

Transition Property for α -Power Free Languages with $\alpha \geq 2$ and $k \geq 3$ Letters

Josef Rukavicka^(⊠)

Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic josef.rukavicka@seznam.cz

Abstract. In 1985, Restivo and Salemi presented a list of five problems concerning power free languages. Problem 4 states: Given α -power-free words u and v, decide whether there is a transition from u to v. Problem 5 states: Given α -power-free words u and v, find a transition word w, if it exists.

Let Σ_k denote an alphabet with k letters. Let $L_{k,\alpha}$ denote the α -power free language over the alphabet Σ_k , where α is a rational number or a rational "number with +". If α is a "number with +" then suppose $k \geq 3$ and $\alpha \geq 2$. If α is "only" a number then suppose k = 3 and $\alpha > 2$ or k > 3 and $\alpha \geq 2$. We show that: If $u \in L_{k,\alpha}$ is a right extendable word in $L_{k,\alpha}$ and $v \in L_{k,\alpha}$ is a left extendable word in $L_{k,\alpha}$ then there is a (transition) word w such that $uwv \in L_{k,\alpha}$. We also show a construction of the word w.

Keywords: Power free languages \cdot Transition property \cdot Dejean's conjecture

1 Introduction

The power free words are one of the major themes in the area of combinatorics on words. An α -power of a word r is the word $r^{\alpha} = rr \dots rt$ such that $\frac{|r^{\alpha}|}{|r|} = \alpha$ and t is a prefix of r, where $\alpha \geq 1$ is a rational number. For example $(1234)^3 =$ 123412341234 and $(1234)^{\frac{7}{4}} = 1234123$. We say that a finite or infinite word wis α -power free if w has no factors that are β -powers for $\beta \geq \alpha$ and we say that a finite or infinite word w is α^+ -power free if w has no factors that are β -powers for $\beta > \alpha$, where $\alpha, \beta \geq 1$ are rational numbers. In the following, when we write " α -power free" then α denotes a number or a "number with +". The power free words, also called repetitions free words, include well known square free (2-power free), overlap free (2⁺-power free), and cube free words (3-power free). Two surveys on the topic of power free words can be found in [8] and [13].

One of the questions being researched is the construction of infinite power free words. We define the *repetition threshold* $\operatorname{RT}(k)$ to be the infimum of all rational numbers α such that there exists an infinite α -power-free word over an alphabet with k letters. Dejean's conjecture states that $\operatorname{RT}(2) = 2$, $\operatorname{RT}(3) = \frac{7}{4}$,

© Springer Nature Switzerland AG 2020

N. Jonoska and D. Savchuk (Eds.): DLT 2020, LNCS 12086, pp. 294–303, 2020. https://doi.org/10.1007/978-3-030-48516-0_22 $\operatorname{RT}(4) = \frac{7}{5}$, and $\operatorname{RT}(k) = \frac{k}{k-1}$ for each k > 4 [3]. Dejean's conjecture has been proved with the aid of several articles [1-3,5,6,9].

It is easy to see that α -power free words form a factorial language [13]; it means that all factors of a α -power free word are also α -power free words. Then Dejean's conjecture implies that there are infinitely many finite α -power free words over Σ_k , where $\alpha > \operatorname{RT}(k)$.

In [10], Restivo and Salemi presented a list of five problems that deal with the question of extendability of power free words. In the current paper we investigate Problem 4 and Problem 5:

- Problem 4: Given α -power-free words u and v, decide whether there is a transition word w, such that uwu is α -power free.
- Problem 5: Given α -power-free words u and v, find a transition word w, if it exists.

A recent survey on the progress of solving all the five problems can be found in [7]; in particular, the problems 4 and 5 are solved for some overlap free (2⁺power free) binary words. In addition, in [7] the authors prove that: For every pair (u, v) of cube free words (3-power free) over an alphabet with k letters, if u can be infinitely extended to the right and v can be infinitely extended to the left respecting the cube-freeness property, then there exists a "transition" word w over the same alphabet such that uwv is cube free.

In 2009, a conjecture related to Problems 4 and Problem 5 of Restivo and Salemi appeared in [12]:

Conjecture 1. [12, Conjecture 1] Let L be a power-free language and let $e(L) \subseteq L$ be the set of words of L that can be extended to a bi-infinite word respecting the given power-freeness. If $u, v \in e(L)$ then $uwv \in e(L)$ for some word w.

In 2018, Conjecture 1 was presented also in [11] in a slightly different form.

Let $\mathbb N$ denote the set of natural numbers and let $\mathbb Q$ denote the set of rational numbers.

Definition 1. Let

$$\begin{split} \Upsilon &= \{ (k, \alpha) \mid k \in \mathbb{N} \text{ and } \alpha \in \mathbb{Q} \text{ and } k = 3 \text{ and } \alpha > 2 \} \\ &\cup \{ (k, \alpha) \mid k \in \mathbb{N} \text{ and } \alpha \in \mathbb{Q} \text{ and } k > 3 \text{ and } \alpha \geq 2 \} \\ &\cup \{ (k, \alpha^+) \mid k \in \mathbb{N} \text{ and } \alpha \in \mathbb{Q} \text{ and } k \geq 3 \text{ and } \alpha \geq 2 \}. \end{split}$$

Remark 1. The definition of Υ says that: If $(k, \alpha) \in \Upsilon$ and α is a "number with +" then $k \geq 3$ and $\alpha \geq 2$. If $(k, \alpha) \in \Upsilon$ and α is "just" a number then k = 3 and $\alpha > 2$ or k > 3 and $\alpha \geq 2$.

Let L be a language. A finite word $w \in L$ is called *left extendable* (resp., *right extendable*) in L if for every $n \in \mathbb{N}$ there is a word $u \in L$ with |u| = n such that $uw \in L$ (resp., $wu \in L$).

In the current article we improve the results addressing Problems 4 and Problem 5 of Restivo and Salemi from [7] as follows. Let Σ_k denote an alphabet with k letters. Let $L_{k,\alpha}$ denote the α -power free language over the alphabet Σ_k . We show that if $(k,\alpha) \in \Upsilon$, $u \in L_{k,\alpha}$ is a right extendable word in $L_{k,\alpha}$, and $v \in L_{k,\alpha}$ is a left extendable word in $L_{k,\alpha}$ then there is a word w such that $uwv \in L_{k,\alpha}$. We also show a construction of the word w.

We sketch briefly our construction of a "transition" word. Let u be a right extendable α -power free word and let v be a left extendable α -power free word over Σ_k with k > 2 letters. Let \bar{u} be a right infinite α -power free word having uas a prefix and let \bar{v} be a left infinite α -power free word having v as a suffix. Let x be a letter that is recurrent in both \bar{u} and \bar{v} . We show that we may suppose that \bar{u} and \bar{v} have a common recurrent letter. Let t be a right infinite α -power free word over $\Sigma_k \setminus \{x\}$. Let \bar{t} be a left infinite α -power free word such that the set of factors of \bar{t} is a subset of the set of recurrent factors of t. We show that such \bar{t} exists. We identify a prefix $\tilde{u}xg$ of \bar{u} such that g is a prefix of t and $\tilde{u}xt$ is a right infinite α -power free word. Analogously we identify a suffix $\bar{g}x\tilde{v}$ of \bar{v} such that \bar{g} is a suffix of \bar{t} and $\bar{t}x\tilde{v}$ is a left infinite α -power free word. Moreover our construction guarantees that u is a prefix of $\tilde{u}xt$ and v is a suffix of $\bar{t}x\tilde{v}$. Then we find a prefix hp of t such that $px\tilde{v}$ is a suffix of $\bar{t}x\tilde{v}$ and such that both h and p are "sufficiently long". Then we show that $\tilde{u}xhpx\tilde{v}$ is an α -power free word having u as a prefix and v as a suffix.

The very basic idea of our proof is that if u, v are α -power free words and x is a letter such that x is not a factor of both u and v, then clearly uxv is α -power free on condition that $\alpha \geq 2$. Just note that there cannot be a factor in uxvwhich is an α -power and contains x, because x has only one occurrence in uxv. Our constructed words $\tilde{u}xt$, $\bar{t}x\tilde{v}$, and $\tilde{u}xhpx\tilde{v}$ have "long" factors which does not contain a letter x. This will allow us to apply a similar approach to show that the constructed words do not contain square factor rr such that r contains the letter x.

Another key observation is that if $k \geq 3$ and $\alpha > \operatorname{RT}(k-1)$ then there is an infinite α -power free word \overline{w} over $\Sigma_k \setminus \{x\}$, where $x \in \Sigma_k$. This is an implication of Dejean's conjecture. Less formally said, if u, v are α -power free words over an alphabet with k letters, then we construct a "transition" word w over an alphabet with k-1 letters such that uwv is α -power free.

Dejean's conjecture imposes also the limit to possible improvement of our construction. The construction cannot be used for $\operatorname{RT}(k) \leq \alpha < \operatorname{RT}(k-1)$, where $k \geq 3$, because every infinite (or "sufficiently long") word w over an alphabet with k-1 letters contains a factor which is an α -power. Also for k=2 and $\alpha \geq 1$ our technique fails. On the other hand, based on our research, it seems that our technique, with some adjustments, could be applied also for $\operatorname{RT}(k-1) \leq \alpha \leq 2$ and $k \geq 3$. Moreover it seems to be possible to generalize our technique to bi-infinite words and consequently to prove Conjecture 1 for $k \geq 3$ and $\alpha \geq \operatorname{RT}(k-1)$.

2 Preliminaries

Recall that Σ_k denotes an alphabet with k letters. Let ϵ denote the empty word. Let Σ_k^* denote the set of all finite words over Σ_k including the empty word ϵ , let $\Sigma_k^{\mathbb{N},R}$ denote the set of all right infinite words over Σ_k , and let $\Sigma_k^{\mathbb{N},L}$ denote the set of all left infinite words over Σ_k . Let $\Sigma_k^{\mathbb{N}} = \Sigma_k^{\mathbb{N},L} \cup \Sigma_k^{\mathbb{N},R}$. We call $w \in \Sigma_k^{\mathbb{N}}$ an infinite word.

Let occur(w, t) denote the number of occurrences of the nonempty factor $t \in \Sigma_k^* \setminus \{\epsilon\}$ in the word $w \in \Sigma_k^* \cup \Sigma_k^{\mathbb{N}}$. If $w \in \Sigma_k^{\mathbb{N}}$ and occur(w, t) = ∞ , then we call t a *recurrent* factor in w.

Let F(w) denote the set of all finite factors of a finite or infinite word $w \in \Sigma_k^* \cup \Sigma_k^{\mathbb{N}}$. The set F(w) contains the empty word and if w is finite then also $w \in F(w)$. Let $F_r(w) \subseteq F(w)$ denote the set of all recurrent nonempty factors of $w \in \Sigma_k^{\mathbb{N}}$.

Let $\operatorname{Prf}(w) \subseteq F(w)$ denote the set of all prefixes of $w \in \Sigma_k^* \cup \Sigma_k^{\mathbb{N},R}$ and let $\operatorname{Suf}(w) \subseteq F(w)$ denote the set of all suffixes of $w \in \Sigma_k^* \cup \Sigma_k^{\mathbb{N},L}$. We define that $\epsilon \in \operatorname{Prf}(w) \cap \operatorname{Suf}(w)$ and if w is finite then also $w \in \operatorname{Prf}(w) \cap \operatorname{Suf}(w)$. We have that $L_{k,\alpha} \subseteq \Sigma_k^*$. Let $L_{k,\alpha}^{\mathbb{N}} \subseteq \Sigma_k^{\mathbb{N}}$ denote the set of all infinite α -power

We have that $L_{k,\alpha} \subseteq \Sigma_k^*$. Let $L_{k,\alpha}^{\mathbb{N}} \subseteq \Sigma_k^{\mathbb{N}}$ denote the set of all infinite α -power free words over Σ_k . Obviously $L_{k,\alpha}^{\mathbb{N}} = \{w \in \Sigma_k^{\mathbb{N}} \mid F(w) \subseteq L_{k,\alpha}\}$. In addition we define $L_{k,\alpha}^{\mathbb{N},R} = L_{k,\alpha}^{\mathbb{N}} \cap \Sigma_k^{\mathbb{N},R}$ and $L_{k,\alpha}^{\mathbb{N},L} = L_{k,\alpha}^{\mathbb{N}} \cap \Sigma_k^{\mathbb{N},L}$; it means the sets of right infinite and left infinite α -power free words.

3 Power Free Languages

Let $(k, \alpha) \in \Upsilon$ and let u, v be α -power free words. The first lemma says that uv is α -power free if there are no word r and no nonempty prefix \bar{v} of v such that rr is a suffix of $u\bar{v}$ and rr is longer than \bar{v} .

Lemma 1. Suppose $(k, \alpha) \in \Upsilon$, $u \in L_{k,\alpha}$, and $v \in L_{k,\alpha} \cup L_{k,\alpha}^{\mathbb{N},\mathbb{R}}$. Let

$$\Pi = \{ (r, \bar{v}) \mid r \in \Sigma_k^* \setminus \{\epsilon\} \text{ and } \bar{v} \in \Pr(v) \setminus \{\epsilon\} \text{ and} \\ rr \in \operatorname{Suf}(u\bar{v}) \text{ and } |rr| > |\bar{v}| \}.$$

If $\Pi = \emptyset$ then $uv \in L_{k,\alpha} \cup L_{k,\alpha}^{\mathbb{N},R}$.

Proof. Suppose that uv is not α -power free. Since u is α -power free, then there are $t \in \Sigma_k^*$ and $x \in \Sigma_k$ such that $tx \in \Pr(v)$, $ut \in L_{k,\alpha}$ and $utx \notin L_{k,\alpha}$. It means that there is $r \in \operatorname{Suf}(utx)$ such that $r^\beta \in \operatorname{Suf}(utx)$ for some $\beta \ge \alpha$ or $\beta > \alpha$ if α is a "number with +"; recall Definition 1 of Υ . Because $\alpha \ge 2$, this implies that $rr \in \operatorname{Suf}(r^\beta)$. If follows that $(tx, r) \in \Pi$. We proved that $uv \notin L_{k,\alpha} \cup L_{k,\alpha}^{\mathbb{N},\mathbb{R}}$ implies that $\Pi \neq \emptyset$. The lemma follows.

The following technical set $\Gamma(k, \alpha)$ of 5-tuples (w_1, w_2, x, g, t) will simplify our propositions.

Definition 2. Given $(k, \alpha) \in \Upsilon$, we define that $(w_1, w_2, x, g, t) \in \Gamma(k, \alpha)$ if

1. $w_1, w_2, g \in \Sigma_k^*$, 2. $x \in \Sigma_k$, 3. $w_1 w_2 x q \in L_{k, \alpha}$, 4. $t \in L_{k,\alpha}^{\mathbb{N},R}$, 5. $\operatorname{occur}(t,x) = 0$, 6. $g \in \operatorname{Prf}(t)$, 7. $\operatorname{occur}(w_2xgy, xgy) = 1$, where $y \in \Sigma_k$ is such that $gy \in \operatorname{Prf}(t)$, and 8. $\operatorname{occur}(w_2, x) \geq \operatorname{occur}(w_1, x)$.

Remark 2. Less formally said, the 5-tuple (w_1, w_2, x, g, t) is in $\Gamma(k, \alpha)$ if $w_1 w_2 xg$ is α -power free word over Σ_k , t is a right infinite α -power free word over Σ_k , thas no occurrence of x (thus t is a word over $\Sigma_k \setminus \{x\}$), g is a prefix of t, xgyhas only one occurrence in $w_2 xgy$, where y is a letter such that gy is a prefix of t, and the number of occurrences of x in w_2 is bigger than the number of occurrences of x in w_1 , where w_1, w_2, g are finite words and x is a letter.

The next proposition shows that if (w_1, w_2, x, g, t) is from the set $\Gamma(k, \alpha)$ then $w_1 w_2 x t$ is a right infinite α -power free word, where (k, α) is from the set Υ .

Proposition 1. If $(k, \alpha) \in \Upsilon$ and $(w_1, w_2, x, g, t) \in \Gamma(k, \alpha)$ then $w_1 w_2 x t \in L_{k,\alpha}^{\mathbb{N},R}$.

Proof. Lemma 1 implies that it suffices to show that there are no $u \in Prf(t)$ with |u| > |g| and no $r \in \Sigma_k^* \setminus \{\epsilon\}$ such that $rr \in Suf(w_1w_2xu)$ and |rr| > |u|. Recall that w_1w_2xg is an α -power free word, hence we consider |u| > |g|. To get a contradiction, suppose that such r, u exist. We distinguish the following distinct cases.

- If $|r| \leq |u|$ then: Since $u \in Prf(t) \subseteq L_{k,\alpha}$ it follows that $xu \in Suf(r^2)$ and hence $x \in F(r^2)$. It is clear that $occur(r^2, x) \geq 1$ if and only if $occur(r, x) \geq 1$. Since $x \notin F(u)$ and thus $x \notin F(r)$, this is a contradiction.
- If |r| > |u| and $rr \in Suf(w_2xu)$ then: Let $y \in \Sigma_k$ be such that $gy \in Prf(t)$. Since |u| > |g| we have that $gy \in Prf(u)$ and $xgy \in Prf(xu)$. Since |r| > |u|we have that $xgy \in F(r)$. In consequence occur $(rr, xgy) \ge 2$. But Property 7 of Definition 2 states that occur $(w_2xgy, xgy) = 1$. Since $rr \in Suf(w_2xu)$, this is a contradiction.
- If |r| > |u| and $rr \notin Suf(w_2xu)$ and $r \in Suf(w_2xu)$ then: Let $w_{11}, w_{12}, w_{13}, w_{21}, w_{22} \in \Sigma_k^*$ be such that $w_1 = w_{11}w_{12}w_{13}, w_2 = w_{21}w_{22}, w_{12}w_{13}w_{21} = r, w_{12}w_{13}w_{21}w_{21} = rr$, and $w_{13}w_{21} = xu$; see Figure below.

		xu				
w_{11}	w_{12}	w_{13}	w_{21}	w_{22}	x	u
		r		r		

It follows that $w_{22}xu = r$ and $w_{22} = w_{12}$. It is easy to see that $w_{13}w_{21} = xu$. From $\operatorname{occur}(u, x) = 0$ we have that $\operatorname{occur}(w_2, x) = \operatorname{occur}(w_{22}, x)$ and $\operatorname{occur}(w_{13}, x) = 1$. From $w_{22} = w_{12}$ it follows that $\operatorname{occur}(w_1, x) > \operatorname{occur}(w_2, x)$. This is a contradiction to Property 8 of Definition 2.

- If |r| > |u| and $rr \notin Suf(w_2xu)$ and $r \notin Suf(w_2xu)$ then: Let $w_{11}, w_{12}, w_{13} \in \Sigma_k^*$ be such that $w_1 = w_{11}w_{12}w_{13}, w_{12} = r$ and $w_{13}w_2xu = r$; see Figure below.

w_{11}	w_{12}	w_{13}	w_2	x	u
	r	r			

It follows that

$$\operatorname{occur}(w_{12}, x) = \operatorname{occur}(w_{13}, x) + \operatorname{occur}(w_2, x) + \operatorname{occur}(xu, x).$$

This is a contradiction to Property 8 of Definition 2.

We proved that the assumption of existence of r, u leads to a contradiction. Thus we proved that for each prefix $u \in Prf(t)$ we have that $w_1w_2xu \in L_{k,\alpha}$. The proposition follows.

We prove that if $(k, \alpha) \in \Upsilon$ then there is a right infinite α -power free word over Σ_{k-1} . In the introduction we showed that this observation could be deduced from Dejean's conjecture. Here additionally, to be able to address Problem 5 from the list of Restivo and Salemi, we present in the proof also examples of such words.

Lemma 2. If $(k, \alpha) \in \Upsilon$ then the set $L_{k-1,\alpha}^{\mathbb{N},R}$ is not empty.

Proof. If k = 3 then $|\Sigma_{k-1}| = 2$. It is well known that the Thue Morse word is a right infinite 2⁺-power free word over an alphabet with 2 letters [11]. It follows that the Thue Morse word is α -power free for each $\alpha > 2$.

If k > 3 then $|\Sigma_{k-1}| \ge 3$. It is well known that there are infinite 2-power free words over an alphabet with 3 letters [11]. Suppose $0, 1, 2 \in \Sigma_k$. An example is the fixed point of the morphism θ defined by $\theta(0) = 012, \theta(1) = 02$, and $\theta(2) = 1$ [11]. If an infinite word t is 2-power free then obviously t is α -power free and α^+ -power free for each $\alpha \ge 2$.

This completes the proof.

We define the sets of extendable words.

Definition 3. Let $L \subseteq \Sigma_k^*$. We define

$$\operatorname{lext}(\mathbf{L}) = \{ w \in \mathbf{L} \mid w \text{ is left extendable in } \mathbf{L} \}$$

and

 $\operatorname{rext}(\mathbf{L}) = \{ w \in \mathbf{L} \mid w \text{ is right extendable in } \mathbf{L} \}.$

If $u \in \text{lext}(L)$ then let lext(u, L) be the set of all left infinite words \bar{u} such that $\text{Suf}(\bar{u}) \subseteq L$ and $u \in \text{Suf}(\bar{u})$. Analogously if $u \in \text{rext}(L)$ then let rext(u, L) be the set of all right infinite words \bar{u} such that $\text{Prf}(\bar{u}) \subseteq L$ and $u \in \text{Prf}(\bar{u})$.

We show the sets lext(u, L) and rext(v, L) are nonempty for left extendable and right extendable words.

Lemma 3. If $L \subseteq \Sigma_k^*$ and $u \in lext(L)$ (resp., $v \in rext(L)$) then $lext(u, L) \neq \emptyset$ (resp., $rext(v, L) \neq \emptyset$).

Proof. Realize that $u \in \text{lext}(L)$ (resp., $v \in \text{rext}(L)$) implies that there are infinitely many finite words in L having u as a suffix (resp., v as a prefix). Then the lemma follows from König's Infinity Lemma [4,8].

The next proposition proves that if $(k, \alpha) \in \Upsilon$, w is a right extendable α -power free word, \overline{w} is a right infinite α -power free word having the letter x as a recurrent factor and having w as a prefix, and t is a right infinite α -power free word over $\Sigma_k \setminus \{x\}$, then there are finite words w_1, w_2, g such that the 5-tuple (w_1, w_2, x, g, t) is in the set $\Gamma(k, \alpha)$ and w is a prefix of $w_1 w_2 xg$.

Proposition 2. If $(k, \alpha) \in \Upsilon$, $w \in \text{rext}(L_{k,\alpha})$, $\bar{w} \in \text{rext}(w, L_{k,\alpha})$, $x \in F_r(\bar{w}) \cap \Sigma_k$, $t \in L_{k,\alpha}^{\mathbb{N},R}$, and occur(t, x) = 0 then there are finite words w_1, w_2, g such that $(w_1, w_2, x, g, t) \in \Gamma(k, \alpha)$ and $w \in \text{Prf}(w_1 w_2 x g)$.

Proof. Let $\omega = F(\bar{w}) \cap Prf(xt)$ be the set of factors of \bar{w} that are also prefixes of the word xt. Based on the size of the set ω we construct the words w_1, w_2, g and we show that $(w_1, w_2, x, g, t) \in \Gamma(k, \alpha)$ and $w_1w_2xg \in Prf(\bar{w}) \subseteq L_{k,\alpha}$. The Properties 1, 2, 3, 4, 5, and 6 of Definition 2 are easy to verify. Hence we explicitly prove only properties 7 and 8 and that $w \in Prf(w_1w_2xg)$.

- If ω is an infinite set. It follows that $\Pr(xt) = \omega$. Let $g \in \Pr(t)$ be such that |g| = |w|; recall that t is infinite and hence such g exists. Let $w_2 \in \Pr(\bar{w})$ be such that $w_2xg \in \Pr(\bar{w})$ and $\operatorname{occur}(w_2xg, xg) = 1$. Let $w_1 = \epsilon$. Property 7 of Definition 2 follows from $\operatorname{occur}(w_2xg, xg) = 1$. Property 8 of

Property 7 of Definition 2 follows from $occur(w_2xg, xg) = 1$. Property 8 of Definition 2 is obvious, because w_1 is the empty word. Since |g| = |w| and $w \in Prf(\bar{w})$ we have that $w \in Prf(w_1w_2xg)$.

- If ω is a finite set. Let $\bar{\omega} = \omega \cap F_r(\bar{w})$ be the set of prefixes of xt that are recurrent in \bar{w} . Since x is recurrent in \bar{w} we have that $x \in \bar{\omega}$ and thus $\bar{\omega}$ is not empty. Let $g \in \Pr f(t)$ be such that xg is the longest element in $\bar{\omega}$. Let $w_1 \in \Pr f(w)$ be the shortest prefix of \bar{w} such that if $u \in \omega \setminus \bar{\omega}$ is a non-recurrent prefix of xt in \bar{w} then occur $(w_1, u) = \operatorname{occur}(\bar{w}, u)$. Such w_1 obviously exists, because ω is a finite set and non-recurrent factors have only a finite number of occurrences. Let w_2 be the shortest factor of \bar{w} such that $w_1w_2xg \in \Pr f(\bar{w})$, occur $(w_1, x) < \operatorname{occur}(w_2, x)$, and $w \in \Pr f(w_1w_2xg)$. Since xg is recurrent in \bar{w} and $w \in \Pr f(\bar{w})$ it is clear such w_2 exists.

We show that Property 7 of Definition 2 holds. Let $y \in \Sigma_k$ be such that $gy \in Prf(t)$. Suppose that $occur(w_2xg, xgy) > 0$. It would imply that xgy is recurrent in \overline{w} , since all occurrences of non-recurrent words from ω are in w_1 . But we defined xg to be the longest recurrent word ω . Hence it is contradiction to our assumption that $occur(w_2xg, xgy) > 0$.

Property 8 of Definition 2 and $w \in Prf(w_1w_2xg)$ are obvious from the construction of w_2 .

This completes the proof.

We define the *reversal* w^R of a finite or infinite word $w = \Sigma_k^* \cup \Sigma_k^{\mathbb{N}}$ as follows: If $w \in \Sigma_k^*$ and $w = w_1 w_2 \dots w_m$, where $w_i \in \Sigma_k$ and $1 \le i \le m$, then $w^R = w_m w_{m-1} \dots w_2 w_1$. If $w \in \Sigma_k^{\mathbb{N},L}$ and $w = \dots w_2 w_1$, where $w_i \in \Sigma_k$ and $i \in \mathbb{N}$, then $w^R = w_1 w_2 \dots \in \Sigma_k^{\mathbb{N},R}$. Analogously if $w \in \Sigma_k^{\mathbb{N},R}$ and $w = w_1 w_2 \dots$, where $w_i \in \Sigma_k$ and $i \in \mathbb{N}$, then $w^R = \dots w_2 w_1 \in \Sigma_k^{\mathbb{N},L}$.

Proposition 1 allows one to construct a right infinite α -power free word with a given prefix. The next simple corollary shows that in the same way we can construct a left infinite α -power free word with a given suffix.

Corollary 1. If $(k, \alpha) \in \Upsilon$, $w \in \text{lext}(L_{k,\alpha})$, $\bar{w} \in \text{lext}(w, L_{k,\alpha})$, $x \in F_r(\bar{w}) \cap \Sigma_k$, $t \in L_{k,\alpha}^{\mathbb{N},L}$, and occur(t, x) = 0 then there are finite words w_1, w_2, g such that $(w_1^R, w_2^R, x, g^R, t^R) \in \Gamma(k, \alpha)$, $w \in \text{Suf}(gxw_2w_1)$, and $txw_2w_1 \in L_{k,\alpha}^{\mathbb{N},L}$.

Proof. Let $u \in \Sigma_k^* \cup \Sigma_k^{\mathbb{N}}$. Realize that $u \in L_{k,\alpha} \cup L_{k,\alpha}^{\mathbb{N}}$ if and only if $u^R \in L_{k,\alpha} \cup L_{k,\alpha}^{\mathbb{N}}$. Then the corollary follows from Proposition 1 and Proposition 2. \Box

Given $k \in \mathbb{N}$ and a right infinite word $t \in \Sigma_k^{\mathbb{N},R}$, let $\Phi(t)$ be the set of all left infinite words $\overline{t} \in \Sigma_k^{\mathbb{N},L}$ such that $F(\overline{t}) \subseteq F_r(t)$. It means that all factors of $\overline{t} \in \Phi(t)$ are recurrent factors of t. We show that the set $\Phi(t)$ is not empty.

Lemma 4. If $k \in \mathbb{N}$ and $t \in \Sigma_k^{\mathbb{N},R}$ then $\Phi(t) \neq \emptyset$.

Proof. Since t is an infinite word, the set of recurrent factors of t is not empty. Let g be a recurrent nonempty factor of t; g may be a letter. Obviously there is $x \in \Sigma_k$ such that xg is also recurrent in t. This implies that the set $\{h \mid hg \in F_r(t)\}$ is infinite. The lemma follows from König's Infinity Lemma [4,8].

The next lemma shows that if u is a right extendable α -power free word then for each letter x there is a right infinite α -power free word \bar{u} such that x is recurrent in \bar{u} and u is a prefix of \bar{u} .

Lemma 5. If $(k, \alpha) \in \Upsilon$, $u \in \text{rext}(L_{k,\alpha})$, and $x \in \Sigma_k$ then there is $\bar{u} \in \text{rext}(u, L_{k,\alpha})$ such that $x \in F_r(\bar{u})$.

Proof. Let $w \in \operatorname{rext}(u, \operatorname{L}_{k,\alpha})$; Lemma 3 implies that $\operatorname{rext}(u, \operatorname{L}_{k,\alpha})$ is not empty. If $x \in \operatorname{F}_r(w)$ then we are done. Suppose that $x \notin \operatorname{F}_r(w)$. Let $y \in \operatorname{F}_r(w) \cap \Sigma_k$. Clearly $x \neq y$. Proposition 2 implies that there is $(w_1, w_2, y, g, t) \in \Gamma(k, \alpha)$ such that $u \in \operatorname{Prf}(w_1w_2yg)$. The proof of Lemma 2 implies that we can choose t in such a way that x is recurrent in t. Then $w_1w_2yt \in \operatorname{rext}(u, \operatorname{L}_{k,\alpha})$ and $x \in \operatorname{F}_r(w_1w_2yt)$. This completes the proof.

The next proposition shows that if u is left extendable and v is right extendable then there are finite words \tilde{u}, \tilde{v} , a letter x, a right infinite word t, and a left infinite word \bar{t} such that $\tilde{u}xt, \bar{t}x\tilde{v}$ are infinite α -power free words, t has no occurrence of x, every factor of \bar{t} is a recurrent factor in t, u is a prefix of $\tilde{u}xt$, and v is a suffix of $\bar{t}x\tilde{v}$.

Proposition 3. If $(k, \alpha) \in \Upsilon$, $u \in \operatorname{rext}(L_{k,\alpha})$, and $v \in \operatorname{lext}(L_{k,\alpha})$ then there are $\tilde{u}, \tilde{v} \in \Sigma_k^*$, $x \in \Sigma_k$, $t \in \Sigma_k^{\mathbb{N},R}$, and $\bar{t} \in \Sigma_k^{\mathbb{N},L}$ such that $\tilde{u}xt \in L_{k,\alpha}^{\mathbb{N},R}$, $\bar{t}x\tilde{v} \in L_{k,\alpha}^{\mathbb{N},L}$, $\operatorname{occur}(t, x) = 0$, $\operatorname{F}(\bar{t}) \subseteq \operatorname{F}_r(t)$, $u \in \operatorname{Prf}(\tilde{u}xt)$, and $v \in \operatorname{Suf}(\bar{t}x\tilde{v})$.

Proof. Let $\bar{u} \in \text{rext}(u, \mathcal{L}_{k,\alpha})$ and $\bar{v} \in \text{lext}(v, \mathcal{L}_{k,\alpha})$ be such that $\mathcal{F}_r(\bar{u}) \cap \mathcal{F}_r(\bar{v}) \cap \Sigma_k \neq \emptyset$. Lemma 5 implies that such \bar{u}, \bar{v} exist. Let $x \in \mathcal{F}_r(\bar{u}) \cap \mathcal{F}_r(\bar{v}) \cap \Sigma_k$. It means that the letter x is recurrent in both \bar{u} and \bar{v} .

Let t be a right infinite α -power free word over $\Sigma_k \setminus \{x\}$. Lemma 2 asserts that such t exists. Let $\bar{t} \in \Phi(t)$; Lemma 4 shows that $\Phi(t) \neq \emptyset$. It is easy to see that $\bar{t} \in \mathcal{L}_{k,\alpha}^{\mathbb{N},L}$, because $\mathcal{F}(\bar{t}) \subseteq \mathcal{F}_r(t)$ and $t \in \mathcal{L}_{k,\alpha}^{\mathbb{N},R}$.

Proposition 2 and Corollary 1 imply that there are $u_1, u_2, g, v_1, v_2, \bar{g} \in L_{k,\alpha}$ such that

 $\begin{array}{l} - (u_1, u_2, x, g, t) \in \Gamma(k, \alpha), \\ - (v_1^R, v_2^R, x, \bar{g}^R, \bar{t}^R) \in \Gamma(k, \alpha), \\ - u \in \Prf(u_1 u_2 x g), \text{ and} \\ - v^R \in \Prf(v_1^R v_2^R x \bar{g}^R); \text{ it follows that } v \in \operatorname{Suf}(\bar{g} x v_2 v_1). \end{array}$

Proposition 1 implies that $u_1u_2xt, v_1^Rv_2^Rx\bar{t}^R \in \mathcal{L}_{k,\alpha}^{\mathbb{N},R}$. It follows that $\bar{t}xv_2v_1 \in \mathcal{L}_{k,\alpha}^{\mathbb{N},L}$. Let $\tilde{u} = u_1u_2$ and $\tilde{v} = v_2v_1$. This completes the proof.

The main theorem of the article shows that if u is a right extendable α -power free word and v is a left extendable α -power free word then there is a word w such that uwv is α -power free. The proof of the theorem shows also a construction of the word w.

Theorem 1. If $(k, \alpha) \in \Upsilon$, $u \in rext(L_{k,\alpha})$, and $v \in lext(L_{k,\alpha})$ then there is $w \in L_{k,\alpha}$ such that $uwv \in L_{k,\alpha}$.

Proof. Let $\tilde{u}, \tilde{v}, x, t, \bar{t}$ be as in Proposition 3. Let $p \in \text{Suf}(\bar{t})$ be the shortest suffix such that $|p| > \max\{|\tilde{u}x|, |x\tilde{v}|, |u|, |v|\}$. Let $h \in \text{Prf}(t)$ be the shortest prefix such that $hp \in \text{Prf}(t)$ and |h| > |p|; such h exists, because p is a recurrent factor of t; see Proposition 3. We show that $\tilde{u}xhpx\tilde{v} \in L_{k,\alpha}$.

We have that $\tilde{u}xhp \in L_{k,\alpha}$, since $hp \in Prf(t)$ and Proposition 3 states that $\tilde{u}xt \in L_{k,\alpha}^{\mathbb{N},R}$. Lemma 1 implies that it suffices to show that there are no $g \in Prf(\tilde{v})$ and no $r \in \Sigma_k^* \setminus \{\epsilon\}$ such that $rr \in Suf(\tilde{u}xhpxg)$ and |rr| > |xg|. To get a contradiction, suppose there are such r, g. We distinguish the following cases.

- If $|r| \leq |xg|$ then $rr \in \text{Suf}(pxg)$, because $|p| > |x\tilde{v}|$ and $xg \in \text{Prf}(x\tilde{v})$. This is a contradiction, since $px\tilde{v} \in \text{Suf}(\bar{t}x\tilde{v})$ and $\bar{t}x\tilde{v} \in L_{k,\alpha}^{\mathbb{N},L}$; see Proposition 3.
- If |r| > |xg| then $|r| \le \frac{1}{2} |\tilde{u}xhpxg|$, otherwise rr cannot be a suffix of $\tilde{u}xhpxg$. Because $|h| > |p| > \max\{|\tilde{u}x|, |x\tilde{v}|\}$ we have that $r \in \operatorname{Suf}(hpxg)$. Since $\operatorname{occur}(hp, x) = 0$, $|h| > |p| > |x\tilde{v}|$, and $xg \in \operatorname{Suf}(r)$ it follows that there are words h_1, h_2 such that $\tilde{u}xhpxg = \tilde{u}xh_1h_2pxg$, $r = h_2pxg$ and $r \in \operatorname{Suf}(\tilde{u}xh_1)$. It follows that $xg \in \operatorname{Suf}(\tilde{u}xh_1)$ and because $\operatorname{occur}(h_1, x) = 0$ we have that $|h_1| \le |g|$. Since $|p| > |\tilde{u}x|$ we get that $|h_2pxg| > |\tilde{u}xg| \ge |\tilde{u}xh_1|$; hence $|r| > |\tilde{u}xh_1|$. This is a contradiction.

We conclude that there is no word r and no prefix $g \in Prf(\tilde{v})$ such that $rr \in Suf(\tilde{u}xhpxg)$. Hence $\tilde{u}xhpx\tilde{v} \in L_{k,\alpha}$. Due to the construction of p and h we have that $u \in Prf(\tilde{u}xhpx\tilde{v})$ and $v \in Suf(\tilde{u}xhpx\tilde{v})$. This completes the proof. \Box

Acknowledgments. The author acknowledges support by the Czech Science Foundation grant GAČR 13-03538S and by the Grant Agency of the Czech Technical University in Prague, grant No. SGS14/205/OHK4/3T/14.

References

- Carpi, A.: On Dejean's conjecture over largealphabets. Theor. Comput. Sci. 385, 137–151 (2007)
- Currie, J., Rampersad, N.: A proof of Dejean's conjecture. Math. Comp. 80, 1063– 1070 (2011)
- 3. Dejean, F.: Sur un théorème de Thue. J. Comb. Theor. Series A 13, 90-99 (1972)
- König, D.: Sur les correspondances multivoques des ensembles. Fundamenta Math. 8, 114–134 (1926)
- Ollagnier, J.M.: Proof of Dejean's conjecture for alphabets with 5, 6, 7, 8, 9, 10 and 11 letters. Theor. Comput. Sci. 95, 187–205 (1992)
- Pansiot, J.-J.: A propos d'une conjecture de F. Dejean sur les répétitions dans les mots. Discrete Appl. Math. 7, 297–311 (1984)
- Petrova, E.A., Shur, A.M.: Transition property for cube-free words. In: van Bevern, R., Kucherov, G. (eds.) CSR 2019. LNCS, vol. 11532, pp. 311–324. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19955-5_27
- 8. Rampersad, N.: Overlap-free words and generalizations. A thesis, University of Waterloo (2007)
- Rao, M.: Last cases of Dejean's conjecture. Theor. Comput. Sci. 412, 3010–3018 (2011). Combinatorics on Words (WORDS 2009)
- Restivo, A., Salemi, S.: Some decision results on nonrepetitive words. In: Apostolico, A., Galil, Z. (eds.) Combinatorial Algorithms on Words, pp. 289–295. Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-642-82456-2_20
- Shallit, J., Shur, A.: Subword complexity and power avoidance. Theor. Comput. Sci. 792, 96–116 (2019). Special issue in honor of the 70th birthday of Prof. Wojciech Rytter
- Shur, A.M.: Two-sided bounds for the growth rates of power-free languages. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 466–477. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02737-6_38
- Shur, A.M.: Growth properties of power-free languages. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 28–43. Springer, Heidelberg (2011). https:// doi.org/10.1007/978-3-642-22321-1_3