
DAOS: A Scale-Out High Performance Storage
Stack for Storage Class Memory

Zhen Liang1(&) , Johann Lombardi2 , Mohamad Chaarawi3 ,
and Michael Hennecke4

1 Intel China Ltd., GTC, No. 36 3rd Ring Road, Beijing, China
liang.zhen@intel.com

2 Intel Corporation SAS, 2 rue de Paris, 92196 Meudon Cedex, France
johann.lombardi@intel.com

3 Intel Corporation, 1300 S MoPac Expy, Austin, TX 78746, USA
mohamad.chaarawi@intel.com

4 Lenovo Global Technology Germany GmbH, Am Zehnthof 77,
45307 Essen, Germany

mhennecke@lenovo.com

Abstract. The Distributed Asynchronous Object Storage (DAOS) is an open
source scale-out storage system that is designed from the ground up to support
Storage Class Memory (SCM) and NVMe storage in user space. Its advanced
storage API enables the native support of structured, semi-structured and
unstructured data models, overcoming the limitations of traditional POSIX
based parallel filesystem. For HPC workloads, DAOS provides direct MPI-IO
and HDF5 support as well as POSIX access for legacy applications. In this paper
we present the architecture of the DAOS storage engine and its high-level
application interfaces. We also describe initial performance results of DAOS for
IO500 benchmarks.

Keywords: DAOS � SCM � Persistent memory � NVMe � Distributed storage
system � Parallel filesystem � SWIM � RAFT

1 Introduction

The emergence of data-intensive applications in business, government and academia
stretches the existing I/O models beyond limits. Modern I/O workloads feature an
increasing proportion of metadata combined with misaligned and fragmented data.
Conventional storage stacks deliver poor performance for these workloads by adding a
lot of latency and introducing alignment constraints. The advent of affordable large-
capacity persistent memory combined with a high-speed fabric offers a unique
opportunity to redefine the storage paradigm and support modern I/O workloads
efficiently.

This revolution requires a radical rethinking of the complete storage stack. To
unleash the full potential of these new technologies, the new stack must embrace a
byte-granular shared-nothing interface from the ground up. It also has to be able to

© The Author(s) 2020
D. K. Panda (Ed.): SCFA 2020, LNCS 12082, pp. 40–54, 2020.
https://doi.org/10.1007/978-3-030-48842-0_3

http://orcid.org/0000-0003-1402-7725
http://orcid.org/0000-0002-8553-5383
http://orcid.org/0000-0002-7405-2140
http://orcid.org/0000-0002-7412-5696
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48842-0_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48842-0_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48842-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-48842-0_3

support massively distributed storage for which failure will be the norm, while pre-
serving low latency and high bandwidth access over the fabric.

DAOS is a complete I/O architecture that aggregates SCM and NVMe storage
distributed across the fabric into globally accessible object address spaces, providing
consistency, availability and resiliency guarantees without compromising performance.

Section 2 of this paper describes the challenges that SCM and NVMe storage pose
to traditional I/O stacks. Section 3 introduces the architecture of DAOS and explains
how it integrates with new storage technologies. Section 4 gives an overview of the
data model and I/O interfaces of DAOS, and Sect. 5 presents the first IO500 perfor-
mance results of DAOS.

2 Constraints of Using Traditional Parallel Filesystems

Conventional parallel filesystems are built on top of block devices. They submit I/O
through the OS kernel block I/O interface, which is optimized for disk drives. This
includes using an I/O scheduler to optimize disk seeking, aggregating and coalescing
writes to modify the characteristics of the workloads, then sending large streaming data
to the disk drive to achieve the high bandwidth. However, with the emergence of new
storage technologies like 3D-XPoint that can offer several orders of magnitude lower
latency comparing with traditional storage, software layers built for spinning disk
become pure overhead for those new storage technologies.

Moreover, most parallel filesystems can use RDMA capable network as a fast
transport layer, in order to reduce data copying between layers. For example, transfer
data from the page cache of a client to the buffer cache of a server, then persist it to
block devices. However, because of lacking unified polling or progress mechanisms for
both block I/O and network events in the traditional storage stack, I/O request handling
heavily relies on interrupts and multi-threading for concurrent RPC processing.
Therefore, context switches during I/O processing will significantly limit the advantage
of the low latency network.

With all the thick stack layers of traditional parallel filesystem, including caches
and distributed locking, user can still use 3D NAND, 3D-XPoint storage and high
speed fabrics to gain some better performance, but will also lose most benefits of those
technologies because of overheads imposed by the software stack.

3 DAOS, a Storage Stack Built for SCM and NVMe Storage

The Distributed Asynchronous Object Storage (DAOS) is an open source software-
defined object store designed from the ground up for massively distributed Non
Volatile Memory (NVM). It presents a key-value storage interface and provides fea-
tures such as transactional non-blocking I/O, a versioned data model, and global
snapshots.

DAOS: A Scale-Out High Performance Storage Stack for SCM 41

This section introduces the architecture of DAOS, discusses a few core components
of DAOS and explains why DAOS can be a storage system with both high performance
and resilience.

3.1 DAOS System Architecture

DAOS is a storage system that takes advantage of next generation NVM technology
like Storage Class Memory (SCM) and NVM express (NVMe). It bypasses all Linux
kernel I/O, it runs end-to-end in user space and does not do any system call during I/O.

As shown in Fig. 1, DAOS is built over three building blocks. The first one is
persistent memory and the Persistent Memory Development Toolkit (PMDK) [2].
DAOS uses it to store all internal metadata, application/middleware key index and
latency sensitive small I/O. During starting of the system, DAOS uses system calls to
initialize the access of persistent memory. For example, it maps the persistent memory
file of DAX-enabled filesystem to virtual memory address space. When the system is
up and running, DAOS can directly access persistent memory in user space by memory
instructions like load and store, instead of going through a thick storage stack.

Persistent memory is fast but has low capacity and low cost effectiveness, so it is
effectively impossible to create a large capacity storage tier with persistent memory
only. DAOS leverages the second building block, NVMe SSDs and the Storage Per-
formance Development Kit (SPDK) [7] software, to support large I/O as well as higher
latency small I/O. SPDK provides a C library that may be linked into a storage server
that can provide direct, zero-copy data transfer to and from NVMe SSDs. The DAOS
service can submit multiple I/O requests via SPDK queue pairs in an asynchronous
manner fully from user space, and later creates indexes for data stored in SSDs in
persistent memory on completion of the SPDK I/O.

Libfabric [8] and an underlying high performance fabric such as Omni-Path
Architecture or InfiniBand (or a standard TCP network), is the third build block for
DAOS. Libfabric is a library that defines the user space API of OFI, and exports fabric
communication services to application or storage services. The transport layer of
DAOS is built on top of Mercury [9] with a libfabric/OFI plugin. It provides a callback
based asynchronous API for message and data transfer, and a thread-less polling API
for progressing network activities. A DAOS service thread can actively poll network
events from Mercury/libfabric as notification of asynchronous network operations,
instead of using interrupts that have a negative performance impact because of context
switches.

42 Z. Liang et al.

As a summary, DAOS is built on top of new storage and network technologies and
operates fully in user space, bypassing all the Linux kernel code. Because it is archi-
tected specifically for SCM and NVMe, it cannot support disk based storage. Tradi-
tional storage system like Lustre [11], Spectrum Scale [12], or CephFS [10] can be
used for disk-based storage, and it is possible to move data between DAOS and such
external file systems.

3.2 DAOS I/O Service

From the perspective of stack layering, DAOS is a distributed storage system with a
client-server model. The DAOS client is a library that is integrated with the application,
and it runs in the same address space as the application. The data model exposed by the
DAOS library is directly integrated with all the traditional data formats and middleware
libraries that will be introduced in Sect. 4.

The DAOS I/O server is a multi-tenant daemon that runs either directly on a data
storage node or in a container. It can directly access persistent memory and NVMe
SSDs, as introduced in the previous section. It stores metadata and small I/O in per-
sistent memory, and stores large I/O in NVMe SSDs. The DAOS server does not rely
on spawning pthreads for concurrent handling of I/O. Instead it creates an Argobots [6]
User Level Thread (ULT) for each incoming I/O request. An Argobots ULT is a
lightweight execution unit associated with an execution stream (xstream), which is
mapped to the pthread of the DAOS service. This means that conventional POSIX I/O
function calls, pthread locks or synchronous message waiting calls from any ULT can

DAOS Storage Engine

SPDK
NVMe
Interface

Metadata, low-latency I/Os &
indexing/query

Bulk data

PMDK
Memory
Interface

AI/Analytics/Simulation Workflow

DAOS library

POSIX I/O HDF5 Spark…

Compute Nodes

MPI-I/ O Python

Libfabric

Storage Nodes

3D-XPoint Memory 3D-NAND/XPoint SSD

Fig. 1. DAOS system architecture

DAOS: A Scale-Out High Performance Storage Stack for SCM 43

block progress of all ULTs on an execution stream. However, because all building
blocks used by DAOS provide a non-blocking user space interface, a DAOS I/O ULT
will never be blocked on system calls. Instead it can actively yield the execution if an
I/O or network request is still inflight. The I/O ULT will eventually be rescheduled by a
system ULT that is responsible for polling a completion event from the network and
SPDK. ULT creation and context switching are very lightweight. Benchmarks show
that one xstream can create millions of ULTs per second, and can do over ten million
ULT context switches per second. It is therefore a good fit for DAOS server side I/O
handling, which is supposed to support micro-second level I/O latency (Fig. 2).

3.3 Data Protection and Data Recovery

DAOS storage is exposed as objects that allow user access through a key-value or key-
array API. In order to avoid scaling problems and the overhead of maintaining per-
object metadata (like object layout that describes locality of object data), a DAOS
object is only identified by a 128-bit ID that has a few encoded bits to describe data
distribution and the protection strategy of the object (replication or erasure code, stripe
count, etc.). DAOS can use these bits as hints, and the remaining bits of the object ID
as a pseudorandom seed to generate the layout of the object based on the configuration
of the DAOS storage pool. This is called algorithmic object placement. It is similar to
the data placement technology of Ceph, except DAOS is not using CRUSH [10] as the
algorithm.

This paper will only describe the data protection and recovery protocol from a high
level view. Detailed placement algorithm and recovery protocol information can be
found in the online DAOS design documents [5].

CA
RT

Bl
ob

 I/
O

ULT

ULT

ULT

ULT

I/O XStream

RPC progress

utl_create(rpc_handler)

I/O submit

I/O complete

Reply send

1

2
3

7
9

SP
DK

/N
VM

e

Bulk transfer

5

VOS

I/O progress

PMDK

Index data 8

46

M
er

cu
ry

/O
FI

ULT

Fig. 2. DAOS server side I/O processing

44 Z. Liang et al.

Data Protection
In order to get ultra-low latency I/O, a DAOS storage server stores application data and
metadata in SCM connected to the memory bus, and on SSDs connected over PCIe.
The DAOS server uses load/store instructions to access memory-mapped persistent
memory, and the SPDK API to access NVMe SSDs from user space. If there is an
uncorrectable error in persistent memory or an SSD media corruption, applications
running over DAOS without additional protection would incur a data/metadata loss. In
order to guarantee resilience and prevent data loss, DAOS provides both replication
and erasure coding for data protection and recovery.

When data protection is enabled, DAOS objects can be replicated, or chunked into
data and parity fragments, and then stored across multiple storage nodes. If there is a
storage device failure or storage node failure, DAOS objects are still accessible in
degraded mode, and data redundancy is recoverable from replicas or parity data [15].

Replication and Data Recovery
Replication ensures high availability of data because objects are accessible while any
replica survives. Replication of DAOS is using a primary-slave protocol for write: The
primary replica is responsible for forwarding requests to slave replicas, and progressing
distributed transaction status.

The primary-slave model of DAOS is slightly different from a traditional replica-
tion model, as shown in Fig. 3a. The primary replica only forwards the RPC to slave
replica servers. All replicas will then initiate an RDMA request and get the data directly
from the client buffer. DAOS chooses this model because in most HPC environments,
the fabric bandwidth between client and server is much higher than the bandwidth
between servers (and the bandwidth between servers will be used for data recovery and
rebalance). If DAOS is deployed for a non-HPC use case that has higher bandwidth
between servers, then the data transfer path of DAOS can be changed to the traditional
model.

DAOS uses a variant of two-phase commit protocol to guarantee atomicity of the
replicated update: If one replica cannot apply the change, then all replicas should
abandon the change as well. This protocol is quite straightforward if there is no failure.

Client

data
server

storage

data
server

storage

parity
server

storage

data
server

storage

data

client

slave
server
storage

slave
server
storage

primary
server
storage

data
RPC

RDMA

parity

(a) Replicated write (b) Erasure coding write

Fig. 3. Message and data flow of replication and erasure coding

DAOS: A Scale-Out High Performance Storage Stack for SCM 45

However, if a server handling the replication write failed during the two-phase trans-
action, DAOS will not follow the traditional two-phase commit protocol that would
wait for the recovery of the failed node. Instead it excludes the failed node from the
transaction, then algorithmically selects a different node as a replacement, and moves
forward the transaction status. If the failed-out node comes back at some point, it
ignores its local transaction status and relies on the data recovery protocol to catch up
the transaction status.

When the health monitoring system of DAOS detected a failure event of a storage
target, it reports the event to the highly replicated RAFT [14] based pool service, which
can globally activate the rebuild service on all storage servers in the pool. The rebuild
service of a DAOS server can promptly scan object IDs stored in local persistent
memory, independently calculates the layout of each object, and then finds out all the
impacted objects by checking if the failed target is within their layouts. The rebuild
service also sends those impacted object IDs to algorithmically selected fallback
storage servers. These fallback servers then reconstruct data for impacted objects by
pulling data from the surviving replicas.

In this process, there is no central place to perform data/metadata scans or data
reconstruction: The I/O workload of the rebuild service will be fully declustered and
parallelized.

Erasure Coding and Data Recovery
DAOS can also support erasure coding (EC) for data protection, which is much more
space and bandwidth efficient than replication but requires more computation.

Because the DAOS client is a lightweight library which is linked with the appli-
cation on compute nodes that have way more compute resource than the DAOS ser-
vers, the data encoding is handled by the client on write. The client computes the
parity, creates RDMA descriptors for both data and parity fragments, and then sends an
RPC request to the leader server of the parity group to coordinate the write. The RPC
and data flow of EC is the same as replication: All the participants of an EC write
should directly pull data from the client buffer, instead of pulling data from the leader
server cache (Fig. 3b). DAOS EC also uses the same two-phase commit protocol as
replication to guarantee the atomicity of writes to different servers.

If the write is not aligned with the EC stripe size, most storage systems have to go
through a read/encode/write process to guarantee consistency of data and parity. This
process is expensive and inefficient, because it will generate much more traffic than the
actual I/O size. It also requires distributed locking to guarantee consistency between
read and write. With its multi-version data model, DAOS can avoid this expensive
process by replicating only the partial write data to the parity server. After a certain
amount of time, if the application keeps writing and composes a full stripe eventually,
the parity server can simply compute the parity based on all this replicated data.
Otherwise, the parity server can coordinate other servers in the parity group to generate
a merged view from the partial overwritten data and its old version, then computes
parity for it and stores the merged data together with that new parity.

When a failure occurs, a degraded mode read of EC-protected data is more heavy-
weight compared to replication: With replication, the DAOS client can simply switch to
read from a different replica. But with EC, the client has to fetch the full data stripe and

46 Z. Liang et al.

has to reconstruct the missing data fragment inflight. The processing of degraded mode
write of EC-protected data is the same as for replication: The two-phase commit
transaction can continue without being blocked by the failed-out server, instead it can
immediately proceed as soon as a fallback server is selected for the transaction.

The rebuild protocol of EC is also similar to replication, but it will generate sig-
nificantly more data movement compared to replication. This is a characteristic of all
parity based data protection technologies.

End to End Data Integrity
There are three types of typical failures in DAOS storage system:

• Service crash. DAOS captures this by running the gossip-like protocol SWIM [13].
• NVMe SSD failure. DAOS can detect this type of failure by polling device status

via SPDK.
• Data corruption caused by storage media failure. DAOS can detect this by storing

and verifying checksums.

In order to support end-to-end checksums and detect silent data corruption, before
writing the data to server the DAOS client computes checksums for the data being
written. When receiving the write, the DAOS server can either verify the checksums, or
store the checksums and data directly without verification. The server side verification
can be enabled or disabled by the user, based on performance requirements.

When an application reads back the data, if the read is aligned with the original
write then server can just return the data and checksum. If the read is not aligned with
the original write, the DAOS server verifies the checksums for all involved data
extents, then computes the checksum for the part of data being read, and returns both
data and checksum to the client. The client then verifies the checksum again before
returning data to the application. If the DAOS client detects a checksum error on read,
it can enable degraded mode for this particular object, and either switch to another
replica for the read, or reconstruct data inflight on the client if it is protected by EC. The
client also reports the checksum error back to the server. A DAOS server will collect all
checksum errors detected by local verification and scrubbing, as well as errors reported
by clients. When the number of errors reaches a threshold, the server requests the pool
service to exclude the bad device from the storage system, and triggers data recovery
for it.

Checksums of DAOS are stored in persistent memory, and are protected by the
ECC of the persistent memory modules. If there is an uncorrectable error in persistent
memory, the storage service will be killed by SIGBUS. In this case the pool service
will disable the entire storage node, and starts data recovery on the surviving nodes.

4 DAOS Data Model and I/O Interface

This section describes the data model of DAOS, the native API built for this data
model, and explains how a POSIX namespace is implemented over this data model.

DAOS: A Scale-Out High Performance Storage Stack for SCM 47

4.1 DAOS Data Model

The DAOS data model has two different object types: Array objects that allow an
application to represent a multi-dimensional array; and key/value store objects that
have native support of a regular KV I/O interface and a multi-level KV interface.
Both KV and array objects have versioned data, which allows applications to make
disruptive change and rollback to an old version of the dataset. A DAOS object always
belongs to a domain that is called a DAOS container. Each container is a private object
address space which can be modified by transactions independently of the other con-
tainers stored in the same DAOS pool [1] (Fig. 4).

DAOS containers will be exposed to applications through several I/O middleware
libraries, providing a smooth migration path with minimal (or sometimes no) appli-
cation changes. Generally, all I/O middleware today runs on top of POSIX and
involves serialization of the middleware data model to the POSIX scheme of directories
and files (byte arrays). DAOS provides a richer API that provides better and more
efficient building blocks for middleware libraries and applications. By treating POSIX
as a middleware I/O library that is implemented over DAOS, all libraries that build on
top of POSIX are supported. But at the same time, middleware I/O libraries can be
ported to work natively over DAOS, bypassing the POSIX serialization step that has
several disadvantages that will not be discussed in this document. I/O middleware
libraries that have been implemented on top of the DAOS library include POSIX, MPI-
I/O, and HDF5. More I/O middleware and frameworks will be ported in the future to
directly use the native DAOS storage API.

key1

val1

key3

val3

@

@

Application

NVMe SSD

DAOS

key1

val1

root @

key3

val3

@

val2

key2

@@

@

@

val2 con’d

val2

key2

@

Application

Fig. 4. DAOS data model

48 Z. Liang et al.

4.2 DAOS POSIX Support

POSIX is not the foundation of the DAOS storage model. It is built as a library on top
of the DAOS backend API, like any other I/O middleware. A POSIX namespace can be
encapsulated in a DAOS container and can be mounted by an application into its
filesystem tree.

Figure 5 shows the software stack of DAOS for POSIX. The POSIX API will be
used through a fuse driver using the DAOS Storage Engine API (through libdaos)
and the DAOS File System API (through libdfs). This will inherit the overhead of
FUSE in general, including system calls etc. This overhead is acceptable for most file
system operations, but I/O operations like read and write can actually incur a significant
performance penalty if all of them have to go through system calls. In order to enable
OS-bypass for those performance sensitive operations, an interception library has been
added to the stack. This library will work in conjunction with dfuse, and allows to
intercept POSIX read(2) and write(2) calls in order to issue these I/O operations
directly from the application context through libdaos (without any application
changes).

In Fig. 5, there is a layer between dfuse/interception library and libdaos,
which is called libdfs. The libdfs layer provides a POSIX like API directly on
top of the DAOS API. It provides file and directory abstractions over the native
libdaos library. In libdfs, a POSIX namespace is encapsulated in a container.
Both files and directories are mapped to objects within the container. The namespace
container can be mounted into the Linux filesystem tree. Both data and metadata of the
encapsulated POSIX file system will be fully distributed across all the available storage

Application / Framework

DAOS library (libdaos)

DAOS File System (libdfs)

Interception Library

dfuse

Single process address space

DAOS Storage Engine

RPC RDMA

End-to-end
user space
No system calls

Persistent memory NVMe SSD

Fig. 5. DAOS POSIX support

DAOS: A Scale-Out High Performance Storage Stack for SCM 49

of the DAOS pool. The dfuse daemon is linked with libdfs, and all the calls from
FUSE will go through libdfs and then libdaos, which can access the remote
object store exposed by the DAOS servers.

In addition, as mentioned above, libdfs can be exposed to end users through
several interfaces, including frameworks like SPARK, MPI-IO, and HDF5. Users can
directly link applications with libdfs when there is a shim layer for it as plugin of
I/O middleware. This approach is transparent and requires no change to the application.

5 Performance

The DAOS software stack is still under heavily development. But the performance it
can achieve on new storage class memory technologies has already been demonstrated
at the ISC19 and SC19 conferences, and first results for the IO500 benchmark suite on
DAOS version 0.6 have been recently submitted [16]. IO500 is a community activity
to track storage performance and storage technologies of supercomputers, organized by
the Virtual Institute for I/O (VI4IO) [17]. The IO500 benchmark suite consists of data
and metadata workloads as well as a parallel namespace scanning tool, and calculates a
single ranking score for comparison. The workloads include:

• IOR-Easy: Bandwidth for well-formed large sequential I/O patterns
• IOR-Hard: Bandwidth for a strided I/O workload with small unaligned I/O transfers

(47001 bytes)
• MDTest-Easy: Metadata operations on 0-byte files, using separate directories for

each MPI task
• MDTest-Hard: Metadata operations on small (3901 byte) files in a shared directory
• Find: Finding relevant files through directory traversals

We have adapted the I/O driver used for IOR and MDTEST to work directly over
the DFS API described in Sect. 4. The driver was pushed and accepted to the upstream
ior-hpc repository for reference. Developing a new IO driver is relatively easy since, as
mentioned before, the DFS API closely resembles the POSIX API. The following
summarizes the steps for implementing a DFS backend for IOR and mdtest. The same
scheme can also be applied to other applications using the POSIX API:

• Add an initialize callback to connect to the DAOS pool and open the DAOS
container that will encapsulate the namespace. A DFS mount is then created over
that container.

• Add callbacks for all the required operations, and substitute the POSIX API with the
corresponding DFS API. All the POSIX operations used in IOR and mdtest have a
corresponding DFS API, which makes the mapping easy. For example:
– change mkdir() to dfs_mkdir();
– change open64() to dfs_open();
– change write() to dfs_write();
– etc.
– Add a finalize callback to unmount the DFS mount and close the pool and

container handle.

50 Z. Liang et al.

Two lists of IO500 results are published: The “Full List” or “Ranked List” contains
performance results that are achieved on an arbitrary number of client nodes. The “10
Node Challenge” list contains results for exactly 10 client nodes, which provides a
standardized basis for comparing those IO500 workloads which scale with the number
of client nodes [3]. For both lists, there are no constraints regarding the size of the
storage system. Optional data fields may provide information about the number and
type of storage devices for data and metadata; when present in the submissions this
information can be used to judge the relative efficiency of the storage systems.

For the submission to IO500 at SC19 [16], the IO500 benchmarks have been run on
Intel’s DAOS prototype cluster “Wolf”. The eight dual-socket storage nodes of the
“Wolf” cluster use Intel Xeon Platinum 8260 processors. Each storage node is
equipped with 12 Intel Optane Data Center Persistent Memory Modules (DCPMMs)
with a capacity of 512 GiB (3 TiB total per node, configured in app-direct/interleaved
mode). The dual-socket client nodes of the “Wolf” cluster use Intel Xeon E5-2699 v4
processors. Both the DAOS storage nodes and the client nodes are equipped with two
Intel Omni-Path 100 adapters per node.

Figure 6 shows the IO500 IOR bandwidth of the top four storage systems on the
November 2019 edition of the IO500 “10-Node Challenge”. DAOS achieved both the
#1 overall rank, as well as the highest “bw” bandwidth score (the geometric mean of
the four IOR workloads). Due to its multi-versioned data model, DAOS does not
require read-modify-write operations for small or unaligned writes (which generates
extra I/O traffic and locking contention in traditional POSIX filesystems). This property
of the DAOS storage engine results in very similar DAOS bandwidth for the “hard”
and “easy” IOR workloads, and provides predictable performance across many dif-
ferent workloads.

Fig. 6. IO500 10-node challenge – IOR bandwidth in GB/s

DAOS: A Scale-Out High Performance Storage Stack for SCM 51

Figure 7 shows the mdtest metadata performance of the top four storage systems on
the November 2019 edition of the IO500 “10-Node Challenge”. DAOS dominates the
overall “md” metadata score (geometric mean of all mdtest workloads), with almost a
3x difference to the nearest contender. This is mainly due to the lightweight end-to-end
user space storage stack, combined with an ultra-low latency network and DCPMM
storage media. Like the IOR bandwidth results, the DAOS metadata performance is
very homogeneous across all the tests, whereas many of the other file systems exhibit
large variations between the different metadata workloads.

DAOS achieved the second rank on the November 2019 “Full List”, using just 26
client nodes. Much better performance can be expected with a larger set of client nodes,
especially for those metadata tests that scale with the number of client nodes. So a
direct comparison with other storage systems on the “Full List” (some of which were
tested with hundreds of client nodes) is not as meaningful as the “10-Node Challenge”.

The full list of IO500 results and a detailed description of the IO500 benchmark
suite can be found at Ref. [16].

6 Conclusion

As storage class memory and NVMe storage become more widespread, the software
stack overhead factors more and more as part of the overall storage system. It is very
difficult for traditional storage systems to take full advantage of these storage hardware
devices. This paper presented DAOS as a newly designed software stack for these new

Fig. 7. IO500 10-node challenge – mdtest performance in kIOP/s

52 Z. Liang et al.

storage technologies, described the technical characteristics of DAOS, and explained
how it can achieve both high performance and high resilience.

In the performance section, IO500 benchmark results proved that DAOS can take
advantage of the new storage devices and their user space interfaces. More important
than the absolute ranking on the IO500 list is the fact that DAOS performance is very
homogeneous across the IO500 workflows, whereas other file systems sometimes
exhibit orders-of-magnitude performance differences between individual IO500 tests.

This paper only briefly introduced a few core technical components of DAOS and
its current POSIX I/O middleware. Other supported I/O libraries like MPI-I/O and
HDF5 are not covered by this paper and will be the subject of future studies. Additional
I/O middleware plugins based on DAOS/libdfs are still in development. The roadmap,
design documents and development status of DAOS can be found on github [5] and the
Intel DAOS website [4].

References

1. Breitenfeld, M.S., et al.: DAOS for extreme-scale systems in scientific applications (2017).
https://arxiv.org/pdf/1712.00423.pdf

2. Rudoff, A.: APIs for persistent memory programming (2018). https://storageconference.us/
2018/Presentations/Rudoff.pdf

3. Monnier, N., Lofstead, J., Lawson, M., Curry, M.: Profiling platform storage using IO500
and mistral. In: 4th International Parallel Data Systems Workshop, PDSW 2019 (2019).
https://conferences.computer.org/sc19w/2019/pdfs/PDSW2019-6YFSp9XMTx6Zb1FALM
AAsH/5PVXONjoBjWD2nQgL1MuB3/6lk0OhJlEPG2bUdbXXPPoq.pdf

4. DAOS. https://wiki.hpdd.intel.com/display/DC/DAOS+Community+Home
5. DAOS github. https://github.com/daos-stack/daos
6. Seo, S., et al.: Argobots: a lightweight low-level threading and tasking framework. IEEE

Trans. Parallel Distrib. Syst. 29(3) (2018). https://doi.org/10.1109/tpds.2017.2766062
7. SPDK. https://spdk.io/
8. Libfabric. https://ofiwg.github.io/libfabric/
9. Mercury. https://mercury-hpc.github.io/documentation/
10. Weil, S.A., Brandt, S.A., Miller, E.L., Maltzahn, C.: CRUSH: controlled, scalable,

decentralized placement of replicated data. In: Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, SC 2006 (2006). https://doi.org/10.1109/sc.2006.19

11. Braam, P.J.: The Lustre storage architecture (2005). https://arxiv.org/ftp/arxiv/papers/1903/
1903.01955.pdf

12. Schmuck, F., Haskin, R.: GPFS: a shared-disk file system for large computing clusters. In:
Proceedings of the First USENIX Conference on File and Storage Technologies, Monterey,
CA, 28–30 January 2002, pp 231–244 (2002). http://www.usenix.org/publications/library/
proceedings/fast02/

13. Das, A., Gupta, I., Motivala, A.: SWIM: scalable weakly-consistent infection-style process
group membership protocol. In: Proceedings of the 2002 International Conference on
Dependable Systems and Networks, DSN 2002, pp. 303–312 (2002)

14. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm (2014).
https://www.usenix.org/system/files/conference/atc14/atc14-paper-ongaro.pdf

DAOS: A Scale-Out High Performance Storage Stack for SCM 53

https://arxiv.org/pdf/1712.00423.pdf
https://storageconference.us/2018/Presentations/Rudoff.pdf
https://storageconference.us/2018/Presentations/Rudoff.pdf
https://conferences.computer.org/sc19w/2019/pdfs/PDSW2019-6YFSp9XMTx6Zb1FALMAAsH/5PVXONjoBjWD2nQgL1MuB3/6lk0OhJlEPG2bUdbXXPPoq.pdf
https://conferences.computer.org/sc19w/2019/pdfs/PDSW2019-6YFSp9XMTx6Zb1FALMAAsH/5PVXONjoBjWD2nQgL1MuB3/6lk0OhJlEPG2bUdbXXPPoq.pdf
https://wiki.hpdd.intel.com/display/DC/DAOS%2bCommunity%2bHome
https://github.com/daos-stack/daos
https://doi.org/10.1109/tpds.2017.2766062
https://spdk.io/
https://ofiwg.github.io/libfabric/
https://mercury-hpc.github.io/documentation/
https://doi.org/10.1109/sc.2006.19
https://arxiv.org/ftp/arxiv/papers/1903/1903.01955.pdf
https://arxiv.org/ftp/arxiv/papers/1903/1903.01955.pdf
http://www.usenix.org/publications/library/proceedings/fast02/
http://www.usenix.org/publications/library/proceedings/fast02/
https://www.usenix.org/system/files/conference/atc14/atc14-paper-ongaro.pdf

15. Barton, E.: DAOS: an architecture for extreme storage scale storage (2015). https://www.
snia.org/sites/default/files/SDC15_presentations/dist_sys/EricBarton_DAOS_Architecture_
Extreme_Scale.pdf

16. IO500 List, November 2019. https://www.vi4io.org/io500/list/19-11/start
17. Kunkel, J., et al.: Virtual institute for I/O. https://www.vi4io.org/start

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

54 Z. Liang et al.

https://www.snia.org/sites/default/files/SDC15_presentations/dist_sys/EricBarton_DAOS_Architecture_Extreme_Scale.pdf
https://www.snia.org/sites/default/files/SDC15_presentations/dist_sys/EricBarton_DAOS_Architecture_Extreme_Scale.pdf
https://www.snia.org/sites/default/files/SDC15_presentations/dist_sys/EricBarton_DAOS_Architecture_Extreme_Scale.pdf
https://www.vi4io.org/io500/list/19-11/start
https://www.vi4io.org/start
http://creativecommons.org/licenses/by/4.0/

	DAOS: A Scale-Out High Performance Storage Stack for Storage Class Memory
	Abstract
	1 Introduction
	2 Constraints of Using Traditional Parallel Filesystems
	3 DAOS, a Storage Stack Built for SCM and NVMe Storage
	3.1 DAOS System Architecture
	3.2 DAOS I/O Service
	3.3 Data Protection and Data Recovery

	4 DAOS Data Model and I/O Interface
	4.1 DAOS Data Model
	4.2 DAOS POSIX Support

	5 Performance
	6 Conclusion
	References

