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Amazigh.Amrane@etu.univ-rouen.fr, Nicolas.Bedon@univ-rouen.fr

Abstract. In this paper we consider two classes of posets labeled over
an alphabet A. The class SP �(A) is built from the letters and closed
under the operations of series finite, ω and ω products, and finite parallel
product. In the class ωSP (A), ω and ω products are replaced by ω and ω
powers. We prove that SP �(A) and ωSP (A) are freely generated in their
respective natural varieties of algebras V and V ′, and that the equational
theory of V ′ is decidable.
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1 Introduction

In his generalization of the algebraic approach of recognizable languages from
finite words to ω-words, Wilke [22] introduced right binoids, that are two-sorted
algebras equipped with a binary product and an ω-power. The operations are
linked together by equalities reflecting their properties. These equalities define
a variety of algebras. This algebraic study of ω-words have since been extended
to more general structures, such as for example partial words (or equivalently,
labeled posets) or transfinite strings (long words). In [8], shuffle binoids are right
binoids equipped with a shuffle operation that enables to take into consideration
N-free posets with finite antichains and ω-chains instead of ω-words. In [3,5], the
structure of right binoids in two parts is modified in order to enable products to
extend over ω, ie. small ordinals (≤ ωn, n ∈ N) and countable ordinals. The lat-
ter algebras are enriched in [10,11] with operations such as for example reverse
ω-power in order to take into account countable linear orderings (scattered in
some cases). Some of the previous algebraic enrichments were also applied to
shuffle binoids [4,12]. The motivations in [3–5,10,11,17,22] are mainly the study
of the links between automata, rational expressions, algebraic recognition and
monadic second-order logic. In [7–9,12,22] the authors focus essentially on vari-
eties of algebras; for example, free algebras are characterized in the corresponding
varieties, and decisions algorithms for equivalence of terms are provided.

Let us denote by ω the reverse ordering of ω. In this paper we focus on
algebras equipped with a parallel product, series product, and either ω and ω
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products or ω and ω powers. For example, the class SP �(A) of N-free posets in
which antichains are finite and chains are scattered and countable orderings lies
in this framework. In [2,6] this class has been studied from the point of view
of automata, rational expression and logic. We prove here that SP �(A) is the
free algebra in a variety V of algebras equipped with a parallel product, series
product, and ω and ω products. By removing the parallel product, it follows
that A�, the class of scattered and countable words over A, is also a free algebra
in the corresponding variety. We also consider the class ωSP (A) where the ω and
ω products are replaced by ω and ω powers, and show that it is freely generated
in the corresponding variety V ′. Relying of decision results of [2] we prove that
the equality of terms of V ′ is decidable.

2 Linear Orderings and Posets

We let |E| denote the cardinality of a set E, and [n] the set {1, . . . , n}, for any
non-negative integer n ∈ N.

Let J be a set equipped with a strict order <. The ordering J is linear if either
j < k or k < j for any distinct j, k ∈ J . We denote by J the backward linear
ordering obtained from the set J with the reverse ordering. A linear ordering
J is dense if for any j, k ∈ J such that j < k, there exists an element i of J
such that j < i < k. It is scattered if it contains no infinite dense sub-ordering.
The ordering ω of natural integers is scattered as well as the ordering ζ of all
integers (negative, 0 and positive). Ordinals are also scattered orderings. We let
N , O and S denote respectively the class of finite linear orderings, the class of
countable ordinals and the class of countable scattered linear orderings. We also
let 0 and 1 denote respectively the empty and the singleton linear ordering. We
refer to [20] for more details on linear orderings and ordinals.

A poset (P,<) is a set P partially ordered by <. For short we often denote the
poset (P,<) by P . The width of P is wd(P ) = sup{|E| : Eis an antichain of P}
where sup denotes the least upper bound of the set. In this paper, we restrict to
posets with finite antichains and countable and scattered chains.

Let (P,<P ) and (Q,<Q) be two disjoint posets. The union (or parallel compo-
sition) P ∪Q of (P,<P ) and (Q,<Q) is the poset (P ∪Q,<P ∪ <Q). The sum (or
sequential composition) P +Q is the poset (P ∪Q,<P ∪ <Q ∪P ×Q). The sum
of two posets can be generalized to a J-sum of any linearly ordered sequence
((Pj , <j))j∈J of pairwise disjoint posets by

∑
j∈J Pj = (

⋃
j∈J Pj , (

⋃
j∈J <j)

∪(
⋃

j,j′∈J, j<j′ Pj ×Pj′)). The sequence ((Pj , <j))j∈J is called a J-factorization,
or (sequential) factorization for short, of the poset

∑
j∈J Pj . A poset P is sequen-

tial if it admits a J-factorization where J contains at least two elements j �= j′

with Pj , Pj′ �= 0, or P is a singleton. It is parallel when P = P1 ∪ P2 for some
P1, P2 �= 0. A poset is sequentially irreducible (resp. parallelly irreducible) when
P is either a singleton or a parallel poset (resp. a singleton or a sequential poset).
A sequential factorization ((Pj , <j))j∈J of P =

∑
j∈J Pj is irreducible when all

the Pj are sequentially irreducible. It is non-trivial if all the Pj are non-empty.
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The notions of irreducible and non-trivial parallel factorization are defined sim-
ilarly. A poset is scattered if all its chains are scattered. The class SP � of series-
parallel scattered and countable posets is the smallest class of posets containing
0, the singleton, and closed under finite parallel composition and sum indexed
by countable scattered linear orderings. By extension of a well-known result on
finite posets [18,21], it has a nice characterization in terms of graph properties:
SP � coincides with the class of scattered countable N-free posets without infinite
antichains [6]. Recall that (P,<) is N-free if there is no X = {x1, x2, x3, x4} ⊆ P
such that < ∩X2 = {(x1, x2), (x3, x2), (x3, x4)}.

When P ∈ SP � and P = R + P ′ + S or P = P ′ ∪ R for some R,S, P ′ ∈ SP �

then P ′ is a factor of P ; the factors of P ′, R and S are also factors of P .
F. Hausdorff proposed in [16] an inductive definition of scattered linear order-

ings. In fact, each countable and scattered linear ordering is obtained using sums
indexed by finite linear orderings, ω and ω. This has been adapted in [6] to SP �.

We let C∪,+(E) denote the closure of a set E of posets under finite disjoint
union and finite disjoint sum.

Definition 1. The classes of countable and scattered posets (equivalent up to
isomorphism) Vα and Wα are defined inductively as follows:

V0 = {0, 1}
Wα = C∪,+(Vα)

Vα =

{
∑

i∈J

Pi : J ∈ {ω, ω} and ∀i ∈ J, Pi ∈
⋃

β<α

Wβ

}

∪
⋃

β<α

Wβ when α > 0

and the class Ssp of countable and scattered posets by Ssp =
⋃

α∈O Wα.

The following theorem extends a result of Hausdorff on linear orderings [16].

Theorem 1 ([6]). Ssp = SP �.

For every α ∈ O, Wα can be decomposed as the closure of Vα by finite disjoint
union and finite disjoint sum:

Theorem 2 ([6]). For all α ∈ O, i ∈ N, let

Xα,0 = Vα

Yα,i =

{

P : ∃n ∈ N P =
∑

j≤n

Pj such that Pj ∈ Xα,i for all j ≤ n

}

Xα,i+1 =

{

P : ∃n ∈ N P =
⋃

j≤n

Pj such that Pj ∈ Yα,i for all j ≤ n

}

Then Wα =
⋃

i∈N

Xα,i.
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Example 1. W0 is the set of all finite N-free posets. Its subset Y0,0 is the set
of all finite linear orderings. The linear orderings ω and ω are contained in V1.
Each poset of V1 \ W0 has some chain isomorphic to either ω or ω, but can not
have a chain isomorphic to ω and another isomorphic to ω. The ordering ζ of all
integers is in Y1,0. For all α ∈ O, ωα ∈ Vα.

Define a well-ordering on O × N by (β, j) < (α, i) if and only if β < α or
β = α and j < i. As a consequence of Theorems 1 and 2, for any P ∈ SP � there
exists a unique pair (α, i) ∈ O × N as small as possible such that P ∈ Xα,i.

Definition 2. The rank r(P ) of P ∈ SP � is the smallest pair (α, i) ∈ O × N

such that P ∈ Xα,i.

Example 2. The linear ordering ζ has rank r(ζ) = (1, 1). Each linear ordering I
of S has rank r(I) ∈ {(α, 0), (α, 1)} for some α ∈ O. For all α ∈ O, r(ωα) = α.

Remark 1. Let P ∈ SP � with r(P ) = (α, 0), α > 0. Assume that P =
∑

j∈J Pj

is a non-trivial J-factorization of P for some J ∈ {ω, ω}. If J = ω (resp. J = ω),
then, for all j ∈ J , r(Pj) < r(P ). In addition, for all (β, i) ∈ O × N such that
(β, i) < (α, 0), for all j ∈ J there exists k ∈ J such that k > j (resp. k < j) and

(β, i) ≤ r(Pk) < r(P )

This implies that, for all j ∈ J ,
∑

j′≥j Pj (resp.
∑

j′≤j Pj) is of rank (α, 0).

Lemma 1. Let P ∈ SP � be a sequential poset such that r(P ) = (α, 0), α > 0.
Let

∑
j∈J Pj and

∑
j∈J ′ P ′

j be some non-trivial J- and J ′-factorizations of P
where J, J ′ ∈ {ω, ω}. Then J = J ′.

Proof. Assume by contradiction that J �= J ′. Assume wlog that J = ω and
J ′ = ω. Let L =

∑
j≤k Pj and R =

∑
k<j<ω Pj for some k ∈ ω. Then P = L+R.

As a consequence of Remark 1, r(R) = (α, 0). Observe that there exists k′ ∈ ω
such that R is a sequential factor of R′ =

∑
j′≥k′ P ′

j′ . Let L′ =
∑

ω<j′<k′ P ′
j′ .

As a consequence of Remark 1, r(L′) = r(R) = (α, 0). Furthermore, r(R) ≤
r(R′) ≤ r(P ). Thus r(R′) = (α, 0) too. We have P = L′ +R′, and by Theorem 2,
r(P ) = (α, 1), which is a contradiction.

In [6] an equivalence relation ∼ over the elements of a poset of SP � is
given, such that P/∼ is isomorphic to a countable and scattered linear ordering
(Lemma 9), and such that each equivalence class is a sequentially irreducible
factor of P (Lemma 10). This leads to the following proposition.

Proposition 1 ([6]). Each poset of SP � admits a unique irreducible sequential
factorization.

Definition 1 and Theorem 1 provide a well-founded definition of SP � which
we consider from now as a set, although originally defined as a class.



Equational Theories of Scattered and Countable Series-Parallel Posets 5

3 Labeled Posets

An alphabet A is a non-empty set (not necessarily finite) whose elements are
called letters or labels. In the literature a word over A is a totally ordered
sequence of elements of A. The sequence may have properties depending on
the context, for example it can be finite, an ordinal, or a countable scattered
linear ordering. The notion of a finite word has early been extended to partial
orderings (finite partial words or pomsets [14,15,23]). In this paper we consider
a mixture between the notions of finite partial words and words indexed by
scattered and countable linear orderings.

A poset P is labeled by A when it is equipped with a labeling total map
l : P → A. Also, the finite labeled posets of width at most 1 correspond to the
usual notion of words. We let ε denote the empty labeled poset. For short, the
singleton poset labeled by {a} is denoted by a, and we often make no distinction
between a poset and a labeled poset, except for operations.

The sequential product (or concatenation, denoted by P ·P ′ or PP ′ for short)
and the parallel product P ‖ P ′ of two labeled posets are respectively obtained by
the sequential and parallel compositions of the corresponding (unlabeled) posets.
By extension, the sequential product

∏
j∈J Pj of a linearly ordered sequence of

labeled posets is the poset
∑

j∈J Pj in which the label of the elements is kept. In
particular, the ω-product (resp. ω-product) of an ω-sequence (resp. ω-sequence)
of labeled posets (Pi)i∈ω (resp. (Pi)i∈ω) is denoted by

∏
i∈ω Pi (resp.

∏
i∈ω Pi).

The ω-power (resp. ω-power) Pω (resp. Pω) of the poset P is the ω-product
(resp. ω-product) of an ω-sequence (resp. ω-sequence) of posets that are all
isomorphic to P . As usual, in this paper we consider two labeled posets to be
identical if they are isomorphic. By extension, the rank r(P ) of a labeled poset
P is the rank of its underlying unlabeled poset.

Let A and B be two alphabets and let P be a poset labeled by A. For all
a ∈ A, let Ga be some poset labeled by B, and let G = (Ga)a∈A. The poset
labeled by B consisting of P in which each element labeled by the letter a is
replaced by Ga, for all a ∈ A, is denoted by G ◦A P . If the underlying posets of
P and of all the Ga are in SP �, then so is G ◦A P .

Definition 3. Let A be an alphabet. We define:

– SP �(A), the smallest set of posets labeled by A containing ε, a for all a ∈ A,
and closed under operations of sequential, parallel, ω and ω-products. Accord-
ing to Theorem 1, the underlying posets are precisely those of SP �;

– ωA, the smallest subset of SP �(A) containing ε, a for all a ∈ A, and closed
under operations of sequential product, ω-power and ω-power;

– A�, the smallest subset of SP �(A) containing ε, a for all a ∈ A, and closed
under operations of sequential product, ω-product and ω-product;

– ωSP (A), the smallest subset of SP �(A) containing ε, a for all a ∈ A, and
closed under operations of sequential and parallel product, ω-power and ω-
power;
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– ωSP (A), the smallest subset of SP �(A) containing ε, a for all a ∈ A, and
closed under operations of sequential product, parallel product and ω-product
(note that there is no ω-product here).

Note that ωA = {P ∈ SP �(A) : r(P ) ∈ N × {0, 1}} and ωSP (A) = {P ∈
SP �(A) : r(P ) ∈ N × N}}.

4 Varieties

In this section we define the different varieties studied throughout this paper
by listing the axioms they satisfy. The usual notions and results of universal
algebra apply to our case, even if we use here for example operations of infinite
arity. For more details about universal algebra, we refer the reader to [1]. In the
following 1 is considered as a neutral element (the interpretation of a constant).

x · (y · z) = (x · y) · z (A1)
x ‖ (y ‖ z) = (x ‖ y) ‖ z (A2)

x ‖ y = y ‖ x (A3)
(x · y)ω = x · (y · x)ω (A4)

(xn)ω = xω, n ≥ 1 (A5)

(x · y)ω = (y · x)ω · y (A6)

(xn)ω = xω, n ≥ 1 (A7)
x · 1 = x (A8)
1 · x = x (A9)

x ‖ 1 = x (A10)
1ω = 1 (A11)

1ω = 1 (A12)

for all ω-sequences x0, x1, . . . , xi, . . . and all decompositions
(x0, . . . , xn0−1), (xn0 , . . . , xn1−1), . . . , (xni

, . . . , xni−1), . . .

ω((x0, . . . , xn0−1), (xn0 , . . . , xn1−1), . . . ) = ω(x0, x1, . . . ) (A13)
x0 · ω(x1, x2, . . . ) = ω(x0, x1, x2, . . . ) (A14)

ω(1, 1, . . . ) = 1 (A15)

for all ω-sequences . . . , xi, . . . , x1, x0 and all decompositions
. . . , (xni−1, . . . , xni

), . . . , (xn1−1, . . . , xn0), (xn0−1, . . . , x0)

ω(. . . , (xn1−1, . . . , xn0), (xn0−1, . . . , x0)) = ω(. . . , x1, x0) (A16)
ω(. . . , x2, x1) · x0 = ω(. . . , x2, x1, x0) (A17)

ω(. . . , 1, 1) = 1 (A18)
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Definition 4. We define

– V, the collection of algebras (S, ·, ‖, ω, ω, 1) satisfying the axioms (A1)–(A3),
(A8)–(A10) and (A13)–(A18);

– V0, the collection of algebras (S, ·, ω, ω, 1) satisfying the axioms (A1), (A8),
(A9) and (A13)–(A18);

– V1, the collection of algebras (S, ·, ‖, ω, 1) satisfying the axioms (A1)–(A3),
(A8)–(A10) and (A13)–(A15);

– V ′, the collection of algebras (S, ·, ‖,ω ,ω , 1) satisfying the axioms (A1)–(A12);
– V ′

0, the collection of algebras (S, ·,ω ,ω , 1) satisfying the axioms (A1), (A4)–
(A9) and (A11),(A12).

In order to simplify the notation, an algebra whose set of elements is S is some-
times denoted by S when there is no ambiguity.

5 Freeness

Throughout this section, A denotes an alphabet. We start by proving the freeness
of SP �(A).

Theorem 3. SP �(A) is freely generated by A in V.

Proof. For all (α, i) ∈ O×N, let Xα,i denote the set of posets of SP �(A) of rank
(α, i) or less. Let M = (M, ·, ‖, ω, ω, 1) be any algebra of V and let h : A → M
be any function. We show that h can be extended into a homomorphism of V-
algebras h� : SP �(A) → M in a unique way. Define h� as h� =

⋃

(α,i)∈O×N

hα,i

where each hα,i : Xα,i → M is defined by induction over (α, i) as follows. Let
us denote by h<(α,i) = ∪(β,j)<(α,i)hβ,j . Let P ∈ Xα,i. If r(P ) < (α, i) then
hα,i(P ) = h<(α,i)(P ). Otherwise

– if α = 0 and i = 0 then hα,i = h ∪ (ε → 1);
– if α > 0 and i = 0 then P admits a non-trivial J-factorization

P =
∏

j∈J

Pj (19)

where J ∈ {ω, ω} (see Remark 1) and r(Pj) < r(P ) for all j ∈ J . Define
hα,i(P ) by

hα,i(P ) =
∏

j∈J

h<(α,i)(Pj)

– if i > 0:
• if P is a sequential poset then it has a factorization

P =
∏

j∈[n]

Pj (20)



8 A. Amazigh and N. Bedon

where each Pj is a non-empty poset of rank lower than (α, i) and n ∈
N \ {0, 1}. Define hα,i(P ) by

hα,i(P ) =
∏

j∈[n]

hα,i−1(Pj)

• otherwise, P is a parallel poset. Write

P =‖s∈[n] Ps

where each Ps is a sequential poset and n ≥ 2. Then, define hα,i(P ) by

hα,i(P ) =‖s∈[n] hα,i(Ps)

By Theorem 2, the factorizations used in the definition of hα,i exist. However,
observe that the sequential ones ((19) and (20)) are not unique. This would
question the fact that hα,i is a well-defined function. For all P ∈ SP �(A) of rank
(α, i), we show that:

1. hα,i(P ) does not depend on the factorization of P and thus is well-defined;
2. hα,i commutes with all the operations of V:

(a) hα,i(
∏

j∈J Pj) =
∏

j∈J hα,i(Pj), for some J ∈ N ∪ {ω, ω};
(b) hα,i(‖s∈[n] Ps) =‖s∈[n] hα,i(Ps), for some n ∈ N.

We proceed by induction on (α, i). Let us start by proving that hα,i maps
P ∈ Xα,i to the same element of M regardless of the factorization of P . If
(α, i) = (0, 0) the theorem follows immediately. Otherwise, assume first that
i = 0. By Lemma 1, all the possible factorizations of P as in (19) are either
all ω-factorizations or all ω-factorizations. Assume wlog that P admits only ω-
factorizations as in (19). Let P =

∏
j∈ω Pj and P =

∏
j∈ω Qj be two different

such ω-factorizations. By definition of hα,i

hα,i(
∏

j∈ω

Pj) =
∏

j∈ω

h<(α,i)(Pj) and hα,i(
∏

j∈ω

Qj) =
∏

j∈ω

h<(α,i)(Qj)

There exists a sequence (Rj)j∈ω of non-empty posets such that P =
∏

k∈ω Rk

and for all j ∈ ω there exist kPj
, k′

Pj
, kQj

, k′
Qj

∈ ω such that

Pj =
∏

kPj
≤l≤k′

Pj

Rl and Qj =
∏

kQj
≤l≤k′

Qj

Rl

By induction hypothesis h<(α,i) commutes with all the operations of V. Then,
we have for all j ∈ ω:

h<(α,i)(Pj) =
∏

kPj
≤l≤k′

Pj

h<(α,i)(Rl) and h<(α,i)(Qj) =
∏

kQj
≤l≤k′

Qj

h<(α,i)(Rl)
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Thus
∏

j∈ω h<(α,i)(Pj) can be written as

ω(h<(α,i)(RkP0
) · . . . · h<(α,i)(Rk′

P0
), h<(α,i)(RkP1

) · . . . · h<(α,i)(Rk′
P1

), · · · )
(A13)= ω(h<(α,i)(RkP0

), . . . , h<(α,i)(Rk′
P0

), h<(α,i)(RkP1
), . . . , h<(α,i)(Rk′

P1
), · · · )

(A13)= ω(h<(α,i)(RkQ0
) · . . . · h<(α,i)(Rk′

Q0
), h<(α,i)(RkQ1

) · . . . · h<(α,i)(Rk′
Q1

), · · · )

We have
∏

j∈ω h<(α,i)(Pj) =
∏

j∈ω h<(α,i)(Qj). The case where P admits
only ω-factorizations as in (19) is proved symmetrically using (A16) instead
of (A13). In addition, using (A1) instead of (A13) and arguments similar to those
of the previous case, we prove that when P is sequential and i > 0, hα,i(P ) does
not depend on the factorization of P .

Thus, we have proved that hα,i is well-defined for sequential posets of rank
(α, i) ∈ O×N. In addition, the irreducible parallel factorization is unique modulo
the commutativity of ‖. Thus hα,i is well-defined for all posets of rank (α, i),
for all (α, i) ∈ O × N. Furthermore, proving that hα,i commutes with all the
operations in Xα,i can be done by induction on r(P ) too. The arguments are
very similar to those used to prove that hα,i is well-defined. It follows that h�

is a homomorphism of V-algebras. In addition, since h� relies on h then h� is
unique.

The proofs of the following theorems rely on the same arguments. It suffices
to restrict h� to the operations of the corresponding variety. In particular, this
provides a new proof of Theorem 5.

Theorem 4. A� is freely generated by A in V0.

Theorem 5 ([12]). ωSP (A) is freely generated by A in V1.

In the remainder of this section, we prove the freeness of ωSP (A) in V ′. The
arguments are similar to those of the proof of Theorem 6.1 in [12] in which the
variety considered is V ′ without ω-power. We need the following result.

Theorem 6 ([9]). ωA is freely generated by A in V ′
0.

Lemma 2. Let A and B be two alphabets. Let S ⊆ ωSP (B) such that S is closed
under sequential product, ω-power and ω-power. Let f : A → G be some function
defined by f(a) = Ga ∈ G for some G ⊆ S. Then, the function f � : ωA → S
extending f defined by f �(u) = (Ga)a∈A ◦A u, for all u ∈ ωA, is a homomorphism
from (ωA, ·,ω ,ω , ε) to (S, ·,ω ,ω , 1).

Furthermore, if f is bijective, S is generated by G, and G contains only
sequentially irreducible posets then f � is bijective.

Proof. Let u ∈ ωA whose irreducible sequential factorization is
∏

j∈J uj for some
J ∈ S, where each uj ∈ A. Note that

f �(u) = (Ga)a∈A ◦A u =
∏

j∈J

(Ga)a∈A ◦A ui =
∏

j∈J

f(ui)
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Let v · w, xω and yω be some sequential factorizations of u. Then, one can prove
easily that

f �(u) = f �(v) · f �(w) = f �(x)ω = f �(y)ω

relying on the uniqueness of the irreducible sequential factorization of u (Propo-
sition 1).

Let us prove now that when f is bijective and S is generated by a set of
sequentially irreducible posets then f � is bijective. Let u, v ∈ ωA and assume
that f �(u) = P and f �(v) = Q. Let

∏
i∈I ui and

∏
j∈J vj be the irreducible

sequential factorizations of respectively u and v, for some I, J ∈ S, where each
ui and vj are in A. By definition of f �, P =

∏
i∈I Pi and Q =

∏
j∈J Qj where

each Pi = (Ga)a∈A ◦A ui and Qj = (Ga)a∈A ◦A vj . Then, for all i ∈ I and for all
j ∈ J , Pi and Qj are sequentially irreducible posets of G. Assume that P = Q.
Then I = J and, for all i ∈ I, Pi = Qi. We have, for all i ∈ I, ui = vi since f is
injective by hypothesis. In addition, as G generates S, each element P of S can
be written as

∏
j∈J Pj where each Pj ∈ G, for some J ∈ S. Since f is surjective

by hypothesis, for all j ∈ J there exists uj ∈ A such that f(uj) = Pj . Then
f �(

∏
j∈J uj) = P .

As a consequence of HSP Birkhoff’s Theorem (see eg. [1, Theorem 1.3.8])
and Lemma 2:

Corollary 1. For all S ⊆ ωSP (A) closed under sequential product, ω-power
and ω-power and generated by a set of sequentially irreducible posets of ωSP (A),
(S, ·,ω ,ω , 1) is a V ′

0-algebra.

In addition, as a consequence of Theorem 6 and Lemma 2:

Corollary 2. For all S ⊆ ωSP (A) closed under sequential product, ω-power and
ω-power and generated by a set G of sequentially irreducible posets of ωSP (A),
(S, ·,ω ,ω , 1) is freely generated by G in V ′

0.

We are now ready to prove the following theorem.

Theorem 7. ωSP (A) is freely generated by A in V ′.

Proof. For all i ∈ N, let ωSP (A)i be the subset of ωSP (A) consisting all its
posets of width lower or equal to i. Then ωSP (A) =

⋃
i∈N

ωSP (A)i. Note that
ωSP (A)0 = {ε} and ωSP (A)1 = ωA. Observe that for all i ∈ N, ωSP (A)i is closed
under sequential product, ω-power and ω-power. In addition, for all i ∈ N,
ωSP (A)i is generated by its sequentially irreducible posets. By Corollary 1, for
all i ∈ N, ωSP (A)i can be considered as a V ′

0-algebra. In addition, by Corollary 2,
for all i ∈ N, ωSP (A)i is freely generated by its sequentially irreducible posets
in V ′

0. Then, for all i ∈ N and S ∈ V ′
0, a function h′ : A → S can be extended in

a unique homomorphism of V ′
0-algebras h′

i :
ωSP (A)i → S.

Let S be some V ′-algebra and let h : A → S be some function. We show that
h can be extended into a homomorphism of V ′-algebras h� : ωSP (A) → S in a
unique way. Indeed, we define h� as h� =

⋃

i∈N

hi where each hi : ωSP (A)i → S is

defined, by induction on i, as follows:
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– when i = 0, h0 is defined by ε → 1;
– when i = 1, h1 is the unique homomorphism of V ′

0-algebras ωA → S extending
h (Theorem 6);

– when i ≥ 2, hi is defined as follows:
• on posets P of width lower than i, hi(P ) is hi−1(P );
• on sequential posets P of width i, hi(P ) is h′

i(P );
• on parallel posets P of width i, hi(P ) is defined relying on the irreducible

parallel factorization ‖j∈[n] Pj of P , for some n ∈ N, by:

hi(P ) =‖j∈[n] hi−1(Pj)

Proving that h� is a homomorphism of V ′-algebras is routine. Furthermore, the
uniqueness of h� comes from the facts that h� extends h and that A is a generating
set of ωSP (A).

6 Decidability

Throughout this section, A denotes an alphabet. The set of terms of some signa-
ture over A is the smallest set of finite words built from A using the operations
of the corresponding signature. In this section we prove the decidability of the
equational theory of V ′.

Let τ be the signature of V ′-algebras. We start by defining the set of terms
in which we are interested.

Definition 5. The set of terms TA over A is the smallest set satisfying the
following conditions:

– A ∪ {1} ⊆ TA;
– if t1, t2 ∈ TA then t1 · t2, t1 ‖ t2 ∈ TA;
– if t ∈ TA then tω, tω ∈ TA.

By equipping TA with the operations of τ , we define a structure called the term
algebra T (A) = (TA, ·, ‖,ω ,ω , 1) over A. Note that TA can be considered also as
the set of trees whose leaves are labeled by A ∪ {1} and whose internal nodes
are labeled by the operations of τ where the out-degree of each internal node
coincides with the arity of the corresponding operation.

Two terms t, t′ ∈ TA are equivalent if t′ can be derived from t using the
axioms which V ′ satisfy (denoted t ≡ t′). This equivalence relation is actually
a congruence. It is well-known that T (A) is absolutely free i.e. it is freely gen-
erated by A in the class containing all the algebras of signature τ . In addition,
as a consequence of Theorem 7, T (A)/≡ is isomorphic to ωSP (A) (see eg. [1,
Theorem 1.3.2]). This isomorphism can be defined by �1� = ε and �a� = a for
all a ∈ A.

Then we have:

Proposition 2. Let t, t′ ∈ TA. Then �t� = �t′� if and only if t ≡ t′ holds in V ′.
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As a consequence, proving the decidability of the equational theory of V ′ can
be reduced to decide whether �t� = �t′�.

Theorem 8. Let t, t′ ∈ TA. It is decidable whether �t� = �t′�.

We now give a quick outline of the proof. The terms t and t′ can be interpreted
as particular forms of rational expressions over languages of SP �(A), see [6]. By
extension of a well-known result of Büchi on ordinals, it is known from [2] that a
language of SP �(A) is rational if and only if it is definable in an extension, named
P-MSO, of the so-called monadic second-order logic. Two P-MSO formulæ ψt

and ψt′ such that L(ψt) = �t� and L(ψt′) = �t′� can effectively be built from t
and t′. We have L(ψt ∧ ψt′) = ∅ if and only if �t� �= �t′�. Theorem 8 follows from
the decidability of the P-MSO theory of SP �(A) [2, Theorem 6].

This decision procedure has a non-elementary complexity. Another proof with
an exponential complexity (in the size of t, t′) can be derived from the proof
of [12, Theorem 7.6], in which the ω-power is not considered, by replacing the
use of [12, Theorem 7.3] by [9, Corollary 3.19].

Acknowledgements. We would like to thank the anonymous referees for their com-
ments on this work. One of them pointed out that Theorem 3 can be deduced from
Theorem 1 using the theory of categories, and in particular works by Fiore and Hur [13],
Robinson [19], Adámek, Rosicky, Velbil et al.
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1979. LNCS, vol. 74, pp. 523–532. Springer, Heidelberg (1979). https://doi.org/10.
1007/3-540-09526-8 53

https://doi.org/10.1016/j.tcs.2008.12.052
https://doi.org/10.1016/j.tcs.2008.12.052
http://www.sciencedirect.com/science/article/pii/S0304397508009353
http://www.sciencedirect.com/science/article/pii/S0304397508009353
https://doi.org/10.1007/s001650200014
https://doi.org/10.1007/s001650200014
https://doi.org/10.1007/3-540-09526-8_53
https://doi.org/10.1007/3-540-09526-8_53

	Equational Theories of Scattered and Countable Series-Parallel Posets
	1 Introduction
	2 Linear Orderings and Posets
	3 Labeled Posets
	4 Varieties
	5 Freeness
	6 Decidability
	References




