


	Dynamically Switching Execution Context in Data-Centric BPM Approaches
	1 Introduction
	2 Backgrounds
	3 Determining Object-Aware Process Context
	3.1 Process Context in the Scope of a Lifecycle Process
	3.2 Process Context in the Scope of a Single Object Instance
	3.3 Process Context in the Scope of Multiple Object Instances
	3.4 Process Context in the Scope of the Data Model Instance

	4 Enabling Dynamic Process Context Switching
	4.1 Enabling Changes to the Context of a Lifecycle Process
	4.2 Enabling Changes to the Context of an Object Instance
	4.3 Enabling Context Changes to Multiple Object Instances

	5 Prototypical Implementation and Real-World Use-Cases
	6 Related Work
	7 Summary and Outlook
	References




