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Abstract. We consider the range of possible dynamics of cellular
automata (CA) on two-sided beta-shifts Sβ . We show that any reversible
CA F : Sβ → Sβ has an almost equicontinuous direction whenever Sβ

is not sofic. This has the corollary that non-sofic beta-shifts are topo-
logically direct prime, i.e. they are not conjugate to direct topological
factorizations X × Y of two nontrivial subshifts X and Y . We also
make some preliminary observations on direct topological factorizations
of beta-shifts that are subshifts of finite type.
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1 Introduction

Let X ⊆ AZ be a one-dimensional subshift over a finite symbol set A. A cellular
automaton (CA) is a function F : X → X defined by a local rule, and it endows
the space X with translation invariant dynamics given by local interactions.
It is natural to ask how the structure of the underlying subshift X affects the
range of possible topological dynamics that can be achieved by CA on X. Our
preferred approach is via the framework of directional dynamics of Sablik [16].
This framework is concerned with the possible space-time diagrams of x ∈ X
with respect to F , in which successive iterations F t(x) are drawn on consecutive
rows (see Fig. 1 for a typical space-time diagram of a configuration with respect
to the CA which shifts each symbol by one position to the left). Information
cannot cross the dashed gray line in the figure so we say that the slope of this
line is an almost equicontinuous direction. On the other hand, a slope is called
a sensitive direction if information can cross over every line having that slope.

It has been proven in Theorem 5.2.19 of [7] that every nontrivial mixing sofic
subshift admits a reversible CA which is sensitive in all directions. On the other
hand, Subsect. 5.4.2 of [7] presents a collection of non-sofic S-gap shifts XS ,
all of them synchronizing and many with specification property, such that every
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Fig. 1. A space-time diagram of the binary shift map σ. White and black squares cor-
respond to digits 0 and 1 respectively. The dashed gray line shows an almost equicon-
tinuous direction.

reversible CA on XS has an almost equicontinuous direction. It would be interest-
ing to extend the latter result to other natural classes of subshifts. The classical
study of Aut(X), the group of reversible CA on X, is mostly not related to our
line of inquiry. However, we highlight the result of [4] saying that Aut(X)/ 〈σ〉
is a periodic group if X is a transitive subshift that has subquadratic growth.
This implies for such X that every F ∈ Aut(X) has an almost equicontinuous
direction.

In this paper we consider two-sided beta-shifts, which form a naturally occur-
ring class of mixing coded subshifts. We show in Theorem 3 that if Sβ is a
non-sofic beta-shift, then every reversible CA on Sβ has an almost equicontin-
uous direction. As an application we use this result to show in Theorem 4 that
non-sofic beta shifts are topologically direct prime, i.e. they are not conjugate
to direct topological factorizations X × Y of two nontrivial subshifts X and Y ,
thus answering a problem suggested in the presentation [13].

The proof of Theorem 4 relies on the observation that whenever X and Y
are infinite transitive subshifts, then X × Y has a very simple reversibe CA
with all directions sensitive: it just shifts information into opposite directions
in the X and Y components. Therefore the problem of determining whether
a given subshift is topologically direct prime is closely related to the study of
directional dynamics. In the last section of this paper we suggest a program of
studying direct topological factorizations of sofic beta-shifts and accompany this
suggestion with some preliminary remarks.

2 Preliminaries

In this section we recall some preliminaries concerning symbolic dynamics and
topological dynamics in general. Good references to these topics are [8,11].

Definition 1. If X is a compact metrizable topological space and T : X → X
is a continuous map, we say that (X,T ) is a (topological) dynamical system.
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When there is no risk of confusion, we may identify the dynamical system
(X,T ) with the underlying space or the underlying map, so we may say that X
is a dynamical system or that T is a dynamical system.

Definition 2. We write ψ : (X,T ) → (Y, S) whenever (X,T ) and (Y, S) are
dynamical systems and ψ : X → Y is a continuous map such that ψ ◦ T = S ◦ ψ
(this equality is known as the equivariance condition). Then we say that ψ is a
morphism. If ψ is injective, we say that ψ is an embedding. If ψ is surjective,
we say that ψ is a factor map and that (Y, S) is a factor of (X,T ) (via the map
ψ). If ψ is bijective, we say that ψ is a conjugacy and that (X,T ) and (Y, S)
are conjugate (via ψ).

A finite set A containing at least two elements (letters) is called an alphabet.
In this paper the alphabet usually consists of numbers and thus for n ∈ N+ we
denote Σn = {0, 1, . . . , n−1}. The set AZ of bi-infinite sequences (configurations)
over A is called a full shift. The set AN is the set of one-way infinite sequences
over A. Formally any x ∈ AZ (resp. x ∈ AN) is a function Z → A (resp. N → A)
and the value of x at i ∈ Z is denoted by x[i]. It contains finite, right-infinite
and left-infinite subsequences denoted by x[i, j] = x[i]x[i + 1] · · · x[j], x[i,∞] =
x[i]x[i+1] · · · and x[−∞, i] = · · · x[i−1]x[i]. Occasionally we signify the symbol
at position zero in a configuration x by a dot as follows:

x = · · · x[−2]x[−1].x[0]x[1]x[2] · · · .

A configuration x ∈ AZ or x ∈ AN is periodic if there is a p ∈ N+ such that
x[i + p] = x[i] for all i ∈ Z. Then we may also say that x is p-periodic or that x
has period p. We say that x is eventually periodic if there are p ∈ N+ and i0 ∈ Z

such that x[i + p] = x[i] holds for all i ≥ i0.
A subword of x ∈ AZ is any finite sequence x[i, j] where i, j ∈ Z, and we inter-

pret the sequence to be empty if j < i. Any finite sequence w = w[1]w[2] · · · w[n]
(also the empty sequence, which is denoted by ε) where w[i] ∈ A is a word over
A. Unless we consider a word w as a subword of some configuration, we start
indexing the symbols of w from 1 as we have done here. The concatenation of
a word or a left-infinite sequence u with a word or a right-infinite sequence v
is denoted by uv. A word u is a prefix of a word or a right-infinite sequence
x if there is a word or a right-infinite sequence v such that x = uv. Similarly,
u is a suffix of a word or a left-infinite sequence x if there is a word or a left-
infinite sequence v such that x = vu. The set of all words over A is denoted
by A∗, and the set of non-empty words is A+ = A∗ \ {ε}. The set of words
of length n is denoted by An. For a word w ∈ A∗, |w| denotes its length, i.e.
|w| = n ⇐⇒ w ∈ An. For any word w ∈ A+ we denote by ∞w and w∞ the left-
and right-infinite sequences obtained by infinite repetitions of the word w. We
denote by wZ ∈ AZ the configuration defined by wZ[in, (i + 1)n − 1] = w (where
n = |w|) for every i ∈ Z.

Any collection of words L ⊆ A∗ is called a language. For any S ⊆ AZ the
collection of words appearing as subwords of elements of S is the language of S,
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denoted by L(S). For n ∈ N we denote Ln(S) = L(S) ∩ An. For any L ⊆ A∗,
the Kleene star of L is

L∗ = {w1 · · · wn | n ≥ 0, wi ∈ L} ⊆ A∗,

i.e. L∗ is the set of all finite concatenations of elements of L. If ε /∈ L, define
L+ = L∗ \ {ε} and if ε ∈ L, define L+ = L∗.

To consider topological dynamics on subsets of the full shifts, the sets AZ and
AN are endowed with the product topology (with respect to the discrete topology
on A). These are compact metrizable spaces. The shift map σ : AZ → AZ is
defined by σ(x)[i] = x[i + 1] for x ∈ AZ, i ∈ Z, and it is a homeomorphism.
Also in the one-sided case we define σ : AN → AN by σ(x)[i] = x[i + 1]. Any
topologically closed nonempty subset X ⊆ AZ such that σ(X) = X is called
a subshift. A subshift X equipped with the map σ forms a dynamical system
and the elements of X can also be called points. Any w ∈ L(X) \ ε and i ∈ Z

determine a cylinder of X

CylX(w, i) = {x ∈ X | w occurs in x at position i}.

Definition 3. We say that a subshift X is transitive (or irreducible in the
terminology of [11]) if for all words u, v ∈ L(X) there is w ∈ L(X) such that
uwv ∈ L(X). We say that X is mixing if for all u, v ∈ L(X) there is N ∈ N

such that for all n ≥ N there is w ∈ Ln(X) such that uwv ∈ L(X).

Definition 4. Let X ⊆ AZ and Y ⊆ BZ be subshifts. We say that the map F :
X → Y is a sliding block code from X to Y (with memory m and anticipation
a for integers m ≤ a) if there exists a local rule f : Aa−m+1 → B such that
F (x)[i] = f(x[i+m], . . . , x[i], . . . , x[i+a]). If X = Y , we say that F is a cellular
automaton (CA). If we can choose m and a so that −m = a = r ≥ 0, we say
that F is a radius-r CA.

Note that both memory and anticipation can be either positive or negative.
Note also that if F has memory m and anticipation a with the associated local
rule f : Aa−m+1 → A, then F is also a radius-r CA for r = max{|m|, |a|}, with
possibly a different local rule f ′ : A2r+1 → A.

The following observation of [6] characterizes sliding block codes as the class
of structure preserving transformations between subshifts.

Theorem 1 (Curtis-Hedlund-Lyndon). A map F : X → Y between sub-
shifts X and Y is a morphism between dynamical systems (X,σ) and (Y, σ) if
and only if it is a sliding block code.

Bijective CA are called reversible. It is known that the inverse map of a
reversible CA is also a CA. We denote by End(X) the monoid of CA on X and
by Aut(X) the group of reversible CA on X (the binary operation is function
composition).

The notions of almost equicontinuity and sensitivity can be defined for gen-
eral topological dynamical systems. We omit the topological definitions, because
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for cellular automata on transitive subshifts there are combinatorial character-
izations for these notions using blocking words. We present these alternative
characterizations below.

Definition 5. Let F : X → X be a radius-r CA and w ∈ L(X). We say that w
is a blocking word if there is an integer e with |w| ≥ e ≥ r + 1 and an integer
p ∈ [0, |w| − e] such that

∀x, y ∈ CylX(w, 0),∀n ∈ N, Fn(x)[p, p + e − 1] = Fn(y)[p, p + e − 1].

The following is proved in Proposition 2.1 of [16].

Proposition 1. If X is a transitive subshift and F : X → X is a CA, then F
is almost equicontinuous if and only if it has a blocking word.

We say that a CA on a transitive subshift is sensitive if it is not almost
equicontinuous. The notion of sensitivity is refined by Sablik’s framework of
directional dynamics [16].

Definition 6. Let F : X → X be a cellular automaton and let p, q ∈ Z be
coprime integers, q > 0. Then p/q is a sensitive direction of F if σp ◦ F q is
sensitive. Similarly, p/q is an almost equicontinuous direction of F if σp ◦F q is
almost equicontinuous.

As indicated in the introduction, this definition is best understood via the
space-time diagram of x ∈ X with respect to F , in which successive iterations
F t(x) are drawn on consecutive rows (see Fig. 1 for a typical space-time diagram
of a configuration with respect to the shift map). By definition −1 = (−1)/1
is an almost equicontinuous direction of σ : AZ → AZ because σ−1 ◦ σ = Id
is almost equicontinuous. This is directly visible in the space-time diagram of
Fig. 1, because it looks like the space-time diagram of the identity map when it
is followed along the dashed line. Note that the slope of the dashed line is equal
to −1 with respect to the vertical axis extending downwards in the diagram.

The notions of subshifts of finite type (SFT) and sofic subshifts are well
known and can be found in Chapters 2 and 3 of [11]. Any square matrix A with
nonnegative entries is an adjacency matrix of a directed graph with multiple
edges. The set of all bi-infinite sequences of edges forming valid paths is an edge
SFT (associated to A), whose alphabet is the set of edges.

Some other classes of subshifts relevant to the study of beta-shifts are the
following.

Definition 7. Given a subshift X, we say that a word w ∈ L(X) is synchroniz-
ing if

∀u, v ∈ L(X) : uw,wv ∈ L(X) =⇒ uwv ∈ L(X).

We say that a transitive subshift X is synchronizing if L(X) contains a synchro-
nizing word.

Definition 8. A language L ⊆ A+ is a code if for all distinct u, v ∈ L it holds
that u is not a prefix of v. A subshift X ⊆ AZ is a coded subshift (given by a
code L) if L(X) is the set of all subwords of elements of L∗.
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3 Beta-Shifts

We recall some preliminaries on beta-shifts from Blanchard’s paper [2] and from
Lothaire’s book [12].

For ξ ∈ R we denote Frac (ξ) = ξ − �ξ�, for example Frac (1.2) = 0.2 and
Frac (1) = 0.

Definition 9. For every real number β > 1 we define a dynamical system
(I, Tβ), where I = [0, 1] and Tβ(ξ) = Frac (βξ) for every ξ ∈ I.

Definition 10. The β-expansion of a number ξ ∈ I is the sequence d(ξ, β) ∈
ΣN

�β�+1 where d(ξ, β)[i] =
⌊
βT i(ξ)

⌋
for i ∈ N.

Denote d(1, β) = d(β). By this convention d(2) = 2000 . . . If d(β) ends in
infinitely many zeros, i.e. d(β) = d0 · · · dm0∞ for dm �= 0, we say that d(β) is
finite, write d(β) = d0 · · · dm, and define d∗(β) = (d0 · · · (dm − 1))∞. Otherwise
we let d∗(β) = d(β). Denote by Dβ the set of β-expansions of numbers from
[0, 1). It is the set of all infinite concatenations of words from the code

Yβ = {d0d1 · · · dn−1b | n ∈ N, 0 ≤ b < dn}
where d(β) = d0d1d2 . . . . For example, Y2 = {0, 1}. Let Sβ be the coded subshift
given by the code Yβ . Since Sβ is coded, it also has a natural representation by
a deterministic automaton (not necessarily finite) [3,17]. These representations
allow us to make pumping arguments similar to those that occur in the study of
sofic shifts and regular languages.

The subshift Sβ is mixing. Namely, any u, v ∈ L(Sβ) are subwords of u1 · · · un

and v1 · · · vm respectively for some n,m ∈ N+ and ui, vi ∈ Yβ . Because the code
Yβ always contains the word 0, it follows that u1 · · · un0iv1 · · · vm ∈ L(Sβ) for
all i ∈ N and mixingness follows. The subshift Sβ is sofic if and only if d(β) is
eventually periodic and it is an SFT if and only if d(β) is finite.

There is a natural lexicographical ordering on ΣN

n which we denote by < and
≤. Using this we can alternatively characterize Sβ as

Sβ = {x ∈ ΣZ

�β� | x[i,∞] ≤ d∗(β) for all i ∈ Z}.

We call Sβ a beta-shift (with base β). When β > 1 is an integer, the equality
Sβ = ΣZ

β holds.

4 CA Dynamics on Beta-Shifts

In this section we study the topological dynamics of reversible CA on beta-shifts,
and more precisely the possibility of them having no almost equicontinuous direc-
tions. By Theorem 5.2.19 of [7] every nontrivial mixing sofic subshift admits a
reversible CA which is sensitive in all directions, and in particular this holds for
mixing sofic beta-shifts. In this section we see that this result does not extend
to the class of non-sofic beta-shifts.

We begin with a proposition showing that a CA on a non-sofic beta-shift has
to “fix the expansion of one in the preimage” in some sense.
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Proposition 2. Let β > 1 be such that Sβ is not sofic, let F ∈ End(Sβ), let
x ∈ Sβ be such that x[0,∞] = d(β) and let y ∈ F−1(x). Then there is a unique
i ∈ Z such that y[i,∞] = d(β). Moreover, i does not depend on the choice of x
or y.

Proof. Let r ∈ N be such that F is a radius-r CA.
We first claim that i does not depend on the choice of x or y when it exists.

To see this, assume to the contrary that for j ∈ {1, 2} there exist xj ∈ Sβ with
xj [0,∞] = d(β), yj ∈ F−1(xj) and ij ∈ Z such that i1 < i2 and y1[i1,∞] =
d(β) = y2[i2,∞]. Then in particular for M = max{i2 − i1, i2} it holds that
y2[M,∞] = y2[M − i2 + i2,∞] = y1[M − i2 + i1,∞] and

d(β)[M − i2 + i1 + r,∞] = x1[M − i2 + i1 + r,∞] = F (y1)[M − i2 + i1 + r,∞]
= F (y2)[M + r,∞] = x2[M + r,∞] = d(β)[M + r,∞].

Then d(β) would be eventually periodic, contradicting the assumption that Sβ

is not sofic.
For the other claim, let us assume that for some x and y as in the assumption

of the proposition there is no i ∈ Z such that y[i,∞] = d(β). We claim that the
sequence y[−r,∞] can be written as an infinite concatenation of elements of Yβ .
This concatenation is found inductively. By our assumption y[−r,∞] < d(β),
so y[−r,∞] has a prefix of the form w1 = d0d1 · · · dn−1b ∈ Yβ for some n ∈ N,
b < dn. We can write y[−r,∞] = w1x1 for some x1 ∈ ΣN

�β�. Because x1 is a suffix
of y, then again from our assumption it follows that x1 < d(β) and we can find
a w2 ∈ Yβ which is a prefix of x1. For all i ∈ Z we similarly we find wi ∈ Yβ such
that y[−r,∞] = w1w2w3 . . . .

Let ri be such that y[−r, ri] = w1 · · · wi for all i ∈ N. Fix some j, k ∈ N such
that 0 ≤ rj < rk, |rk − rj | ≥ 2r and y[rj − r, rj + r] = y[rk − r, rk + r]. Because
x is not eventually periodic, it follows that x[rj + 1,∞] �= x[rk + 1,∞].

Assume first that x[rj +1,∞] < x[rk +1,∞]. Because Sβ is coded, there is a
configuration z ∈ Sβ such that z[−r,∞] = w1 · · · wjwk+1wk+2 · · · , i.e. this suffix
can be found by removing the word wj+1 · · · wk from the middle of y[−r,∞].
Then F (z) ∈ Sβ but F (z)[0,∞] = x[0, rj ]x[rk + 1,∞] > x[0, rj ]x[rj + 1,∞] =
d(β) contradicting one of the characterizations of Sβ .

Assume then alternatively that x[rj + 1,∞] > x[rk + 1,∞]. Because Sβ is
coded, there is a configuration z ∈ Sβ such that

z[−r,∞] = w1 · · · wj(wj+1 · · · wk)(wj+1 · · · wk)wk+1wk+2 · · · ,

i.e. this suffix can be found by repeating the occurrence of the word wj+1 · · · wk

in the middle of y[−r,∞]. Then F (z) ∈ Sβ but

F (z)[0,∞] = x[0, rj ]x[rj + 1, rk]x[rj + 1, rk]x[rk + 1,∞]
= x[0, rj ]x[rj + 1, rk]x[rj + 1,∞] > x[0, rj ]x[rj + 1, rk]x[rk + 1,∞] = d(β)

contradicting again the characterization of Sβ . ��
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To apply the previous proposition for a non-sofic Sβ and F ∈ End(Sβ), there
must exist at least some x, y ∈ Sβ such that x[0,∞] = d(β) and y ∈ F−1(x).
This happens at least when F is surjective, in which case we take the number
i ∈ Z of the previous proposition and say that the intrinsic shift of F is equal to
i. If the intrinsic shift of F is equal to 0, we say that F is shiftless.

In the class of non-synchronizing beta-shifts we get a very strong result on
surjective CA: they are all shift maps.

Theorem 2. If Sβ is not synchronizing, then all surjective CA in End(Sβ) are
powers of the shift map.

Proof. Let F ∈ End(Sβ) be an arbitrary surjective CA and let r ∈ N be some
radius of F . We may assume without loss of generality (by composing F with a
suitable power of the shift if necessary) that F is shiftless. We prove that F = Id.

Assume to the contrary that F �= Id, so there is x ∈ Sβ such that F (x)[0] �=
x[0]. Let e = ∞0.d(β) and let z ∈ F−1(e) be arbitrary, so in particular z[0,∞] =
d(β) by Proposition 2. Since Sβ is not synchronizing, it follows that every word of
L(Sβ) occurs in d(β) (as explained by Kwietniak in [9], attributed to Bertrand-
Mathis [1]). In particular it is possible to choose i ≥ r+1 such that σi(z)[−r, r] =
x[−r, r] and F (x)[0] = F (σi(z))[0] = σi(z)[0] = x[0], a contradiction. ��

Next we consider only reversible CA. They do not have to be shift maps in
the class of general non-sofic beta-shifts, and in fact the group Aut(X) contains
a copy of the free product of all finite groups whenever X is an infinite synchro-
nizing subshift by Theorem 2.17 of [5]. Nevertheless Aut(Sβ) is constrained in
the sense of directional dynamics.

Theorem 3. If Sβ is not sofic and F ∈ Aut(Sβ) is shiftless then F admits a
blocking word. In particular all elements of Aut(Sβ) have an almost equicontin-
uous direction.

Proof. Let r ∈ N+ be a radius of both F and F−1. Since d(β) is not eventually
periodic, it is easy to see (and is one formulation of the Morse-Hedlund theorem,
see e.g. Theorem 7.3 of [15]) that there is a word u ∈ Σ3r

�β� and symbols a < b

such that both ua and ub are subwords of d(β). Let p = p′ub (p, p′ ∈ L(Sβ)) be
some prefix of d(β) ending in ub. We claim that p is blocking. More precisely we
will show that if x ∈ Sβ is such that x[0, |p| − 1] = p then F t(x)[0, |p| − 2] = p′u
for all t ∈ N.

Assume to the contrary that t ∈ N is the minimal number for which we have
F t(x)[0, |p| − 2] �= p′u. We can find w, v, v′ ∈ L(Sβ) and c, d ∈ Σ�β� (c < d) so
that u = wdv, |w| ≥ 2r and F t(x)[0, |p| − 2] = p′wcv′. Indeed, F−1 is shiftless
because F is, and therefore the prefix p′w still remains unchanged in F t(x)[0,∞].

Now we note that x could have been chosen so that some of its suffixes is equal
to 0∞ and in particular under this choice no suffix of F t(x) is equal to d(β). As
in the proof of Proposition 2 we can represent F t(x)[0,∞] = w1w2w3 . . . where
wi ∈ Yβ for all i ∈ N and in fact w1 = p′wc.

Now let q = q′ua (q, q′ ∈ L(Sβ)) be some prefix of d(β) ending in ua. Then
also q′wd is a prefix of d(β) and thus q′wc ∈ Yβ . Because Sβ is a coded subshift,
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there is a configuration y ∈ Sβ such that y[0,∞] = (q′wc)w2w3 . . . . For such y it
holds that F−t(y) ∈ Sβ but F−t(y)[0,∞] = q′(ub)x[|p|,∞] > d(β) contradicting
the characterization of Sβ . ��

5 Topological Direct Primeness of Beta-Shifts

We recall the terminology of Meyerovitch [14]. A direct topological factorization
of a subshift X is a subshift X1 × · · · × Xn which is conjugate to X and where
each Xi is a subshift. We also say that each subshift Xi is a direct factor of X.
The subshift X is topologically direct prime if it does not admit a non-trivial
direct factorization, i.e. if every direct factorization contains one copy of X and
the other Xi in the factorization contain just one point.

Non-sofic β-shifts turn out to be examples of topologically direct prime
dynamical systems. This is an application of Theorem 3.

Theorem 4. If Sβ is a non-sofic beta-shift then it is topologically direct prime.

Proof. Assume to the contrary that there is a topological conjugacy φ : Sβ →
X × Y where X and Y are non-trivial direct factors of Sβ . The subshifts X and
Y are mixing as factors of the mixing subshift Sβ , and in particular both of them
are infinite, because a mixing finite subshift can only contain one point.

Define a reversible CA F : X × Y → X × Y by F (x, y) = (σ(x), σ−1(y)) for
all x ∈ X, y ∈ Y . Because X and Y are infinite, it follows that F has no almost
equicontinuous directions, i.e. σr ◦ F s is sensitive for all coprime r and s such
that s > 0. Then define G = φ−1 ◦ F ◦ φ : Sβ → Sβ . The map G is a reversible
CA on Sβ and furthermore (Sβ , G) and (X × Y, F ) are conjugate via the map
φ. By Theorem 3 the CA G has an almost equicontinuous direction, so we can
fix coprime r and s such that s > 0 for which σr ◦ Gs is almost equicontinuous.
But σr ◦ Gs is conjugate to σr ◦ F s via the map φ, so σr ◦ F s is also almost
equicontinuous, a contradiction. ��

In general determining whether a given subshift is topologically direct prime
or not seems to be a difficult problem. Lind gives sufficient conditions in [10]
for SFTs based on their entropies: for example any mixing SFT with entropy
log p for a prime number p is topologically direct prime. The paper [14] contains
results on multidimensional full shifts, multidimensional 3-colored chessboard
shifts and p-Dyck shifts with p a prime number.

In the class of beta-shifts the question of topological direct primeness remains
open in a countable number of cases.

Problem 1. Characterize the topologically direct prime sofic beta-shifts.

Example 1. If β > 1 is an integer, then Sβ = ΣZ

β is topologically direct prime
if and only if β is a prime number. Namely, if β = nm for integers n,m ≥ 2,
then Sβ is easily seen to be conjugate to Sn × Sm via a coordinatewise symbol
permutation. The case when β = p is a prime number follows by Lind’s result
because the entropy of ΣZ

p is log p.
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In this example the existence of a direct factorization is characterized by the
existence of direct factorization into beta shifts with integral base. Therefore,
considering the following problem might be a good point to start with Problem 1.

Problem 2. Characterize the numbers n, γ > 1 such that n is an integer and Snγ

is conjugate to Sn × Sγ .

In Theorem 5 we consider this simpler problem in the SFT case. We start
with a definition and a lemma stated in [2].

Definition 11. Let n > 1 be an integer, a ∈ Σn and w ∈ Σ∗
n. We say that aw

is lexicographically greater than all its shifts if aw0∞ > σi(aw0∞) for every
i > 0.

Lemma 1 (Blanchard, [2]). Sβ is an SFT if and only if β > 1 is the unique
positive solution of some equation xd = ad−1x

d−1 + · · · + a0 where d ≥ 1,
ad−1, a0 ≥ 1 and ai ∈ N such that ad−1 · · · a0 is lexicographically greater than all
its shifts. Then d(β) = ad−1 · · · a0.

Proof. The polynomial equation is equivalent to 1 = ad−1x
−1 + · · · + a0x

−d,
which clearly has a unique positive solution. If β satisfies such an equation then
d(β) = ad−1 · · · a0 and Sβ is an SFT. On the other hand, if Sβ is an SFT, then
d(β) takes the form of a word ad−1 · · · a0 which is lexicographically greater than
all its shifts and β satisfies 1 = ad−1x

−1 + · · · + a0x
−d. ��

For the following we also recall some facts on zeta functions. The zeta function
ζX(t) of a subshift X is a formal power series that encodes information about
the number of periodic configurations in X and it is a conjugacy invariant of
X (for precise definitions see Section 6.4 of [11]). Every SFT X is conjugate
to an edge SFT associated to a square matrix A. Let I be an index set and
let {μi ∈ C \ {0} | i ∈ I} be the collection of non-zero eigenvalues of A with
multiplicities: it is called the non-zero spectrum of X. It is known that then
ζX(t) =

∏
i∈I(1 − μit)−1. The number of p-periodic configurations in X is equal

to
∑

i∈I μp
i for p ∈ N+. If Y is also an SFT with ζY (t) =

∏
j∈J(1 − νjt)−1, then

the zeta function of X × Y is ζX(t) ⊗ ζY (t) =
∏

i∈I,j∈J(1 − μiνjt)−1 [10].

Theorem 5. Let Sγ be an SFT with γ the unique positive solution of some
equation xd = ad−1x

d−1 + · · · + a0 where d ≥ 1, ad−1, a0 ≥ 1 and ai ≥ 0 such
that ad−1 · · · a0 is lexicographically greater than all its shifts. If n ≥ 2 is an
integer such that also (nad−1) · · · (nda0) is lexicographically greater than all its
shifts, then Snγ is topologically conjugate to Sn ×Sγ . The converse also holds: if
(nad−1) · · · (nda0) is not lexicographically greater than all its shifts, then either
Snγ is not an SFT or Snγ and Sn×Sγ have different zeta functions. In particular
they are not conjugate.

Proof. We have d(γ) = ad−1 · · · a0. The roots of xd = ad−1x
d−1 + · · · + a0

are γ1 = γ, γ2, . . . , γd. By multiplying both sides by nd and by substituting
y = nx we see that the roots of yd = nad−1y

d−1 + · · · + nda0 are nγi and nγ is
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the unique positive solution. Because multiplying
∏

i(x − γi) = 0 by nd yields∏
i(y − nγi) = 0, we also see that the multiplicities of the roots γi and nγi are

the same in their respective equations. If (nad−1) · · · (nda0) is lexicographically
greater than all its shifts, then Snγ is an SFT with d(nγ) = nad−1 · · · nda0.
As in [17], the shifts Sγ and Snγ are conjugate to the edge shifts XC and XB

respectively given by the matrices

C =

⎛

⎜
⎜
⎜
⎝

ad−1 1 0 · · · 0
ad−2 0 1 · · · 0

...
...

...
...

a0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎠

B =

⎛

⎜
⎜
⎜
⎝

nad−1 1 0 · · · 0
n2ad−2 0 1 · · · 0

...
...

...
...

nda0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎠

.

They are also the companion matrices of the polynomials xd − ad−1x
d−1 − · · · −

a0 and yd − nad−1y
d−1 − · · · − nda0, so the eigenvalues are the roots of these

polynomials and the zeta functions of Sγ and Snγ are

ζXC
(t) =

∏

i

(1 − γit)−1 and ζXB
(t) =

∏

i

(1 − nγit)−1.

In any case ζSn
= (1 − nt)−1, so the zeta function of X = Sn × Sγ is

ζX(t) =
∏

i(1 − nγit)−1, which is equal to ζXB
.

We will construct a conjugacy between Sn ×XC and XB . We will choose the
labels of the edges in XC and XB as in Figs. 2 and 3. The labels in the figures
range according to 0 ≤ ij < n and 0 ≤ kj < ad−j for 1 ≤ j ≤ d.

Fig. 2. The choice of labels for the graph of XC .

The labeling has been chosen in a way that suggests the correct choice of the
reversible sliding block code φ : Sn × XC → XB . For any x ∈ Sn × XC we make
the usual identification x = (x1, x2) where x1 ∈ Sn, x2 ∈ XC and we denote
π1(x) = x1, π2(x) = x2. Then φ is defined by

φ(x)[i] =

⎧
⎪⎪⎨

⎪⎪⎩

∗j when π2(x)[i] = ∗j ,
(i1, k1) when π2(x)[i] = (1, k1) and π1(x)[i] = i1,
(i1, i2, . . . , ij , kj) when π2(x)[i − (j − 1), i] = ∗1 ∗2 · · · ∗j−1 (j, kj)

and π1(x)[i − (j − 1), i] = i1i2 · · · ij
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Fig. 3. The choice of labels for the graph of XB .

The intuition here is that the sliding block code φ attempts to deposit all the
information at x[i] to φ(x)[i]. This is not possible when π2(x)[x] = ∗j , so the
remaining information is deposited to the nearest suitable coordinate to the
right.

For the converse, assume that the word (nad−1) · · · (nda0) is not lexicograph-
ically greater than all its shifts and that Snγ is an SFT. Then nγ is the unique
positive solution of some equation xe = be−1x

e−1 + · · · + b0 where e ≥ 1,
be−1, b0 ≥ 1 and bi ≥ 0 such that be−1 · · · b0 is lexicographically greater than
all its shifts. As above, Snγ is conjugate to an edge shift Y given by a matrix
with eigenvalues β1, β2, . . . , βe which are also the roots of the corresponding
polynomial. By our assumption the polynomials xe − be−1x

e−1 − · · · − b0 and
yd − nad−1y

d−1 − · · · − nda0 are different, so they have different sets of roots
(with multiplicities taken into account) and

ζY (t) =
∏

j

(1 − βit)−1 �=
∏

i

(1 − nγit)−1 = ζX(t),

because C[t] is a unique factorization domain. ��
We conclude with an example concerning an SFT beta-shift Sβ1×β2 where

the assumption of either β1 or β2 being an integer is dropped.

Example 2. A beta-shift Sγ×γ can be topologically direct prime even if Sγ and
Sγ×γ are SFTs (and then in particular Sγ×γ is not conjugate to Sγ × Sγ).
Denote by γ the unique positive root of x3 − x2 − x − 1. By Lemma 1 we
have d(γ) = 111 and in particular Sγ is an SFT. Denote β = γ2. Its minimal
polynomial is x3 −3x2 −x−1 and by Lemma 1 d(β) = 311, so Sβ is an SFT and

it is conjugate to the edge SFT given by the matrix A =
(

3 1 0
1 0 1
1 0 0

)
. It has three

distinct eigenvalues β0 = β, β1 and β2.
We claim that Sβ is topologically direct prime. To see this, assume to the con-

trary that Sβ is topologically conjugate to X ×Y where X and Y are nontrivial
direct factors for Sβ . Since X ×Y is a mixing SFT, it follows from Proposition 6
of [10] that X and Y are mixing SFTs and in particular they are infinite. The
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zeta functions of X and Y are of the form

ζX(t) =
∏

i

(1 − μit)−1 and ζY (t) =
∏

j

(1 − νjt)−1

for some μi, νj ∈ C \ {0}. The zeta function of Sβ is

ζSβ
(t) = (1 − βt)−1(1 − β1t)−1(1 − β2t)−1 =

∏

i,j

(1 − μiνjt)−1.

Because C[t] is a unique factorization domain and because X and Y are non-
trivial SFTs, we may assume without loss of generality that ζX(t) = (1−μt) and
ζY (t) = (1− ν1t)(1− ν2t)(1− ν3t) for some μ, ν1, ν2, ν3 ∈ C\{0}. The quantities
μ and ν1 + ν2 + ν3 are the numbers of 1-periodic points of X and Y respectively
and thus the number of 1-periodic points of Sβ is equal to μ(ν1 + ν2 + ν3) = 3
where μ and ν1 + ν2 + ν3 are nonnegative integers. In particular μ ∈ {1, 3}.

Assume first that μ = 1. Therefore X has the same zeta function as the full
shift over the one letter alphabet and X has just one periodic point. As a mixing
SFT X has periodic points dense so X only contains one point, contradicting
the nontriviality of X.

Assume then that μ = 3. Therefore X has the same zeta function as ΣZ

3 and
X has precisely 3n n-periodic points for all n ∈ N+. In particular the number of
2-periodic points of Sβ is divisible by 32 = 9. On the other hand the number of
2-periodic points of Sβ is equal to Tr(A2) = 11, a contradiction.
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