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Abstract. As the requirements for automatic speech recognition are continually
increasing, the demand for accuracy and efficiency is also of particular interest.
In this paper, we present most of the well-known Automated Speech Recogni-
tion systems (ASR), and we benchmark three of them, namely the IBM Watson,
Google, andWit, using the WER, Hper, and Rper error metrics. The experimental
results show that Google’s automatic speech recognition performs better among
the three systems. We intend to extend the benchmarking both to include most of
the available Automated Speech Recognition systems and increase our test data.
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1 Introduction

Speech is probably the primary means of man communication. Therefore, acquiring
speech from computers is reasonable to contribute to more effective man-machine com-
munication. Two primary technologies have developed concerning speech: the Auto-
matic Speech Recognition or ASR, for short, and the Text to Speech or TTS. ASR refers
to the conversion of speech into text [1], while TTS, as its name suggests, is the reverse
process [2]. Although man naturally acquires speech in early growth [3], speech produc-
tion and recognition by computers is a complicated process that has extensively been
addressed by the research community.

As early as 1952, the first system was built that could identify digits with high
precision. This early system required users to pause after each digit [4]. Raj Reddy
constructed the first recognition system of continuous speech as a student at Stanford
University in the late 1960s [Wikipedia - Speech Recognition].

Shortly after, T.K. Vintsyuk presented an algorithm [7] that can recognize speech,
creating a sequence of words that contained in continuous and connected speech.

Later, in 1981, Logica developed a real-time speech recognition system based on the
original project of the Joint Speech Research Unit in the United Kingdom. This user-
friendly system is one of the first steps in improving human-machine communication [5].
Today,ASRapplications are not just confined to human-machine communication for per-
sonal use but include industrialmachine guidancewith voice commands [6, 7], automatic
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telephone communication [8], communication with automotive systems, military vehi-
cles, and other equipment, communication with health care, aerospace and other systems
[9]. Also, ASR systems are utilized to providemore specialized services, such as training
in pronunciation and vocabulary [10].

As the number of ASR systems is continuously increasing, it is quite challenging
to select the most appropriate for a particular application. Our immediate plans are to
build an artificial vocabulary learning assistant. In particular, this assistant will be able
to contribute to the learning of vocabulary by entering into dialogues with the trainee. In
this context, it is necessary to select the appropriate ASR. Thus, this work first attempts a
presentation of known ASR systems and then proceeds to benchmark three well-known
systems, namely IBM Watson, Google, and Wit. Therefore, we set the foundations for
a more general assessment of most ASR systems with the ultimate goal of choosing the
most appropriate vocabulary learning assistant.

The rest of this review is organized as follows. In section two, we briefly present
analyze the Architecture of ASR systems. In section three, some of the most well-known
ASR systems are introduced. In section four, we describe criteria and metrics used for
system evaluation. Next, in section five, we analyze the data and themethodologywe use
for the experimental procedure. Finally, section six closes the review with final remarks
and conclusions.

2 Architecture

An ASR application accepts the speech signal as input and converts it into a series of
words in text form. During the speech recognition process, a list of possible texts is cre-
ated, and finally, the most relevant text to the original sound signal is selected [4, 5]. A
typicalASRconsists of an acoustic front-end that process the speech signal to extract use-
ful features [11]. Then, a feature vector is generated. Several feature extraction methods
are used including, Principle Component Analysis (PCA), Linear Discriminant Analysis
(LDA), Independent Component Analysis (ICA), Linear Predictive Coding (LPC), Cep-
stral Analysis, Mel-Frequency Scale Analysis, Filter-Bank Analysis, Mel-Frequency
Cepstrum Coefficients (MFCC), Kernal Based Feature Extraction, Dynamic Feature
Extraction, Wavelet-based features, Spectral Subtraction and Cepstral Mean Subtrac-
tion (CMS). Generally, some spectra temporal analysis of the signal generates features
that usually transform into more compact and robust vectors [11]. At the processing
step, the acoustic lexicon and language model are used by a decoder (search algorithm)
to produce the hypothesized word or phoneme, as shown in Fig. 1. The acoustic model
contains acoustic features for each of the distinct phonetic units and typically refers to
the process of establishing the statistical representations for the feature vector sequences
computed from the speech waveform. The Hidden Markov Model (HMM) is one of the
most commonly used to build acoustic models. Other acoustic models include segmental
and super segmental models, neural networks, maximum entropy models, and condi-
tional random fields. An acoustic model is a file that contains statistical representations
of each of the distinct sounds that makes up a word [11]. The lexicon includes terms
of the vocabulary of the current application [11]. The language model consists of the
limitations associated with the sequence of words that are accepted in a given language.
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Two popular tools for language modelling are the CMU Statistical Language Modeling
(SLM) Toolkit and the Stanford Research Institute LanguageModeling Toolkit [11]. The
decoder aims to find themost likely sequences of words that couldmatch the audio signal
by applying appropriate models. Most decoding algorithms produce a list of possible
word sequences called the n-best list [4, 5].

Fig. 1. Speech recognition architecture [11]

3 Well-Known ASR Systems

Many international organizations, such asMicrosoft SAPI, Dragon-Natural-Speech, and
Google, as well as research teams, are working in the area of ASR systems [3]. Next,
we describe in short some of the most well-known ASR systems.

CMU-Sphinxwas introduced in 1986 and is a set of open-source speech recognition
libraries. It supports English but not Greek. Contains a series of packages for different
tasks and applications:

Pocketsphinx: Lightweight library with C for written recognition [12]. It is fast, runs
locally, and requires relatively modest computational resources. It pro-
vides nbest lists and lattices and supports incremental output. It provides
voice activity detection functionality for continuous ASR and is also
fully customizable and trainable [13].

Sphinxbase: Support for the libraries required by Pocketsphinx [12].
CMUclmtk: Language model tools [12].
Sphinxtrain: Acoustic model tool. It includes a set of programs and documentation

for making and building audio models for any language [12].
Sphinx3: Voice recognition decoder is written in C [12].
Sphinx4: The latest Java-based speech recognition tool made by Carnegie Mel-

lon University (CMU), SunMicrosystems Laboratories, and Mitsubishi
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Electric Research Laboratories (MERL). It is flexible, supporting all
types of acoustic models based on the Hidden Markov model (HMM),
all basic types of language models, and multiple search strategies [14].

CMU also attempted to develop an Amazigh speech recognition system used in a
vast geographical area of North Africa [15].

Kaldi is also an open-source speech recognition tool, written in C++. Kaldi’s goal is
to have a modern and flexible code that is easy to understand, modify, and expand. Kaldi
supports conventional models (GMMs) and Subspace Gaussian Mixture (SGMMs) but
can be easily extended to new types of models [16].

Google uses closed-source speech recognition technology based on deep learning
achieving an error rate of 8% in 2015, down by more than 23% from 2013 [17].

Dragon Naturally Speaking launched in 1975 by Dr James Baker supports ASR
and TTS [18].

Microsoft Speech API (SAPI) is a closed-source library developed that supports
ASR and TTS within Windows applications. SAPI 5 is the latest major version released
in 2000 [2].

DragonDictate (TM)-30 K an ASR containing an extensive vocabulary that allows
interactive users to create printed text faster through speech than they would have done
by hand [19].

Amazon Transcribe is an ASR service used in many typical applications, including
phone customer service systems, and automatic subtitling for audio and video. Amazon
Transcribe is continuously learning and improving to keep up with the development of
language [20].

Microsoft Azure provided as a service, converts speech to text in real-time. It
includes an API Speech SDK and a REST API. The latter can be used only for queries
containing up to 10 s recorded audio [21].

Wit is free even for commercial use. It supports over 130 languages, and it applies
the applicable EU data protection laws, including GDPR. Wit supports Node, Python,
and Ruby programming languages [22].

Twilio includes vocabulary to support the industry. It recognizes 119 languages and
dialects. It is paid but also has a free trial version [23].

Houndify is a platform that allows anyone to create intelligent communication inter-
faces with voice capability. It supports both ASR and TTS on Android, iOS, C++, Web,
Python, Java, and C Sharp. It is available for a fee but also has a free version [24].

IBM® (Speech to Text) allows users to add up to 90 thousand out-of-vocabulary
(OOV) words to a custom language model. The service utilizes machine learning to
combine the knowledge of grammar and language structure as well as the synthesis of
sound and voice signals to transform the human voice accurately. It continually renews
and improves its function as it receives speech. It can support continuous speech. Pro-
gramming languages that supports are Node, Java™, Python, Ruby, Swift, andGo SDKs
[25]. The service offers three interfaces: AWebSocket and synchronous HTTP interface,
each being able to transfer up to 100 MB of audio data with one request. It also offers
an asynchronous HTTP interface, which with one request can pass up to 1 GB of audio
data [25].
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AT&TWatson, created in 1995 by AT & T Research [26]. It allows users to create
real-timemultilingual voice and speech recognition applications [27]. It is a cloud-based
service that can be accessed through HTML POST requests.

Web Speech API, developed by the W3C Speech API team, it is open but seems to
be driven by two companies: Google and Openstream. To upload the audio data, the user
needs to open an HTTPS connection with the network service through a POST request
[28].

NaturalReader. It can read any text, such asMicrosoftWord files,Web pages, PDFs,
and emails, and convert them into audio files. It is available in free and paid versions
[29].

iSpeech is an online free solution available for mobile applications. It has a unique
multithreaded and multicore method for text-to-speech conversion, which allows for a
simple text-to-speech approach with an unlimited number of processors simultaneously.
Thus, it is speedy. It also provides an SDK for java applications [30].

WaveSurfer is an open-sourcemodelmade inKTH’sCenter for Speech Technology.
An essential feature of WaveSurfer is its versatile configuration [31].

Julius is open-source written in C with high performance. It incorporates significant
cutting-edge speech recognition techniques, achieving LVCSR, real-time vocabulary,
and real-time speech recognition. It works on Linux, Windows, Mac OS X, Solaris, and
other Unix variants and also runs on the Apple iPhone. It supports several languages
[32].

4 Evaluation Metrics

There are three types of errors that occur in speech recognition [33]:
If a word in the reference sequence is transcribed as a different word, it is called

substitution. When a word is completely missing in the automatic transcription, it is
characterized as deletion. The appearance of a word in the transcription that has no
correspondent in the reference word sequence is called insertion.

The performance accuracy of a system is usually rated by the word error rate (WER)
(1), a popular ASR comparison index [34]. It expresses the distance between the word
sequence that produces an ASR and the reference series.

Defined as:

WER = (S + D + I)/N1 = (S + D + I)/(H + S + D) (1)

where I = the total number of entries, D = total number of deletions, S = total number
of replacements, H = total number of successes, and N1 = total number of reference
words [33].

Despite being the most commonly used, WER has some cons. It is not an actual
percentage because it has no upper bound. When S= D= 0 and we have two insertions
for each input word, then I = N1 (namely when the length of the results is higher than
the number of words in the prompt), which means WER = 200%. Therefore it does not
tell how good a system is, but only that one is better than another. Moreover, in noisy
conditions, WER could exceed 100%, as it gives far more weight to insertions than to
deletions [33].
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Match Error Rate (MER) is the proportion of I/O word matches, which are errors,
which means that is the probability of a given match being incorrect. The ranking
behaviour of MER (2) is between that of WER and WIL [35].

MER = (S+ D+ I)/(N = H+ S+ D+ I) = 1− H/N (2)

WIL is a simple approximation to the proportion of word information lost, which over-
comes the problems associated with the RIL (relevant information lost) measure that
was proposed years ago [35].

The Relative Information Lost (RIL) measure was not widely taken up because it
is not as simple as WER, and it measures zero error for any one-one mapping between
input and output words, which is unacceptable [35].

The evaluation of an ASR system also correlates with PER (Position-Independent
word Error Rate) automatic metric. PER compares the words in the two sentences
(hypothesis and reference) and is always lower than or equal to WER. Hypothesis per
(Hper) (similar to precision) (3) refers to the set of words in a hypothesis sentence which
do not appear in the reference sentence. Reference PER (Rper) (similar to recall) (4),
denotes the set of words in a reference sentence which do not appear in the hypothesis
sentence. In other words, the main goal of Hper and Rper is to identify all words in the
hypothesis which do not have a counterpart in the reference and vice versa [36].

WER = S + D + I

N1
= S + D + I

H + S + D
(3)

MER = S + D + I

N = H + S + D + I
= 1 − H

N
(4)

5 Experimentation

5.1 Data and Methodology

From the tools described above, IBMWatson,Wit, and Google were selected to be tested
and compared to the accuracy of the results they produce.

Three speakers recorded specific sentences in English. The recorded sentences are
typical in dialogues between a teacher and a student while learning English as a second
language. The used sentences contain words, numbers, and names.

Speakers are not nativeEnglish speakers, and their native language isGreek. Speakers
A and B are women, and speaker C is a man. We intend to evaluate ASR systems for an
application that will train the student in vocabulary learning. Recording took place in an
ideal environment with no noise except for speaker C, whose recording has a low level
of noise. Each of the three speakers recorded twenty sentences.

Experimental measurements were made using audio files, recorded with Audacity
2.3.1. The WAV files were stereo with two recording channels, 44100 Hz, 32 bit, and
they range in size from about 350 KB to 0.99 MB.

Generated texts were compared to the corresponding correct texts that had been
given to the speakers. The Word error rate (WER), Hper, and Rper were measured using
an Open Source Tool for Automatic Error Classification of Machine Translation Output
available on GitHub [37].
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6 Results

The text files were created with Uberi, available at https://github.com/Uberi/speech_
recognition. Uberi uses the Python Speech Recognition library and supports several
ASR engines.

Comparing the resulting texts with the reference texts, we calculated the WER
error measurements as a percentage with an accuracy of two decimal places. WER
measurements were made using the tools that are available on pages https://github.
com/belambert/asr-evaluation and https://github.com/cidermole/hjerson. In the end, the
average error of each tool per speaker was calculated and is presented in Table 1.

Table 1. Average WER (%) measurements

Speaker A Speaker B Speaker C

IBM Google Wit IBM Google Wit IBM Google Wit

30.10 16.60 25.87 47.73 20.45 23.28 36.51 24.85 58.87

According to Table 1, we note that Google has the smallest average error in any
case. Specifically, Google system presents WER error 16.60%, 20.45%, and 24.85% for
Speaker A, B, and C respectively.

Taking into account the three error values, we calculate the average error for each
system. The overall mean error was 38.1% for IBM, 20.63% for Google, and 36% for
Wit. We observe that among the three, the smallest average error is reported by the
Google tool (20.63%). Based on these measurements, it seems that Google’s system
responds better regardless of the speaker’s type.

Then we recorded how many sentences from the ones processed by each system
were fully recognized, without any errors.

Table 2. Percent (%) accurate prediction of all 60 sentence

IBM Google Wit

26.67 43.33 36.67

As we see in Table 2, Google presents a higher percentage of accurate forecasts
(43.33%) than the other systems. Wit tool is the second in the rankings and the IBM
the last. These measurements reveal the ability of ASR systems to recognize a sentence
without any errors. This ability is essential if the ASR system is to be used in teaching
English as a foreign language, as the application we intend to build. Our appmust be able
to fully recognize the pupil’s speech to teach him the correct pronunciation, grammar,
and pension, so we do not want to have an approximation but an accurate recognition.

To get a better and more accurate estimate of the three systems, we measured the
Hper και Rper errors using the available tool on https://github.com/cidermole/hjerson.
In Table 3, we present the results of these measurements.

https://github.com/Uberi/speech_recognition
https://github.com/belambert/asr-evaluation
https://github.com/cidermole/hjerson
https://github.com/cidermole/hjerson
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Table 3. Rper και Hper error percentage (%)

Speaker A Speaker B Speaker C

IBM Google Wit IBM Google Wit IBM Google Wit

Rper 28.45 16.81 24.21 42.24 20.44 26,64 30.66 26.94 61.78

Hper 28.60 13.35 19.79 42.09 19.53 24,17 32.97 22.29 52.99

According to Table 2, the Google ASR system presents the lower Rper and Hper
errors for each speaker. Knowing that Rper and Hper errors are associated with adding
or removing words in recognized speech, the measurements confirm that the Google
system presents the fewest distortions.

Finally, we calculated the total mean errors per tool, which are shown in Table 4.

Table 4. Total mean errors (%)

IBM Google Wit

Rper 23,90 21,40 37,54

Hper 34,55 18,39 32,32

Observing the values in Table 4, we find out that Google’s ASR shows the lower
average error for both metrics (Rper and Hper).

7 Conclusions

This paper presents some of the most widely known speech recognition tools currently
in use. Three of them were then selected to study and compare their performance. The
tools selected are IBMWatson, Google API, and Wit. All three tools were tested on the
same audio data files and not in a continuous speech stream. The audio files involved
texts that occur very oftenwhen teaching English as a foreign language. TheWER,Hper,
and Rper error metrics were measured to evaluate the tools. The results showed that the
Google tool is superior to the other two. The Google tool was able to predict most of the
sentences accurately, and it presented the smallest error percent. In the future, the size
of the data set could be increased by adding more sentences to increase the reliability of
the measurements and conclusions. Other tools could also be tested to allow us to decide
which one is most suitable for our application.
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