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Abstract. In online edge- and node-deletion problems the input arrives
node by node and an algorithm has to delete nodes or edges in order
to keep the input graph in a given graph class at all times. We consider
graph classes that can be characterized by forbidden sets of induced sub-
graphs and analyze the advice complexity of getting an optimal solution.
We give almost tight lower and upper bounds for the Delayed H-Node
Deletion Problem, where there is one forbidden induced subgraph
that may or may not be disconnected and tight bounds on the Delayed
F-Node Deletion Problem, where we have an arbitrary number of for-
bidden connected graphs. For the latter result we present an algorithm
that computes the advice complexity directly from F . For the Delayed
H-Node Deletion Problem the advice complexity is basically an easy
function of the size of the biggest component in H.

Keywords: Online algorithm · Advice complexity · Node deletion ·
Edge deletion · Delayed decision model · Graph modification

1 Introduction

Many classical online problems can be formulated as follows: Given an instance
I = {x1, . . . , xn} as a series of elements ordered from x1 to xn, an algorithm
receives them iteratively in this order, having to decide whether to include xi

into its solution at the point it receives it. It can base this decision only on the
previously revealed x1, . . . , xi−1 and must neither remove xi from its solution
later nor include any of the previously revealed elements into its solution. A
way to measure the performance of such an online algorithm is the competitive
ratio, which compares how much worse it performs compared to an optimal
offline algorithm [4]. An algorithm is c-competitive if the competitive ratio of
the algorithm is bounded by a constant c.

In most classical online problems such as the k-Server Problem, the Pag-
ing Problem or the Knapsack Problem as well as most other online prob-
lems, receiving the next xi of an instance coincides with an algorithm having
to process this request. This makes a lot of sense in the previously mentioned
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problems, but arguably less sense when there is no “need to act” after an item
of the instance is presented, which may regularly happen in the instances of the
problem that we study in this paper: Informally, the requests are single nodes of
a graph that are iteratively revealed and our task is to keep the graph induced
by these nodes free of a set F of forbidden induced subgraphs by deleting nodes
or edges. Obviously, there are sets and instances in which an arbitrary number
of nodes can be revealed before any forbidden induced substructure is revealed.
The offline variant of this problem was shown to be NP-Hard by Yannakakis [17].

In this work, we use a modified version, which we call the delayed decision
model, which was already used in [16] and which is similar to the preemptive
model used by Komm et al. [13]. We consider an instance I = {x1, . . . , xn} of
an online minimization problem for which a solution S ⊆ I has to satisfy some
condition C. Again, an algorithm ALG has to decide whether to include any
element into its solution S. We denote the intermediate solution of an algorithm
on an instance I at the revelation of element xi – before the decision on whether
to include it in S – by SI

i (ALG). While in the classical definition, an algorithm
has to decide on whether to include an element into its solution at the point
of revelation, the algorithm may now wait until the condition C is violated by
SI

i (ALG). It may then include any of the previously revealed elements into its
solution, but is still unable to revert any of its previous selections.

A selection of online problems that do not admit any algorithm with a
constantly bounded competitive ratio, such as the Minimum Vertex Cover
Problem and in particular general node and edge deletion problems are con-
stantly competitive with delayed decision.

A simple example is the online Minimum Vertex Cover Problem. The
input I is a series of induced subgraphs G[{v1}], G[{v1, v2}], . . . , G[{v1, . . . , vn}]
for which C states that SI

i (ALG) is a vertex cover on G[{v1, . . . , vi}]. In this
setting, an algorithm has to include nodes into its current solution only once an
edge is revealed that is not covered yet. While the Minimum Vertex Cover
Problem is competitive in the maximum degree Δ of an input graph in the
classical online setting [5], a competitive ratio of 2 can be proven for the delayed
decision setting: The upper bound is given by always taking both nodes of an
uncovered edge into the solution (this is the classical 2-approximation algorithm).
The lower bound can be achieved by presenting an edge {vi, vj} and adding
another edge to either vi or vj , depending on which node is not taken into the
solution by a deterministic online algorithm. If both nodes are taken into the
solution then no additional edge is introduced. This gadget can be repeated and
forces a deterministic algorithm to take two nodes into the vertex cover where
one suffices.

We denote by H a finite graph and by F a finite set of finite graphs. For a
problem Π we denote the optimal solution size on an input I by optΠ(I).

The competitive ratio is a standard method to analyze online algorithms
and a relatively new alternative is the advice complexity introduced by Dobrev,
Královič, and Pardubská [7], revised by Hromkovič, Královič and Královič [11]
and refined by Böckenhauer et al. [2]. The advice complexity measures the
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amount of information about the future that is necessary to solve an online
problem optimally or with a given competitive ratio. There is an oracle called
“advisor” that knows the whole input instance and gives the online algorithm
“advice” in the form of a binary string that can be read from a special advice
tape. Many problems have been successfully analyzed in this model including
the k-server problem [8], the Knapsack Problem [3], Job-Shop Schedul-
ing [1] and many more. One criticism on the advice model is that in the real
world such a powerful advisor usually cannot exist. However, the new research
area of learning-augmented algorithms uses an AI-algorithm to guide classical
algorithms to solve optimization problems and they are closely related to the
advice complexity [14,15]. A strong application of advice complexity are the
lower bounds it provides: For example, the online knapsack problem can be
solved with a competitive ratio of two by a randomized algorithm. It has been
shown that this competitive ratio cannot be improved with o(log n) advice bits.

We base our work on the definitions of advice complexity from [12] and [2],
with a variation due to the modified online model we are working on: The length
of the advice string is often measured as a function in the input length n, which
usually almost coincides with the number of decisions an online algorithm has
to make during its run. In the delayed decision model, the number of decisions
may be smaller than n by a significant amount and we can measure the advice
as f(optΠ(I)), i.e., a function of the size of the optimum solution. This usually
does not work in classical online algorithms.

Tight results for the advice complexity of the Delayed Connected
F-Node Deletion Problem and of the Delayed Connected H-Edge
Deletion Problem were shown in [16]. We show upper and lower bounds for
the general Delayed H-Node Deletion Problem and a tight bound for the
Delayed Connected F-Edge Deletion Problem. We leave open the exact
advice complexity for the general Delayed F-Node Deletion Problem and
Delayed F-Edge Deletion Problem, for which we can only provide lower
bounds. Some proofs can be found only in the full version of this paper.

2 The F-Node Deletion Problem and F-Edge Deletion
Problem Without Advice

For a graph G = (V,E) we write |G| to denote |V (G)| and ||G|| to denote |E(G)|.
We use the symbol � to denote an induced subgraph relation, i.e. A � B iff A
is an induced subgraph of B. We write G to denote the set of all graphs.

We write G − U for G[V (G) − U ] and G − u for G − {u} and also use G − E
similarly for an edge set E. For graphs H and G we write H �ϕ G if there exists
an isomorphism ϕ such that ϕ(H) � G. We call a set of graphs unordered if
the members are pairwise maximal according to the induced subgraph relation
�. It is easy to see that every Delayed F-Node Deletion Problem can be
reduced to one with an unordered F . A graph G is called F-free if there is no
Hi �ϕ G for any Hi ∈ F .
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Definition 1. Let F be an unordered set of graphs. Let I be a sequence of
growing induced subgraphs G[{v1}], . . . , G[{v1, . . . , vn}]. The F-Node Dele-
tion Problem is to delete a minimum size set of nodes S from G such that
G − S is F-free. We call SI

i ⊆ {v1, . . . , vi} an (intermediate) solution for the F-
Node Deletion Problem on G[{v1, . . . , vi}] if G[{v1, . . . , vi}] − SI

i is F-free.

The Delayed F-Node Deletion Problem is defined accordingly, with the
condition C stating The Graph G[{v1, . . . , vi} − SI

i (ALG)] is F-free for all
i ∈ {1, . . . , n} and some algorithm ALG. F-Edge Deletion and Delayed
F-Edge Deletion are defined accordingly, with the solution being a set of
edges. The graph is always revealed as a sequence of nodes. We will denote
the Delayed F-Node Deletion Problem for F = {H} as the Delayed
H-Node Deletion Problem.

Lemma 1. There is at least one F for which the F-Node Deletion Problem
is not c-competitive for any constant c.

Lemma 1 is not surprising. It generalizes that Vertex Cover admits no
constantly bounded competitive ratio [5].

Lemma 2. There is at least one F for which the F-Edge Deletion Problem
is not c-competitive for any constant c.

Lemma 3. The Delayed F-Node Deletion Problem is k-competitive
for k = maxH∈F{|H|}. The Delayed F-Edge Deletion Problem is k-
competitive for k = maxH∈F{||H||}.
Proof. Whenever an algorithm finds an induced H, it deletes all of its nodes,
resp. edges. ��

3 The Delayed H-Node Deletion Problem with Advice

If F consists of connected subgraphs, tight results have already been proven
in [16]. The advice complexity is exactly optF (G) log(|H|) + O(1) for a biggest
graph H ∈ F . The problem becomes harder when the graphs in F are discon-
nected and was left as an open question. We answer it partially by determining
the advice complexity for the Delayed H-Node Deletion Problem, where
H can be disconnected.

Definition 2. Let CG = {C1, C2, . . . , Cj} denote the set of components of G.

If a forbidden graph H is disconnected, it may contain multiple copies of the
same component, e.g., three disjoint triangles among other components. If we
were only to delete triangles, we would thus have to delete all but two copies to
make the graph of an instance H-free. We introduce some notation to determine
the number and the actual copies of a type of component.

Definition 3. Given a graph G. For a connected graph C we define the packing
pC(G) of C in G as the set of sets of pairwise node-disjoint copies of C in G and
the packing number of C in G, νC(G), as maxH∈pC(G)(|H|).
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In other words, νC(G) is the maximal number of C’s that can be packed node-
disjointly into G.

We use the multiplicity of components in H in a lower bound that forces any
algorithm to leave specific components such as the two specific triangles in our
small example. To punish a wrong selection, we use a redundancy construction
that maps a component C into a C ′ such that C � C ′ and even C � C ′ − {v}
for every v holds, while C ′ does not contain two disjoint copies of C.

Definition 4. We call the graph H ′ a redundancy construction of a connected
graph H with |H| > 1 if there exists an isomorphism ϕ1 : G → G such that for
every isomorphism ϕ2 : G → G the following holds:

– ϕ1(H) � H ′ − v for all v ∈ V (H ′)
– ϕ1(H) �� H ′ − V (ϕ2(H)) if V (ϕ2(H)) ⊆ V (H ′)

To show that such a redundancy construction actually exists, we use the
following transformation.

Definition 5. Given a connected graph H = (V,E) with V = {v1, . . . , vn},
n > 1, in some order and some k ∈ [2, n] s.t. (v1, vk) ∈ E(H). H ′ is then
constructed in the following way: V (H ′) = V (H) ∪ {v′

i | vi ∈ V (H), i ≥ 2} and
E(H ′) = E(H)∪{(v′

i, v
′
j) | (vi, vj) ∈ E(H), v′

i, v
′
j ∈ V (H ′)}∪{(v1, v′

i) | (v1, vi) ∈
E(H)} ∪ {(vk, v′

j) | (v1, vj) ∈ E(H)}
Intuitively, we create a copy of H except for a single node v1. The copied neigh-
bors of v1 are then connected with v1. Lastly, some copied node is chosen and
connected with the original neighbors of v1.

Example 1. A graph H and its redundancy construction H ′:

Lemma 4. The transformation in Definition 5 is a redundancy construction.

We denote an optimal solution of the Delayed H-Node Deletion Problem
on a graph G by solH(G).

3.1 Lower Bound

Theorem 1. Let H be a graph. Let Cmax be a component of H of maximum
size. Any online algorithm optimally solving the Delayed H-Node Deletion
Problem uses at least optH(G) · log |V (Cmax )| + (νCmax

(H) − 1) · log(optH(G))
many advice bits on input G.
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Proof. Let CH = {C1, . . . , Cj} and |V (C1)| ≤ . . . ≤ |V (Cj)|. The adversary first
presents k ≥ max{ νCi

(H) | Ci ∈ CH } disjoint copies of each Ci ∈ CH in an
iterative way such that in each iteration one copy of each Ci is revealed node by
node. If an algorithm deleted any nodes before an H is completed, the adversary
would simply stop and the algorithm would not be optimal.

As soon as G is no longer H-free, any algorithm has to delete some node(s).
For a Ci ∈ CH it can either delete all Ci except for νCi

(H) − 1 occurrences
and optionally some additional node(s). Obviously, deleting an additional node
is not optimal, as the adversary would simply stop presenting nodes.

The following strategy will force an optimal online algorithm always to delete
copies of Cmax . After all k copies of all Ci ∈ CH are presented, additionally
maxCi∈CH

{νCi
(H)}−νCmax

(H)+1 copies of each Ci ∈ CH \Cmax are presented.
Deleting all Cmax except for νCmax

(H) − 1 occurrences will thus only need k −
νCmax

(H) + 1 deletions, while deleting any other component will need at least
k−maxCi∈CH

{νCi
(H)}+1+maxCi∈CH

{νCi
(H)}−νCmax

(H)+1 = k−νCmax
(H)+2

deletions. Thus, it is always optimal for any algorithm to focus on Cmax for
deletion.

After all components have been revealed - and some deletion(s) had to be
made - a redundancy construction such as the one from Definition 5 is used in
order to repair an arbitrary set of νCmax

(H) − 1 copies of Cmax . Every optimal
algorithm will leave exactly νCmax

(H) − 1 copies of Cmax after G is completely
revealed. There are

(optH(G)+νCmax (H)−1
optH(G)

)
many different ways to distribute the

affected components onto all components and an algorithm without advice can-
not distinguish them. In particular, each of these instances is part of a different,
unique optimal solution, which deletes a node from all but the νCmax

(H) − 1
subgraphs. If an algorithm has chosen to delete a node from a component that
is affected by the redundancy construction, this component is now repaired and
demands an additional deletion. By definition, applying the redundancy con-
struction does not result in additional disjoint copies of Cmax . Thus, it is still
optimal to focus on Cmax for deletion.

Finally, for every component that is not affected by a redundancy construc-
tion, the adversary glues a copy of Cmax to one of its nodes as defined in [16].
It has |V (Cmax )| ways to do so for each copy of Cmax . Intuitively, the glueing
operation joins two graphs by identifying a single node from both and connecting
them by joining these two nodes into one.

We now measure how much advice an algorithm needs at least. First of all,
it should be easy to see that the adversary is able to present |V (Cmax )|optH(G)

many different instances regarding the deletion of nodes for the copies of Cmax

not selected for the redundancy construction.
Assuming νCmax

(H) > 1, any algorithm needs to determine the correct subset
of optH(G) components out of k − 1 presented ones to delete one node from. As
the adversary has

(optH(G)+νCmax (H)−1
optH(G)

)
different ways to distribute these redun-

dancies and since every single of these instances has a different unique optimal
solution, any correct algorithm has to get advice on the complete distribution
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Algorithm 1. Upper Bound: Delayed H-Node Deletion Problem

1: Input: Online graph G with V (G) = {v1, . . . , vn}, H
2: Advisor computes Cminν ∈ argminC∈CH {νC(G) − νC(H)}
3: Advisor computes Cmin ∈ argminC∈Cminν {|V (C)|}
4: Advisor computes L, the list of labels marked for keeping
5: Read advice: Cmin � Which Cmin ∈ CH to delete
6: Read advice: List L of numbers in range [1, optH(G) + O(1)]
7: k ← 1
8: Define l : G → N, l(G) = 0
9: Define labeled : G → {0, 1}, labeled(G) = 1 iff l(G) �= 0, otherwise labeled(G) = 0

10: for all i ∈ {1, . . . , n} do
11: Gi ← G[v1, . . . , vi] � Reveal next node
12: if νCmin (Gi) ≥ νCmin (H) then
13: W ← argmaxP∈pCmin

(Gi)|P | � Biggest Packings

14: H ← argmaxP∈W

∑
g∈P labeled(g) � Most labels

15: Select P ∈ H � Arbitrary set
16: for all C ∈ P do � Label everything unlabeled
17: if l(C) = 0 then l(C) ← k; k ← k + 1

18: S ← { C ∈ P | l(C) �∈ L } � Select everything not marked for keeping
19: for all C ∈ S do
20: Read advice: Which v ∈ V (C) to delete
21: Delete v out of Gi

in the size of at least log
(optH(G)+νCmax (H)−1

optH(G)

) ≥ (νCmax
(H) − 1) · log(optH(G))

advice bits. ��

3.2 Upper Bound

For simplicity of writing down the algorithm, we will assume in this section that
we are only ever presented graphs which induce at least one forbidden subgraph
H. Our algorithm can be easily transformed into one that only starts to read any
advice once the first forbidden subgraph is completely revealed. For an instance
with an online graph G with V (G) = {v1, . . . , vn} and a forbidden subgraph H,
the advisor first computes the advice the algorithm is going to read during its
run. It first identifies the set of components Cminν which each require the fewest
node deletions in G to make the graph H-free. Of these possible components,
the advisor chooses the component with the fewest nodes which an optimal
offline algorithm would choose, named Cmin from here on. Finally, the advisor
computes a list L of labels which will coincide with labels given by the algorithm
to copies of Cmin which are not to be deleted in an optimal solution. As there
are at most νCmin

(H) · optH(G) node-disjoint copies of H in G and as Lemma
7 states that our algorithm uses at most optH(G) + O(1) labels, we can limit
the range of possible labels by [1, optH(G) + O(1)]. Finally, a number of advice
bits is written for every deletion that the algorithm will make which encode the
concrete node out of a copy of Cmin is optimal to delete.
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The algorithm starts by reading from the advice tape which component Cmin

to focus on for deletion and the list L, using self-delimiting encoding.
Whenever the next node xi of the instance is revealed which fulfills

νCmin
(Gi) ≥ νCmin

(H), i.e. that there are at least as many node-disjoint copies
of Cmin in the current graph as in H, the algorithm will delete nodes from the
graph as described in the following, otherwise the algorithm simply waits for the
next node to be revealed.

To identify which node(s) of Gi are to be deleted, the algorithm first identifies
all biggest sets of node-disjoint copies of Cmin . Of them it identifies a set P of
which the most components have already received a label. Then all previously
unlabeled copies of Cmin ∈ P receive a new unique label. The algorithm now
looks at the label list L given by the advisor. Every copy of Cmin ∈ P whose
label is not in L is now marked for deletion. The algorithm reads advice which
concrete node out of every copy of Cmin is optimal to delete.

Lemma 5. Algorithm 1 is correct.

Lemma 6. Algorithm 1 is optimal.

Definition 6. Given graphs G,H and a labeling function l : G → N. We call
a family C of induced subgraphs of G a configuration, if every element of C is
isomorphic to H, l(C) �= 0 for each C ∈ C and V (C1) ∩ V (C2) = ∅ for all
C1, C2 ∈ C, C1 �= C2. The size of a configuration is the number of induced
subgraphs it contains.

Informally speaking, a configuration is a set of disjoint induced subgraphs of G
that already have a label.

Lemma 7. Given an online graph G, a forbidden graph H, as well as a subgraph
C ∈ CH of which there may be at most k = νC(H) − 1 disjoint copies present in
G. Algorithm 1 assigns no more than optH(G) + O(1) labels to G if the advisor
assigns Cmin = C as specified in line 5.

Theorem 2. Let H be a graph. Let Cminν = argminC∈CH
{νC(G)−νC(H)} and

Cmin = argminC∈Cminν
{|V (C)|}. The Delayed H-Node Deletion Problem

can be solved optimally using at most optH(G) · log |V (Cmin)| + O(log optH(G))
many advice bits on input G.

Proof. We count the number of advice bits used by Algorithm 1. We know by
Lemma 5 and 6 that it is correct and optimal. The advice in line 5 is of constant
size. As L only contains the labels for components which are not to be deleted and
we limited the number of them by a constant in Lemma 7, only O(log optH(G))
advice, using self-delimiting encoding, is needed in line 6.

Finally, the algorithm reads advice on which node of each copy of Cmin

that is part of solH(G) to delete in line 21. This can be done using optH(G) ·
log |V (Cmin)| advice bits in total. ��
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4 The Delayed Connected F-Edge Deletion Problem

Let (d1, . . . , dk) ∈ Nk. Let m(n) be the solution to the recurrence relation

m(n) =

{∑k
i=1 m(n − di) if n ≥ max{d1, . . . , dk}

cn otherwise

where cn ≥ 0 and some ci > 0 for 0 ≤ i < max{d1, . . . , dk}. Let β(d1, . . . , dk) =
infτ{ τ | m(n) = O(τn) }. Note that β does not depend on the ci’s.

If S = {D1, . . . , Dk} is a set of sets, then we define β(S) = β(|D1|, . . . , |Dk|).
A homogeneous linear recurrence relation with constant coefficients usually

has a solution of the form Θ(nk−1τn) if τ is the dominant singularity of the
characteristic polynomial with multiplicity k [9]. However, here the coefficients
of the characteristic polynomial are real numbers and there is exactly one sign
change. By Descartes’ rule of signs there is exactly one positive real root and
therefore its multiplicity has to be one [6,10]. Therefore m(n) = Θ(β(S)n).

Definition 7. Let F be a set of forbidden connected induced subgraphs and
H ∈ F . Let S ⊆ 2E(H).

1. A set D ⊆ E(H) is H-optimal for a graph G if H � G and G − D is F-free
and optF (G) = |D|.

2. A set D ⊆ E(H) is H-good for a graph G if H � G and D is a non-empty
subset of some D̄ ⊆ E(G) where optF (G) = |D̄| and G − D̄ is F-free.

3. S is H-sound if H − D is F-free for every D ∈ S.
4. S is H-sufficient if for every connected graph G with H � G there is a D ∈ S

such that D is H-good for G.
5. S is H-minimal if for every D ∈ S, there is a graph G such that D is H-good

for G, but every D′ ∈ S, D′ �= D is not.

Lemma 8. Let F = {H1, . . . , Hk} be a set of connected graphs, G a graph and
D ⊆ E(Hi) that is Hi-good for G. Then there is a subgraph G′ ⊆ G such that D
is Hi-optimal for G′.

4.1 Upper Bound

Theorem 3. Let F = {H1, . . . , Hk} be a set of connected graphs and let Si be
Hi-sound and Hi-sufficient for all i ∈ {1, . . . , k}. Then there is an m ∈ R and an
algorithm that solves the Delayed Connected F-Edge Deletion Problem
for every graph G with m · optF (G) + O(1) many advice bits where 2m ≤ β(Si)
for all i ∈ {1, . . . , k}.
Proof. The algorithm receives optF (G) · log(maxi{β(Si)}) + O(1) many advice
bits and then a graph G as a sequence of growing induced subgraphs. The
algorithm interprets the advice as a number that can be between 0 and
O((maxi{β(Si)})optF (G)).
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The algorithm will delete in total exactly optF (G) edges. We analyze the
total number of different advice strings the algorithm might use when deleting
optF (G) edges.

When the algorithm receives a new node and its incident edges to form the
next graph G it proceeds as follows: While G is not F-free, choose some Hi ∈ F
for which Hi �ϕ G. The advisor chooses one D ∈ Si for which ϕ(D) is ϕ(Hi)-
good for the graph at hand and puts it in the advice.

The advice strings are therefore partitioned into |Si| subsets, one for each
D ∈ Si. After deleting ϕ(D) the algorithm proceeds on the graph G − ϕ(D),
where optF (G) is now by |D| smaller. If m(optF (G)) is the total number of advice
strings we get the recurrence m(optF (G)) = maxi

(∑
D∈Si

m(optF (G) − |D|))
if optF (G) is at least as big as every D ∈ Si. Standard techniques show that
m(optF (G)) = O(max{β(S1), . . . , β(Sk)}optF (G)). ��

4.2 Lower Bound

Let F = {H1, . . . , Hk} be a set of connected graphs. We fix some correct algo-
rithm A for the Delayed Connected F-Edge Deletion Problem.

We define the sets Si = Si(A) for i = 1, . . . , k as follows: D ∈ Si if and only
if there is some input sequence G1, G2, . . . , Gt such that algorithm A deletes the
edge set D′ from Gt. Moreover, there is a set X and an isomorphism ϕ such that
G[X] ∼= Hi, ϕ : V (H) → X, and ϕ(D) = D′ ∩E(G[X]). Informally speaking, the
edge sets in Si are those that are deleted from some isomorphic copy of Hi by
algorithm A in some scenario.

We will need the following technical lemma. It states that we can find a
matching with special properties in every connected bipartite graph. The match-
ing should have the following properties. Let U ′ be the partners in the matching
on top and V ′ on the bottom.

The first property is N(U ′) = V , i.e., every node in V is connected to at least
one node in U ′. The second property states that we have an induced matching,
i.e., that the graph induced by U ′ ∪ V ′ is a matching. The third property
concerns the vertices in V ′: If v ∈ V ′ then N(v) contains several vertices from
U , but exactly one node in U ′, i.e., its partner in the matching. We require that
this partner is the smallest one in N(v).

Lemma 9. Let G = (U, V,E) be a bipartite graph where U = {u1, . . . , uk}. Let
≤ be a preorder on U such that u1 ≤ · · · ≤ uk. Moreover, assume that V ⊆ N(U),
i.e., every node in V is connected to some node in U . Then there is a U ′ ⊆ U
and V ′ ⊆ V such that

1. N(U ′) = V ,
2. G[U ′ ∪ V ′] is a matching,
3. min N(v) ∈ U ′ for every v ∈ V ′.

Lemma 10. Let F = {H1, . . . , Hk} be a set of connected graphs and Si be Hi-
sound and Hi-sufficient for all i ∈ {1, . . . , k}. Then there are S′

i ⊆ Si such that
S′

i is Hi-sound, Hi-sufficient and Hi-minimal and moreover:
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For every D′ ∈ S′
i there is a graph G with Hi � G such that D′ is Hi-good for

G and for every D ∈ Si \ S′
i that is also Hi-good for G, it holds that |D| ≥ |D′|.

Theorem 4. Let F = {H1, . . . , Hk} be a set of connected graphs and assume
that there is an algorithm A that can solve the Delayed Connected F-Edge
Deletion Problem for all inputs G with at most m · optF (G) + O(1) advice
for some m ∈ R. Then there exist S′

i that are Hi-sound, Hi-sufficient, and
Hi-minimal and β(S′

i) ≤ 2m for every i ∈ {1, . . . , k}.
Proof. By Lemma 10 there is an S′

i = {D1, . . . , Dr} ⊆ Si that is Hi-sound,
Hi-sufficient, and Hi-minimal. It additionally has the property that for every
D′ ∈ S′

i there is a graph G with Hi � G such that D′ is Hi-good for G and for
every D ∈ Si \ S′

i that is also Hi-good for G, it holds that |D| ≥ |D′|.
Let l ∈ N. The adversary prepares Θ(β(S′)l) many instances by repeating

the following procedure until the size of the optimum solution for the presented
graph exceeds l − max{|D1|, . . . , |Dr|}.

1. The adversary presents a disjoint copy of Hi.
2. Then the adversary computes an induced supergraph Gj of Hi for which Dj

is Hi-good, but all Dj′ ∈ S′
i with j′ �= j are not Hi-good, for all 1 ≤ j ≤ r.

The existence of the graph Gj is guaranteed by the Hi-minimality of S′
i.

In particular there is a D̄j ⊇ Dj such that D̄j is Hi-optimal for Gj . Let
D′

j = D̄j − Dj . Let G′
j = Gj − D′

j . It is easy to see that Dj is Hi-optimal
for G′

j .

We show that no other Dj′ ∈ S′
i is Hi-good for G′

j . Assume otherwise. If Dj′ is
Hi-good for G′

j then there must be a D̄j′ ⊇ Dj′ that is Hi-optimal for G′
j . Then

Gj − Dj′ − ((D̄j′ − Dj′) ∪ D′
j) is F-free. This implies that Dj′ is Hi-good for Gj

contradicting the Hi-minimality of S′
i. Next the adversary transforms the Hi into

one of the r possible G′
js and presents the new vertices. Then optF (G′

j) = |Dj |.
Hence, the optimal solution size increases by |Dj |.

In each round the input graph grows and the optimal solution size grows
by |Dj |. As soon as that size exceeds l − max{|D1|, . . . , |Dr|} the adversary
keeps presenting disjoint copies of Hi without turning them into bigger connected
graphs until the size reaches exactly l. The number N(l) of different instances
is given by the following recurrence:

N(l) =

{∑r
j=1 N(l − |Dj |) if l ≥ max{|D1|, . . . , |Dr|}

1 otherwise

It is easy to see that N(l) = Θ(β(S′
i)

l). The algorithm has to react differently
on all of these instances: When the algorithm sees a new Hi to be turned into
one of G′

1, . . . , G
′
r, it deletes different edge sets for each of the r possibilities.

The adversary constructed an instance that consists of a sequence of disjoint
graphs G′

i1
, . . . , G′

it
from the set {G′

1, . . . , G
′
r} of which the total size is at least

∑t
j=1 optF (Gij

) − max{|D1|, . . . , |Dr|} and O(1) many copies of Hi. If G is the
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whole constructed instance we have optF (G) = l + O(1) because optF (Hi)F =
O(1). Together with N(l) = Θ(β(S′

i)
l) this means that Algorithm A uses at least

log N(l) = l · log β(S′
i) + O(1) = optF (G) log β(S′

i) + O(1) advice bits. Assume
Algorithm A uses at most m · optF (G) + O(1) advice bits on every graph G as
stated in the precondition above. Then m cannot be smaller than log β(S′

i) for
every i ∈ {1, . . . , k} because optF (G) can be become arbitrarily big. ��
Lemma 11. Let F be a set of connected forbidden graphs, H ∈ F , and S ⊆
2E(H). There is an algorithm that can decide whether S is H-sufficient.

Proof. It is sufficient to verify for all connected graphs G with H � G that some
D ∈ S is H-good for G, i.e., there is an optimal solution for G that contains D.
By Lemma 8 we can restrict our search to all such G’s that have an optimal
solution that is a subset of E(H). There are infinitely many graphs G to check.
To overcome this we define the unfolding of G, written Υ (G), as the set of the
following graphs: Remember that H � G. If there is some H ′ ∈ F with H ′ �ϕ G
then G[E(H) ∪ E(ϕ(H ′))] ∈ Υ (G) (for every possible ϕ). If, however, Υ (G)
contains two graphs G′ and G′′ that are isomorphic via an isomorphism that is
the identity on V (H), then only the lexicographically smaller one is retained.

This means that the unfolding of G contains all induced subgraphs that
consist of H and one other copy of some forbidden induced subgraph from F
that must overlap with H in some way (because we assumed that G has an
optimal solution that consists solely of edges from H). Here is a small example:

Let F = { , }, H = { }, G = . Then Υ (G) = { , , , }.

It is easy to see that deleting some D ⊆ E(H) from G makes it F-free iff
deleting the same D from all graphs G′ ∈ Υ (G) makes all these G′ F-free. Hence,
there is an optimal solution for G that is a subset of E(H) iff there is such a
subset that is “optimal” for Υ (G) (i.e., deletion of no smaller edge set can make
all graphs in Υ (G) F-free).

There are only finitely possibilities for Υ (G) and we can enumerate all of
them. Let us say this enumeration is Υ1, . . . , Υt. For each Υi we first find out,
whether there is a G with Υ (G) = Υi. We can do this by enumerating all graphs
G up to a size that does not exceed the sum of the sizes of all graphs in Υi

and computing Υ (G) for them. If indeed Υ (G) = Υi then we test whether S is
H-good for G. Iff these tests pass for all i then S is indeed H-sufficient. ��
Theorem 5. Let F = {H1, . . . , Hk} be connected graphs. The advice complexity
for Delayed Connected F-Edge Deletion is m · optF (G) + O(1) where
m = maxi∈{1,...,k} min{ log β(S) | S ⊆ 2E(H), S is Hi-sound and Hi-sufficient }.
There is an algorithm that can compute m from F . More specifically, there is
an algorithm that gets F and t ∈ N as the input and returns the tth bit of the
binary representation of m.

Proof. “≤” by Theorem 3. “≥” by Theorem 4. An algorithm can enumerate
all possible S ⊆ E(H) and then test if S is Hi-sound and Hi-sufficient (by
Lemma 11). Then β(S) is computed by finding the only real root of the charac-
teristic polynomial of the corresponding recurrence relations [9]. ��
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