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Abstract. Advancements in Long Short Term Memory (LSTM) Net-
works have shown remarkable success in various Natural Language Gener-
ation (NLG) tasks. However, generating sequence from pre-specified lexi-
cal constraints is a new, challenging and less researched area in NLG. Lex-
ical constraints take the form of words in the language model’s output to
create fluent and meaningful sequences. Furthermore, most of the previ-
ous approaches cater this problem by allowing the inclusion of pre-specified
lexical constraints during the decoding process, which increases the decod-
ing complexity exponentially or linearly with the number of constraints.
Moreover, some of the previous approaches can only deal with single con-
straint. Additionally, most of the previous approaches only deal with single
constraints. In this paper, we propose a novel neural probabilistic archi-
tecture based on backward-forward language model and word embedding
substitutionmethod that can catermultiple lexical constraints for generat-
ing quality sequences. Experiments shows that our proposed architecture
outperforms previous methods in terms of intrinsic evaluation.

Keywords: Recurrent Neural Networks · Natural Language
Generation · Language Models · Lexical constraints · Word embedding

1 Introduction

Recently, Recurrent Neural Networks (RNNs) and their variants such as Long
Short Term Memory Networks (LSTMs) and Gated Recurrent Units (GRUs)
based language models have shown promising results in generating high quality
text sequences, especially when the input and output are of variable length. RNN
based Language Models (LM) have the ability to capture the sequential nature
of language, be it for words, characters or whole sentences. This allows them
to outperform other language models in sequence prediction and classification
tasks. To learn the distributed representation of data efficiently by RNNs, mul-
tiple methods have been proposed such as word embeddings. It mainly include
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Continuous Bag-Of-Words (CBOW) and Skip-Gram (SG) model [10,12]. CBOW
model predicts the word as vector at a current time step, given preceding and
proceeding context word vectors. The SG model is opposite in approach to pre-
dict the representation of target word vector, but same in the architecture.

Existing methods to incorporate constraints in the output sentences or gen-
erating lexical constrained sentences have multiple limitations. [13] proposed
variants of backward-forward generation approach which can not handle Out-of-
Vocabulary (OOV) words and only generate sentences with single lexical con-
straint. Similarly, [8] proposed a synchronous training approach to generate
lexical constrained sequences with Generative Adversarial Networks (GANs).
Moreover, various lexical constrained decoding methods have been proposed for
constrained sequence generation through the extension of beam search to allow
the inclusion of constraints [1,6]. Such lexical constrained decoding methods do
not examine what specific words need to be included at the start of generation,
but try to force specific words at each time step during the generation process
at a cost of high computational complexity [14].

The remainder of this paper is organized as follows. We review the related
work in Sect. 2. Section 3 describes our proposed architecture and Sect. 4 explains
the dataset, experimental setup, comparison models and evaluation criteria.
Section 5 gives in detail result analysis, finding and discussions about future
directions. Finally, Sect. 6 concludes the paper.

2 Literature Review

In general, the purpose of LM is to capture the regularities of a language as
well as its morphological and distributional properties. LM aims to compute the
probability of a word sequence in order to estimate the maximum likelihood of
an upcoming word to be predicted in the sequence. LM learns the distributed
representation of words to interpret semantic and syntactic relations between
the sequence of words. In past, RNN has shown progressive success in language
modeling over traditional methods based on statistical counts. The ability of
RNN Language Model (RNNLM) to learn long term contextual dependency and
capturing inherited sequential nature of language makes it better than other
traditional methods [11]. Particularly in sentence generation task, RNNLM per-
formed well because of its capability of learning highly complicated structures
of language. RNNLM makes Maximum A Posteriori (MAP) estimation for pre-
dicting words in a sentence [17].

Mou et al. first proposed multiple variants of Backward and Forward (B/F)
language models based on GRUs for constrained sentence generation [13]. For
training the B/F language models, sentences were split by choosing a word ran-
domly. This resulted in the positional information of words getting smoothed out
while generating sentences, and thus they lose the positional information of the
word. This method of choosing a split word badly influences the joint probability
estimation of a sentence.
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Liu et al. proposed an algorithmic framework dubbed as Backward and For-
ward Generative Adversarial Networks (BFGAN) for constrained sentence gen-
eration [8]. BFGAN constitutes three modules; a discriminator, LSTM based
backward and a forward generator with attention mechanism. The purpose of
discriminator is to distinguish the real sentences from constrained sentences gen-
erated by machine and to guide the joint training of both backward and forward
generators by assigning them reward signals. The backward generator takes lexi-
cal constraint as an input, which can be a word, phrase or fragment and generate
the first half of the sentence backwards. The Forward generator takes the input
half sentence generated by backward generator to complete the sentence with the
aim of fooling the discriminator. The sentences prepared for training of backward
generator relies on random splitting of sentences and the proposed framework
can tackle single lexical constrained sentence generation.

Another line of work tackles the problem of constrained sentence genera-
tion by sampling the sentences from search space. Su et al. proposed a Gibbs
sampling method based on Markov Chain Monte Carlo (MCMC) method for
decoding constrained sentences [16]. The proposed approach consists of a dis-
criminator and a pure language model conditioned on a bi-directional RNN.
Introducing discriminator in the proposed method caters the job for calculating
probability of a sentence satisfying the constraints. Gibbs method samples the
set of random variables x1...n from a joint distribution, which takes the form of
words to make a sentence. The shortcoming of Gibbs sampling is that it cannot
change the length of sentences and hence not able to solve complicated tasks like
directly generating sentences from constraints established in advance. Miao et
al. extends Gibbs sampling by introducing Metropolis-Hastings for Constrained
Sentence Generation (CGMH) [9]. The proposed method directly samples from
the sentence space by defining local operations in the sentence space such as
word replacement, insertion and deletion.

Hokamp et al. proposed Grid Beam Search (GBS) algorithm, an extension
of beam search, for incorporating specified lexical constraints in the output
sequences [6]. In Neural Machine Translation (NMT) task, the proposed algo-
rithm ensures that all specified constraints must meet the hypothesis before they
can be considered to be completed. To generalize image caption generative mod-
els for out-of-domain images constituting novel scenes or objects, Anderson et
al. proposed a Constrained Beam Search (CBS) decoding method, which utilizes
Finite-State Machine (FSM) [1]. The proposed search algorithm is capable of
forcing certain image tags over resulting output sequences by recognizing valid
sequences with FSM.

Table 1 summarizes techniques for generating constrained sequences. It is
evident that many of the architectures are designed for specific scenarios and
have high computational complexity. Due to performance gaps and inability to
handle multiple constraints efficiently, a method need to be addressed. Therefore,
we have proposed a neural probabilistic Backward-Forward architecture that can
generate high quality sequences, with word embedding substitution method to
satisfy multiple constraints.
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Table 1. Comparison of different constrained sequence generation techniques.

Multiple
constraints

Computational
time

Decoding
complexity

Decoder Target
domain

Mou et al. [13] x Low O(Nk) – Research
titles

Anderson et al. [1] � High O(Nk2C) CBS Image
captioning

Su et al. [16] � High O(N +
dNM)

GSM Product
sentiments

Liu et al. [8] x – – Beam search Product
reviews

Hokamp et al. [6] � High O(Nk2C) GBS NMT

Post et al. [14] � Low O(Nk) DBA NMT

Miao et al. [9] � High O(N +
dNM)

MH Generic

Proposed technique � Low O(Nk) Greedy search Generic

3 General Model

To begin with, we state the problem of constrained sequence generation as fol-
lows: given the constraint(s) c as input, the proposed B/F LM needs to generate
a fluent sequence s = w1, · · ·, wv, · · ·, wm maximizing the conditional probability
p(s|c). For this purpose, we need to select a split word in a sequence s to train the
proposed B/F LM. As a sequence provides us an expression, the Parts-Of-Speech
(POS) verb plays a vital role in placing the subject of a sequence into motion
and offers more clarification about sequence. In this section, we first discuss the
general seq2seq model for generation of sequences. After that, we discuss our
proposed architecture to deal with constrained sequence generation.

Conventionally, RNNLMs for text generation are trained to maximize the
likelihood of a word wt or character ct at time step t while given the context
of previous observations in the sequence. This type of learning technique for
generating sequences is known as teacher forcing [4]. In such learning technique,
input to the recurrent neural probabilistic language model is of fixed size. The
training purpose is to predict only next token until a special stop sign is generated
or specific constraint is satisfied in a sequence given the context of previous
observations.

In traditional seq2seq models we cannot satisfy lexical constraints, where
disintegrating joint probability of a sentence y = y1, y2· · ·ym for given input
sentence x = x1, x2· · ·xn is given by

p(y|x) =
m∏

i=1

p(yi|y1· · ·yi−1, x) (1)
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Fig. 1. An illustration of proposed system architecture

Thus, the output sentence y is predicted from y1 to ym in sequence either by
a greedy or beam decoder. Such decomposition is because of natural language’s
sequential nature.

3.1 Proposed Architecture

Our proposed approach consists of a neural probabilistic architecture that is
an ensemble of two LSTM based B/F LM for generating lexical constrained
sequences, which captures the statistical properties of text sequences effectively.
In order to generate the coherent sequences from given multiple constraints as
input, we first generate the sequence from verb constraint wv through B/F LM,
and then we satisfy the other given constraints by word embedding substitution
method during the inference process. The predicted verb v splits the sequence
into two sub-sequences as:

Backward Sequence = wv−1, wv−2, · · ·, w1

Forward Sequence = wv+1, wv+2, · · ·, wm

If m denotes the length of words in a sequence s i.e. s = w1, · · ·, wv, · · ·, wm,
then the joint conditional probability of remaining m words, given lexical con-
straint wv and training parameters θ can be calculated as:
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p(s) = p(s|wv; θ)

= pbw
θ (s<v|wv) . pfw

θ (s>v|s1 : wv)
(2)

Where pbw
θ and pfw

θ depict the probabilities of generated sub-sequences by
backward and forward language models. The sub-sequences are generated asyn-
chronously i.e. we first generate the half sequence s<v in reverse order given
verb constraint wv, then generate the other half sequence s>v conditioned on
backward sequence s1 : wv. Therefore, following the spirit of ensemble models
that are trained separately, joint probability factors in Eq. 2 becomes

pbw
θ (s<v|wv) =

wv−1∏

j=1

pbw
θ (wv−j |wv, · · ·, wv−j+1) (3)

Where 1 ≤ j ≤ v−1. Backward LM decodes the output in reverse order from
wv−1, wv−2 to w1, which is reversed again to input forward language model for
decoding the complete sequence. Consequently,

pfw
θ (s>v|s1:v) =

m−wv∏

j=1

pfw
θ (wv+j |w1, · · ·, wv+j−1) (4)

Here 1 ≤ j ≤ m− v. As the output order of sub-sequence generated by back-
ward LM is reversed again to decode the entire sequence from forward language
model, therefore s1:v is equal to w1, · · ·,wv.

For learning the sequences, we used LSTM networks in proposed architec-
ture. The LSTM networks have the capability of capturing sequential data effec-
tively where the network transforms a sequence of given input word vectors
x = x1, · · ·, xn into the sequence of hidden states h = h1, · · ·, ht by maintain-
ing a history of inputs at each hidden state. The LSTM cell depends on gating
mechanism for information processing.

LSTM network’s hidden state h at time step t is dependent on the previous
state ht−1 and current input xt word vectors. Particularly, in our scenario for
generating variable length text sequences, the probability of an output word wout

from both language models calculated as:

pbw
θ (wv−t|ht) = Softmax(wbw

out ht + bout) (5)

pfw
θ (wv+t|ht) = Softmax(wfw

out ht + bout) (6)

Where wbw
out and wfw

out are shared across all time steps in their respective
LSTM models, which projects the hidden state vector ht into a fixed same size
vector as target vocabulary in order to generate a sequence of outputs yt =
wv−t, · · ·, w1 for backward language model and yt = wv+t, · · ·, wm for forward
language model.

The softmax function is in the final layer of LSTM network, applied to each
word vector for calculating the probability distribution over vocabulary of dis-
tinct word vectors.
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3.2 Word Embedding Substitution

In order to satisfy the given lexical constraints c other than verb constraint
wv, we have used a lexical substitution method based on word embedding sub-
stitution. SG model embeds both target words and their context in the same
dimensional space. In this space, the vector representations of words are drawn
closer together when they co-occur more frequently in a learning corpus. Thus,
Cosine distance between them can be viewed as target-to-target distributional
similarity measure. Our method relies on a natural assumption that a good lexi-
cal constraint substitution for a target word w instance in a generated sequence
s = w1, · · ·, wv, · · ·, wm needs to be consistent with the given sequence and lexi-
cally similar to the target word w instance. During inference, we find the cosine
similarity [2] of given input constraint c with every word w in a sequence s gen-
erated by the proposed B/F LM. After that, we replace the constraint c with
the closest matching (least cosine distance) word w in a sequence s. Step 3 of
Fig. 1 illustrates the concept. For this purpose, we have created word embedding
vectorization from FastText.

4 Experiments

In this section, we introduced our experimental designs, containing the prepara-
tion of dataset for training and testing, experimental configuration, comparison
architectures and evaluation criteria.

4.1 Dataset

There are many benchmark datasets for evaluating pure LM consisting of seq2seq
networks for text classification and generative models, but specifically there is no
such benchmark corpus for evaluation of constrained sequence generation based
on statistical language models. As far, we have used Stanford Natural Language
Inference (SNLI) [3] dataset for evaluation and training of proposed architec-
ture. As we target the domain of generating sequences from lexical constraints,
we extracted unlabeled sequences within range of minimum 3 and maximum
25 tokens, resulting in 451k sequences for training of proposed architecture.
The proposed architecture ensemble backward-forward LM, therefore, to pre-
pare training sequences for backward LM, following steps have been carried out:

– Annotate the tokens with their lexical categories using POS Tagging.
– Split the sentences on verb category instead of random splitting.
– Sentences with more than one verb are broken up into multiple sequences.
– After splitting the sequence on verb category, invert the half sequences.

For the forward language model, the dataset contains complete sequences for
training the network. Here, it should be noted that backward language model
requires only half sequences till verb token for training the network.
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4.2 Word Vectorization

We follow the work of Bojanowski et al. [2] to create dense representations of
words in dataset. A word vector is represented by augmenting the character
n-grams appearing in the word, where the scoring function s takes into consid-
eration the internal structure information of words, which is ignored by conven-
tional skip-gram models [10]. The proposed model represents each word w as a
bag of character n-gram, where adding special boundary symbols <and> at the
beginning and end of words for distinguishing prefixes and suffixes from other
character sequences. In addition to character n-grams of word w, the word w is
also included in its set of n-grams for learning representation of each word. For
example, taking the word ‘apple’ and let n = 3, it will be represented by the
character n-grams as <app,ppl,ple> and the special sequence <apple>.

Let a dictionary of n-grams with size G. Given a word w where Lw ⊂ 1, ...G
is the set of n-grams appearing in word w. Vector zg represents the each n-gram
g, therefore a word w is represented by the sum of vectors of its n-gram g. In
this regard, scoring function of word w with surrounding set of word indices c is
calculated by:

s(w, c) =
∑

g∈Lw

zT
g vc (7)

This extension of skip-gram model for creating word embedding allow the
sharing of word vector representations across all words, thus enabling the reliable
representational learning of rare or Out-Of-Vocabulary (OOV) words.

We have used extension of FastText’s SG model to learn such data repre-
sentations for both backward and forward language model given their respective
data sets. In order to train the FastText model, the word embedding dimen-
sion set to 300. Min count value set to 2, which represents that all the word
frequencies lower than 2 were ignored while learning the word representations.
Window size set to 5, defining the maximum distance between a current and
predicted word within a sequence. Workers parameter set to 16, explaining the
worker threads for faster training of FastText SG model. Epochs value set to 30
iteration, over the whole data set.

4.3 Experimental Configuration

We performed different experiments on test set to get the most optimal hyper-
parameters and evaluate change in performance of the model. Table 2 shows the
different experimental configurations and change in performance w.r.t perplex-
ity metric. In the proposed architecture, we get the best results by employing
2-layers of LSTM in both backward and forward language model. Both the LSTM
networks were trained with Adam algorithm [7] for stochastic optimization of
networks. During training, the parameters were adjusted using Adam optimizer
for minimizing the training loss function, also known as misclassification rate.
For calculating optimization score, we used categorical cross entropy loss func-
tion between the actual y and predicted ŷ word probability distribution [5].
In target of accurately capturing the regularities by the neural networks and
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Table 2. Hyper-parameter tuning and model performance

LSTM layers Hidden units LR Drop-out PPL score

1 256 0.01 0.2 35.48

1 512 0.001 0.3 33.15

2 256 0.01 0.2 27.48

2 512 0.001 0.3 24.20

preventing overfitting, we appended drop-out layer after every LSTM layer in
both the networks. The idea of drop-out layer is to randomly drop units with
their connections while training, thus preventing units from co-adapting too
much. Dropping units significantly leads to major improvements than other reg-
ularization methods [15]. The epochs value was set to 50 and mini batch size
was set to 128 in both the networks.

Both the Backward and Forward models are trained on NVIDIA GTX 1080
Ti GPU. The LSTM based networks are developed in keras. Training took about
17 h approx. per model with this implementation and optimal hyper-parameter
configuration.

4.4 Comparison and Evaluation Metrics

We compared our proposed methodology with state-of-the art sampling method
CGMH [9] for satisfying multiple constraints in a sequence. We also evaluated
our methodology of verb based split generation with different variants [13], which
can only handle single lexical constraint. We have used intrinsic evaluation met-
ric that allows to determine the quality of a LM without being associated or
embedded to a particular application. The most conventional intrinsic evalu-
ation metric is perplexity (PPL). PPL of a language model given a test set
w = w1,w2, ...wm is the inverse probability of w where the probability is nor-
malized by the number of words

PPL(w) = m

√√√√
m∏

i=1

1
P (wi, · · ·, wi−1)

(8)

5 Results and Discussions

For intrinsic evaluation of our proposed methodology, we first make comparisons
with variants such as separate B/F and asynchronous B/F language models
proposed by [13]. As mentioned earlier, in our proposed methodology the given
word is verb constraint wv through which we decode complete sequence whereas
in variants of B/F, the complete sequence is decoded by random split word. We
calculated PPL with both verb and random constraint as input to decode the
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complete sequences. Table 3 represents the comparison in terms of PPL, where
the higher probability of a sequence results in the lower of perplexity, which
is better. Separate B/F variant yields worse sequences with huge perplexity
score because both the B/F LM were enforced to output separately with the
input constraint and concatenated after decoding of sequences. This is due to
the fact that forward LM does not have the context of half sequence decoded
by backward LM. Our proposed approach is more similar to asynchronous B/F
LM, but technically very different as we are satisfying multiple constraints while
asynchronous approach can deal with only single constraint. The results clearly
shows that decoding a sequence on specific verb constraint can make use of the
positional information of words in a sequence, that is smoothed out when we
generate a sequence with random constraint.

Table 3. Intrinsic evaluation

Model Perplexity

Input constraint Verb Random

Separate B/F 74.56 80.43

Asynchronous B/F 26.63 28.32

Proposed B/F approach 24.20 27.84

Table 4. CGMH vs proposed

Constraints Perplexity (PPL)

CGMH Proposed B/F

1 19.34 18.04

2 19.71 18.92

3 21.36 20.13

4 20.87 21.63

Table 4 shows the comparison of our proposed approach for catering multiple
constraints with CGMH [9]. Our proposed approach shows lower perplexity than
CGMH sampling method for sentence generation through keywords/constraints
1 to 3, while with 4 constraints as input CGMH shows slightly better result than
our approach of generating sequence with verb constraint and during inference
replacing the words in sequence with closest embedding similarity. The decoding
complexity of CGMH increases linearly with the number of constraints, while
there is no such factor in our approach for catering multiple constraints. There
is always a trade-off between fluency of sequence and decoding complexity. In
practice, the downside of CGMH sampling methods is that we are not sure of
which sampling step size is best for proposal distribution.

5.1 Discussion

To validate our proposed architecture of generating sequence, we performed a
series of experiments. Results of intrinsic evaluation confirms that our proposed
approach for sequence generation given constraint(s) outperforms previous meth-
ods. Splitting and generating a sequence on verb constraint makes use of posi-
tional information, which is smoothed out in breaking down a sequence with
random word. We observe that decoding a sequence given random word as input
in proposed B/F LM even performs better when the backward LM is trained over
half sequences till verb. Moreover, in future we would like to explore about the
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constraint-to-target context similarity, indicating their syntagmatic compatibil-
ity for improving the word embedding substitution method. Introducing atten-
tion mechanism as context vectors for constraints would be an interesting side
in the proposed architecture.

6 Conclusion

In this paper, we have proposed a novel method, dubbed Neural Probabilistic
Backward-Forward language model and word embedding substitution method
to address the issue of lexical constrained sequence generation. Our proposed
system can generate constrained sequences given multiple lexical constraints as
input. To the best of our knowledge, this is the first time that multiple con-
straints have been handled through LSTM based backward-forward LM and
word embedding substitution of the sequences. The proposed method contains a
backward language model based on LSTM network, which learns the half repre-
sentation of a sentence until the verb splitting word and forward language model
constitute LSTM Network, learning the complete representation of a sequence.
Moreover, word embedding substitution method satisfy other constraints by sub-
stituting the target word in the sequence with given constraints based on similar
context in an embedding space.
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