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Abstract. We present a novel justification why k-means clusters should
be (hyper)ball-shaped ones. We show that the clusters must be ball-
shaped to attain motion-consistency. If clusters are ball-shaped, one can
derive conditions under which two clusters attain the global optimum of
k-means. We show further that if the gap is sufficient for perfect separa-
tion, then an incremental k-means is able to discover perfectly separated
clusters. This is in conflict with the impression left by an earlier publica-
tion by Ackerman and Dasgupta. The proposed motion-transformations
can be used to the new labeled data for clustering from existent ones.

Keywords: Cluster shape · Motion-consistency · Outer-consistency ·
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1 Introduction

Sufficiently diverse corpora of test data for the development and implementa-
tion of algorithms, in particular of clustering algorithms, constitute an imma-
nent challenge [9]. While various efforts like crowdsourcing produce considerable
resources, tasks like fine-tuning or prevention of overfitting require still bigger
sets of labeled data. Therefore, ways are sought on how to derive a new tagged
set from an existent one without violating clustering algorithm assumptions.

Therefore, the axiomatization of clustering algorithm properties are of inter-
est. Kleinberg [5] introduced interesting clustering invariant properties like
scaling-invariance and consistency. Scaling invariance means that the cluster
structure should be preserved if all distances between data points are multiplied
by a constant. Consistency means that the clustering should be preserved if
distances between data points in the cluster are not increased, and distances
between data points from distinct clusters are not decreased. Regrettably, the
consistency transform (CT ) cannot be applied to data being subject of k-means
clustering to generate a new labeled data set because this algorithm does not
have the consistency property [8]. Hence other properties like the inner or outer
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consistency [1] need to be investigated. The inner-consistency transform is iden-
tical with CT except for distances between data points from distinct clusters
are unchanged. The outer-consistency transform is identical with CT except for
distances between data points within each cluster are unchanged. But inner-
consistency property is not possessed by k-means [1] and what is worse, in a
fixed-dimensional space the inner CT reduces typically to identity transform
[7] which is of no value for test data generation. The outer consistency, on the
other hand, with respect to k-means is of little value under continuous setting
because it requires synchronized motion of all clusters – one cluster alone cannot
be moved. This paper investigates how the outer-consistency constraints can be
relaxed to what we call motion-consistency. It shall be defined as follows:

Definition 1. Cluster area is any solid body containing all cluster data points.
Gap between two clusters is the minimum distance between the cluster areas,
i.e., Euclidean distance between the closest points of both areas.

Definition 2. Given a clustered data set embedded in a fixed dimensional
Euclidean space, the motion-transformation is any continuous transformation
of the data set in the fixed dimensional space that (1) preserves the cluster areas
(the areas may only be subject of isomorphic transformations) and (2) keeps the
minimum required gaps between clusters (the minimum gaps being fixed prior to
transformation). By continuous we mean: there exists a continuous trajectory
for each data point such that the conditions (1) and (2) are kept all the way.

Definition 3. A clustering method has the property of motion-consistency, if
it returns the same clustering after motion-transformation.

Compared to outer-consistency, or even the consistency, we weaken the con-
straints imposed on the distances between points, because the distances between
data points of different data sets do not need to be increased, but only the dis-
tances between cluster areas (gaps) should not be decreased below certain values.

We demonstrate for k-means that it is advantageous to define the cluster
area as a ball centered at its gravity center and encompassing all the data points
of a cluster. Wherever we speak about a ball, we mean a hyper-ball that is the
region enclosed by a hyper-sphere, that is an n-ball for n-dimensional Euclidean
space R

n. k-means, one of the most popular algorithms, exists in a multitude
of versions. For an extensive overview of the general concept of k-means and
versatile versions of it, see e.g., [11]. We refer here to the following ones: (1)
random-seed k-means, that is one with random initial seeding of cluster centers,
(2) random-set k-means, that is one with the random initial assignment of data
points to clusters, (3) k-means++, that is one with seeding of clusters according
to a heuristic minimizing the distance to the closest cluster (4) k-means-ideal
that is an “oracle” algorithm that finds the clustering minimizing absolutely the
k-means objective. We consider so-called batch versions.
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2 Moving Clusters – Motion-Consistency

As was observed in [4], clustering algorithms make implicit assumptions about
the clusters’ definition, shape, and other characteristics and/or require some
predetermined free parameters. The shape of the clusters may constitute the
foundation for choosing the right number of clusters to split the data into [3].
In this section, let us ask what should be the shape of the area covered by the
k-means clusters. The usual way to look at the k-means clusters is one of the
so-called Voronoi regions [10]. These regions are polyhedrons such that any point
within the area of the polyhedron is closer to its cluster center than to any other
cluster center. Obviously, the outer polyhedrons (at least one of them) can be
moved away continuously from the rest without overlapping any other region so
that at least the motion-transformation is applicable non-trivially. However, does
the motion-consistency hold? A closer look at the issue tells us that it is not.
As k-means terminates, the neighboring clusters’ polyhedra touch each other
via a hyperplane such that the straight line connecting centers of the clusters is
orthogonal to this hyperplane. This causes that points on the one side of this
hyperplane lie more closely to the one center, and on the other to the other one.
But if we move the clusters in such a way that both touch each other along the
same hyperplane, then it happens that some points within the first cluster will
become closer to the center of the other cluster and vice versa.

Generally, moving the clusters will change their structure (points switch clus-
ters) unless the points lie actually not within the polyhedrons but rather within
paraboloids with appropriate equations. Then moving along the border, hyper-
plane will not change cluster membership (locally, that is, the data points of the
two considered clusters will not switch cluster membership given that we fixed
all other clusters and consider reclustering of these two clusters only). But the
intrinsic cluster borders are now paraboloids. The problem will occur again if we
relocate the clusters allowing for touching along the paraboloids.

Hence the question can be raised: What shape should the k-means clusters
have in order to be (locally) immune to movement of whole clusters?

Assume that only one cluster would move. Let us consider the problem of
susceptibility to class membership change within a 2D plane containing the two
cluster centers and the motion vector of the moving cluster. Let the one clus-
ter center be located (for simplicity) at the point (0,0) in this plane and the
other at (2x0, 2y0) for some x0, y0. Let further the border of the first cluster
be characterised by a (symmetric) function f(x) and let the shape of the bor-
der of the other one g(x) be the same, but rotated by 180◦ around (x0, y0):
g(x) = 2y0 − f(2x0 − x). Let both have a touching point (we excluded already
a straight line and want to have convex smooth borders). From the symmetry
conditions one easily sees that the touching point must be (x0, y0). As this point
lies on the surface of f(), y0 = f(x0) must hold. Any point (x, f(x)) of the border
of the first cluster must be closer to its centre (0, 0) than to the centre (2x0, 2y0)
of the other:

(x − 2x0)2 + (f(x) − 2f(x0))2 − x2 − f2(x) ≥ 0 (1)
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That is
−x0(x − x0) − f(x0) (f(x) − f(x0)) ≥ 0

Let us consider only positions of the center of the second cluster below the X
axis (y0 < 0). In this case f(x0) < 0. Further let us concentrate on x > x0. We
get f(x)−f(x0)

x−x0
≥ x0

−f(x0)
. In the limit, when x approaches x0, f ′(x0) ≥ x0

−f(x0)
.

By analogy for x < x0 in the limit x → x0 we get: f ′(x0) ≤ x0
−f(x0)

This implies

f ′(x0) =
−1
f(x0)
x0

(2)

f(x0)
x0

is the directional tangent of the straight line connecting both cluster cen-
tres. f ′(x0) is tangential of the borderline of the first cluster at the touching
point of both clusters. The equation above means both are orthogonal. But this
property implies that f(x) must define (a part of) a circle centred at (0, 0). As
the same reasoning applies at any touching point of the clusters, a k-means clus-
ter would have to be (hyper)ball-shaped in order to allow the movement of the
clusters without elements switching cluster membership.

We know that most k-means versions tend to stick at local minima. We see
here immediately that some kind of local minima is preserved under motion-
consistency transform.

Theorem 1. If random-set k-means has a local minimum in ball form that is
such that the clusters are enclosed into equal radius balls centered at the respective
cluster centers, and gaps are fixed at zero, then the motion-transform preserves
this local minimum.

Proof. For k = 2, this is obvious from the above consideration. For k > 2 consider
just each pair of clusters to see that no cluster change occurs.

The tendency of k-means to recognize best ball-shaped clusters has been
known long ago, but we are not aware of presenting such an argument for it.

3 Motion-Consistency Property for Two Clusters

The preservation of local minima does not guarantee the preservation of the
global minimum even if the global minimum has the above-mentioned ball form.

A sufficient separation between the enclosing balls is needed, as we will show
again for k = 2.

Let us consider, under which circumstances a cluster C1 of radius r1 contain-
ing n1 elements would take over n21 elements (i.e. subcluster C21) of a cluster C2

of radius r2 of cardinality n2, if we perform the motion-consistency transform. As
only (sub)cluster centres are of interest in our investigation, we can concentrate
on the plane spanned by the gravity centres c1, c21, c22 of C1, C21, C22, see left
most Fig. 1. The enclosing (hyper)balls of both clusters C1, C2 intersect with this
plane as circles, indicated as black lines. In worst case, either c21 or c22 would



k -means Cluster Shape Implications 111

−15 −10 −5 0 5 10 15

−1
0

−5
0

5
10

3 subclusters intended clustering

x

y

c1

c21
c22

−15 −10 −5 0 5 10 15

−1
0

−5
0

5
10

3 subclusters wrong clustering

x

y

c1

c21
c22

−15 −10 −5 0 5 10 15

−1
0

−5
0

5
10

4 subclusters intended clustring

x

y

c11 c12

c21
c22

Fig. 1. Possible alternatives to the basic clustering into {C1, C2}. Left figure: one clus-
ter is split into two clusters. Central figure: upon this split, one cluster takes over a
subcluster of the other cluster. Right figure: both clusters are split into subclusters
that form new clusters, as indicated in Fig. 2.

lie on the respective circle, which implies the other centre lying on a circle with
smaller radius, drawn in grey. Generally, both will lie closer to C2 gravity centre.
Let n22 = n2 − n21 be the number of the remaining elements (subcluster C22 of
the second cluster. Let the enclosing balls of both clusters be separated by the
distance (gap) g. Let us consider the worst case that is that the center of the
C21 subcluster lies on a straight line segment connecting both cluster centers.
The centre of the remaining C22 subcluster would lie on the same line but on the
other side of the second cluster centre. Let r21, r22 be the distances of centres
of n21 and n22 from the centre of the second cluster. The relations

n21 · r21 = n22 · r22, r21 ≤ r2, r22 ≤ r2

must hold. Let us denote with SSC(C) the sum of squared distances of elements
of the set C to the center of this set.
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Fig. 2. Extreme cases to be considered when looking for a sufficient gap to avoid
alternative clustering with a split of both clusters.

So in order for the clusters C1, C2 to constitute the global optimum

SSC(C1) + SSC(C2) ≤ SSC(C1 ∪ C21) + SSC(C22)
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must hold. But

SSC(C2) = SSC(C21) + SSC(C22) + n21 · r221 + n22 · r222

SSC(C1 ∪ C21) = SSC(C1) + SSC(C21) +
n1n21

n1 + n21
(r1 + r2 + g − r21)2

Hence √
(r221 + r21 · r22)(n21/n1 + 1) − r1 − r2 + r21 ≤ g

As r22 = r21n21
n2−n21

r21

√
n2

n1

n1 + n21

n2 − n21
− r1 − r2 + r21 ≤ g

Let us consider the worst-case when the elements to be taken over are at the
edge of the cluster region (r21 = r2). Then

r2

√
n2

n1

n1 + n21

n2 − n21
− r1 ≤ g

The lower limit on g will grow with n21, but n21 ≤ 0.5n2, because otherwise r22
would exceed r2. Hence in the worst case

r2

√
n2

n1

n1 + n2/2
n2/2

− r1 ≤ g

r2
√

2(1 + 0.5n2/n1) − r1 ≤ g (3)

In case of clusters with equal sizes and equal radius this amounts to

g ≥ r1(
√

3 − 1) ≈ 0.7r1

But there exists the theoretical possibility that both clusters are split into
subclusters, which then may form pairwise clusters different from the original
C1, C2. This is symbolically illustrated in the right Fig. 1. As only (sub)cluster
centres are of interest in our investigation, we can concentrate on the 3D subspace
spanned by the gravity centres c11, c12, c21, c22 of subclusters C11, C12, C21, C22.
Furthermore, distances between subcluster gravity centers from different clusters
will decrease if we rotate the lines c11, c12 and c21, c22, so that they lie in a 2D
plane. So we need in fact to consider this 2D plane in worst-case analysis, as in
Fig. 1, though the results apply to any high-dimensional space. In an analogous
way as above, we can derive (as a simple exercise) explicit requirements on
minimum gap g needed in order to ensure that such a re-clustering will not
happen. The worst cases of subcluster center positions to be considered are
depicted in Fig. 2. In each case, the 50%–50% split of a cluster into subclusters
turns out to be requiring the biggest gap. We conclude
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Theorem 2. k-means algorithm with k = 2 possesses the property of motion-
consistency if (1) the k-means clustering global minimum Γ has the property
that each cluster can be enclosed in a ball and (2) the gaps between balls fulfil
the condition of taking the maximum of the gaps derived from Fig. 2, Fig. 1 and
(3) the gap between clusters would not be decreased below the gap value from (2)
during the motion.

Note that under k-means objective, the globally optimal clustering is also
pairwise optimal, but the inverse does not hold.

This means that Motion-Consistency transform can turn an optimal cluster-
ing to an unoptimal one for k > 2.

It should be emphasized that we consider here about the local optimum of k-
means. With the aforementioned gap size, the global k-means minimum may lie
elsewhere, in a clustering possibly without gaps. Also, the motion-transformation
preserves as a local minimum the partition it is applied to. Other local minima
and global minimum can change.

Note that the motion-consistency (applicable for k = 2 in k-means) is more
flexible for the creation of new labeled data sets than outer-consistency.

4 Perfect Ball Clusterings

The problem with k-means (-random and ++) is the discrepancy between the
theoretically optimized function (k-means-ideal) and the actual approximation
of this value. It appears to be problematic even for well-separated clusters.

First, let us point to the fact that well-separatedness may keep the algorithm
in a local minimum.

It is commonly assumed that a good initialization of a k-means clustering
is one where the seeds hit different clusters. It is well-known that under some
circumstances, the k-means does not recover from poor initialization, and as a
consequence, a natural cluster may be split even for well-separated data.

Hitting each cluster may not be sufficient as neighboring clusters may be able
to shift the cluster center away from its cluster. Hence let us investigate what
kind of well-separability would be sufficient to ensure that once clusters are hit
by one seed each, they would never lose the cluster center.

Let us investigate the working hypothesis that two clusters are well separated
if we can draw a ball of some radius ρ around true cluster center of each of them,
and there is a gap between these balls. We claim (see [6]) that

Theorem 3. If the distance between any two cluster centres A,B is at least
4ρAB + ε, ε > 0, where ρAB is the radius of a ball centred at A and enclosing
its cluster (that is cluster lies in the interior of the ball) and it also is the radius
of a ball centred at B and enclosing its cluster, then once each cluster is seeded
the clusters cannot loose their cluster elements for each other during k-means-
random and k-means++ iterations.

Before starting the proof, let us introduce related definitions.
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Definition 4. We shall say that clusters centred at A and B and enclosed in
balls centred at A,B and with radius ρAB each are nicely ball-separated, if the
distance between A,B is at least 4ρAB + ε, ε > 0. If all pairs of clusters are
nicely ball separated with the same ball radius, then we shall say that they are
perfectly ball-separated.

Obviously, if there exists a perfect ball clustering into k-clusters in the data
set, then after invariance transform as well as after consistency transform, there
exists a perfect ball clustering into k-clusters in the data set. Let us restrict
ourselves to clusterings with at least three data points in a cluster (violation
of the most general richness, but nonetheless a reasonable richness, let us call
it reachness-3++. In this case, it is obvious that if the perfect ball clustering
exists then, it is unique. This means automatically that if k-means would be able
to detect the perfect ball clustering into k clusters, then it would be consistent
in the sense of Kleinberg. Therefore it is worth investigating whether or not
k-means can detect a perfect ball clustering.

If the data set had a perfect ball clustering into k clusters (of at least 2
elements), but not into k − n1 nor into k + n2 clusters, where 1 ≤ n1 ≤ k −
2, 1 ≤ n2 ≤ n/2 − k are natural numbers, then under application of Kleinberg’s
consistency transform, the new data set can both have a perfect ball clustering
into k−n1 and into k+n2 clusters. Hence the Kleinberg’s impossibility theorem
holds also within the realm of perfect ball clusterings.

Proof. For the illustration of the proof see Fig. 3.
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Fig. 3. An illustrative figure for proof of 4 radius distance ensuring good separability.

Consider two points A,B be two ball centers and two points, X,Y , one
being in each ball (presumably the cluster centers at some stage of the k-means
algorithm). To represent their distances faithfully, we need at most a 3D space.

Let us consider the plane established by the line AB and parallel to the line
XY . Let X ′ and Y ′ be projections of X,Y onto this plane. Now let us establish
that the hyperplane π orthogonal to X,Y , and passing through the middle of



k -means Cluster Shape Implications 115

the line segment XY , that is the hyperplane containing the boundary between
clusters centered at X and Y does not cut any of the balls centered at A and
B. This hyperplane will be orthogonal to the plane of the Fig. 3 and so it will
manifest itself as an intersecting line l that should not cross circles around A
and B, being projections of the respective balls. Let us draw two solid lines k,m
between circles O(A, ρ) and O(B, ρ) tangential to each of them. Line l should lie
between these lines, in which case the cluster center will not jump to the other
ball. Let the line X ′Y ′ intersect with the circles O(A, ρ) and O(B, ρ) at points
C,D,E, F as in the figure. It is obvious that the line l would get closer to circle
A, if the points X’, Y’ would lie closer to C and E, or closer to circle B if they
would be closer to D and F .

Therefore, to show that the line l does not cut the circle O(A, ρ), it is sufficient
to consider X ′ = C and Y ′ = E. (The case with ball Ball(B, ρ) is symmetrical).

Let O be the center of the line segment AB. Let us draw through this point a
line parallel to CE that cuts the circles at points C ′,D′, E′ and F ′. Now notice
that centric symmetry through point O transforms the circles O(A, ρ), O(B, ρ)
into one another, and point C ′ into F ′ and D′ into E′. Let E∗ and F ∗ be images
of points E and F under this symmetry. In order for the line l to lie between m
and k, the middle point of the line segment CE shall lie between these lines.

Let us introduce a planar coordinate system centered at O with X axis par-
allel to lines m, k, such that A has both coordinates non-negative, and B non-
positive. Let us denote with α the angle between the lines AB and k. As we
assume that the distance between A and B equals 4ρ, then the distance between
lines k and m amounts to 2ρ(2 sin(α) − 1). Hence the Y coordinate of line k
equals ρ(2 sin(α) − 1). So the Y coordinate of the center of the line segment CE
shall be not higher than this. Let us express this in vector calculus:

4(yOC + yOE)/2 ≤ ρ(2 sin(α) − 1)

Note, however that

yOC +yOE = yOA +yAC +yOB +yBE = yAC +yBE = yAC −yAE∗ = yAC +yE∗A

So let us examine the circle with center at A. Note that the lines CD and
E∗F ∗ are at the same distance from the line C’ D’. Note also that the absolute
values of direction coefficients of tangentials of circle A at C’ and D’ are identical.
The more distant these lines are, as line CD gets closer to A, the yAC gets bigger,
and yE∗A becomes smaller. But from the properties of the circle, we see that yAC

increases at a decreasing rate, while yE∗A decreases at an increasing rate. So the
sum yAC + yE∗A has the biggest value when C is identical with C ′ and we need
hence to prove only that

(yAC′ + yD′A)/2 = yAC′ ≤ ρ(2 sin(α) − 1)

Let M denote the middle point of the line segment C ′D′. As point A has the
coordinates (2ρ cos(α), 2ρ sin(α)), the point M is at distance of 2ρ cos(α) from
A. But C ′M2 = ρ2 − (2ρ cos(α))2.

So we need to show that ρ2 − (2ρ cos(α))2 ≤ (ρ(2 sin(α)−1))2. In fact we get
from the above 0 ≤ 1 − sin(α) which is an obvious trigonometric relation.
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5 Incremental k-means

It is not hard to demonstrate that if the perfect-ball separation was found, it does
not suffice to state that we reached a global minimum of k-means. Moreover, even
if the global minimum of k-means is a perfectly ball separated set of clusters,
it does not mean that motion-transformation keeping this property will yield a
new clustering being optimal for k-means.

However, there exists a version of k-means for which a perfectly ball separated
set of clusters is the global optimum. Hence the motion-transform keeping the
perfect ball separation keeps the optimum. We will introduce this algorithm in
this section and demonstrate the respective property.

Ackerman and Dasgupta [2] study clusterability properties of incremental
clustering algorithms. They introduce an incremental version of a very popular
k-means algorithm (for an extensive overview of k-means versions see [11]).

They introduced the perfect clustering with the property that the smallest
distance between elements of distinct clusters is larger than the distance between
any two elements of the same cluster. They demonstrate that there exists an
incremental algorithm discovering the perfect clustering that is linear in k with
respect to space. But their incremental (sequential) k-means fails to do so.

Their case study is interesting because it demonstrates that the cluster shape
plays a role - each cluster has to be enclosed into a convex envelope. The problem
of incremental k-means is caused by the fact that this envelope is not ball-shaped.

Data: the data points xi, i = 1, . . . ,m, the required number of clusters k
Result: T - the set of cluster centres
Set T = (t1, . . . , tk) to the first k data points;
Initialize the counts n1, n2, . . . , nk to 1;
while any data point unvisited do

Acquire the next example, tk+1. Set nk+1 = 1;
Find i, j ∈ {1, . . . , k + 1}, i < j such the distance between ti and tj is the
smallest one among distances between t1, . . . , tk/+1.
Replace ti = (tini + tjnj)/(ni + nj), thereafter ni = ni + nj ;
if j �= k + 1 then

replace tj = tk+1, nj = nk+1

end

end

Algorithm 1: Sequential (incremental) k-means, our modification

Let us discuss at this point a bit the notions of perfect separation. In their
Theorem 4.4. Ackerman and Dasgupta [2] show that the incremental k-means
algorithm, as introduced in their Algorithm 2.2, is not able to cluster correctly
data that is perfectly clusterable (their Definition 4.1). The reason is quite sim-
ple. The perfect separation refers only to separation of data points, and not to
points in the convex hull of these points. But during the clustering process, the
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candidate cluster centres are moved in the convex hulls, so that they can occa-
sionally get too close to data points of the other cluster. To avoid this effect, we
will use the just introduced concept of perfect ball separation (see Definition 4)

Under the perfect-ball-separation as introduced here their incremental k-
means Algorithm 2.2. (Sequential k-means) will discover the structure of the
clusters after a modification (Algorithm 1):

Data: T = (t1, . . . , tk) be the resulting set of cluster centres from the
Algorithm 1.

Result: Clusterability decision
Initialize the furthest neighbours f1, f2, . . . , fk with t1, t2 . . . , tk respectively;
while any data point unvisited do

Acquire the next example, x; if ti is the closest centre to x and x is further
away from ti than fi then

Replace fi with X;
end

end
Compute distances between corresponding ti and fi, pick the highest one;
Compute distances between each pair ti, tj and pick the lowest one;
if the latter is 4 times or more higher than the former one then

We got a perfect ball clustering
else

Perfect ball clustering was not found
end

Algorithm 2: Sequential k-means, our modification – second pass

The reason is as follows. Perfect ball separation ensures that there exists an
r of the enclosing ball such that the distance between any two points within the
same ball is lower than 2r, and between them is bigger than 2r. So whenever
Ackerman’s incremental k-mean merges two points, they are the points of the
same ball. Upon merging, the resulting point lies again within the ball.

Theorem 4. The incremental k-means algorithm will discover the structure of
perfect-ball-clustering.

Proof. If ti, tj are points within the ball enclosing a single cluster, then also
(tini + tjnj)/(ni + nj) will lie within the same ball. If tk+1 stems from a cluster
not represented by t1, . . . , tk, then k + 1 will not be in the pair (i, j) of closest
elements, because their distance is more than 2ρ, while those within a cluster
at most 2ρ. On the other hand, ti, tj would not stem from two different clusters
because t1, . . . , tk, because the distance within a cluster is at most 2ρ, while
the distance between elements from distinct clusters is at most 2ρ. In this way,
no tl, l = 1, . . . , k will lie outside of balls representing clusters. Furthermore,
its position will be calculated only based on data points from the same cluster.
Furthermore, it will be the average position of those points, so finally, after the
full pass, all tl will represent the k different cluster centers.
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The incremental k-means algorithm returns only a set of cluster centers with-
out stating whether or not we got a perfect ball clustering. However, if we are
allowed to inspect the data for the second time, such information can be pro-
vided. See Algorithm 2: A second pass for other algorithms from Ackerman and
Dasgupta Sect. 2 would not yield such a decision.

6 Conclusions

We derived in this paper the intended shape of a k-means cluster (a ball
centered at cluster gravity center) as a necessary condition of clustering pre-
serving motion-transformation of the dataset. This shape preserves ball-shaped
local minima for k-means algorithm with random initial partition. We have
also derived, for ball-shaped clusters for k = 2, gap condition for motion-
transformation that preserves the global minimum of k-means. We have also
shown that incremental k-means is able to find the perfect ball-shaped clus-
tering. Therefore the motion-transform keeping the perfect ball separation will
preserve the incremental-k-means clustering. Thus we have discovered a couple of
transformations that preserve various aspects of clustering, suitable for deriving
new labeled datasets from existent ones, as implied by our Theorems 1, 3, 2, 4.
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