
6TransboundaryWater Resource
Management

6.1 Water Rivalry,Agreements, and InternationalWater Rights

There are 276 international river basins worldwide which stretch over two or more
countries (De Stefano et al. 2012). About 40% of the world population lives in
international river basins (Water 2008). A major issue in transboundary rivers arises
when claims for water exceed the available water quantity. Therefore, rules and legal
paradigms are required to prevent tensions between competing consumers.

There exist two extreme legal paradigms:

• First is the principle of Absolute Territorial Sovereignty (ATS). Every state has
the right to abstract and use the water in the basin on the basis of a souvereign
decision of the state within its territory. This approach favors the upstream country
which is able to fully cover its claims as long as enough water is available in the
river.

• Second, the principle of Absolute Territorial Integrity (ATI) concerns the alloca-
tion of water between two states which are ordered sequentially along the course
of the river. In that case, the downstream country must not be negatively affected
by the upstream actor. For scarce water resources in the river, a diversion of
water by the upstream state may increase the shortage and, therefore, shrinks the
availability of water for the downstream country. Thus, a negative impact would
occur for the downstream state and hence the diversion of water by the upstream
state would not be allowed under the ATI principle. The ATI principle, therefore,
favors, if any, the downstream state.

Currently, these two extreme approaches are diametral to each other and are com-
monly rejected in international water policy. Therefore, the “Territorial Integration of
All Basin States” (TIBS) as well as the approach of Limited Territorial Sovereignty
(LTS) are compromises between the conflicting ATS and ATI principle.
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• The TIBS principle states that the water in the river is a common resource and any
riparian has the right to divert an appropriate share regardless of its river position
and its river inflow contribution.

• The LTS principle enables each riparian to use the water while any other riparian
is not harmed by the usage. Due to its flexibility and its room for interpretation,
this LTS principle is widely accepted in international water policy (Moes 2013).

International laws for allocatingwater of transboundary sourcesmainly developed
in the second half of the twentieth century. These range from a multitude of bilateral
contracts to a number of UN conventions which are valid at a global scale. In this
textbook, we focus on the development of the most important conventions.1 These
contain the

• Helsinki Rules on the Use of International Rivers agreed upon in 1966;
• UN Convention on the Protection and Use of Transboundary Watercourses and

International Lakes (1997);
• Berlin Rules on Water Resources from the year 2004.

The Helsinki rules were agreed upon at the 52nd Conference of the International
LawAssociation (ILA) in August 1966, and they regulate the usage of transboundary
rivers and their connected groundwaters. The Helsinki Rules consist of a total of
37 articles which are split into six chapters (International Law Association 1966).
Articles 4 and 5 are most relevant for transboundary river management. Article 4
entitles any riparian to a reasonable and equitable share in the use of water,2 while
Article 5 defines the criteria to estimate this reasonable and equitable share of water
usage. These criteria are, for instance, the geography and hydrology of the basin,
past utilization, economic and social needs, and comparative costs of an alternative.3

The Helsinki Rules were a quite important inspiration for the UN Convention on the

1For a more detailed overview of the rules, we recommend, for instance, Van Puymbroeck (2003).
2Article 4 of Helsinki Rules: “Each basin State is entitled, within its territory, to a reasonable and
equitable share in the beneficial uses of the waters of an international drainage basin.”
3Article 5 of Helsinki Rules:

1. What is a reasonable and equitable share within the meaning of Article 4 is to be determined in
the light of all the relevant factors in each particular case.

2. Relevant factors which are to be considered include, but are not limited to
(a) the geography of the basin, including, in particular, the extent of the drainage area in the
territory of each basin State; (b) the hydrology of the basin, including, in particular, the contri-
bution of water by each basin State; (c) the climate affecting the basin; (d) the past utilization of
the waters of the basin, including, in particular, existing utilization; (e) the economic and social
needs of each basin State; (f) the population dependent on the waters of the basin in each basin
State; (g) the comparative costs of alternative means of satisfying the economic and social needs
of each basin State; (h) the availability of other resources; (i) the avoidance of unnecessary waste
in the utilization of waters of the basin; (j) the practicability of compensation to one or more of
the co-basin States as a means of adjusting conflicts among uses; and (k) the degree to which the
needs of a basin State may be satisfied, without causing substantial injury to a co-basin State.
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Protection and Use of TransboundaryWatercourses and International Lakes in 1997,
and were superseded by the Berlin Rules on Water Resources in the year 2004.

On May 21, 1997, the General Assembly of the UN passed the Law of the Non-
Navigational Uses of International Watercourses, which is also known as the UN
Watercourses Convention.4 Until the present, it is the only treaty under international
law with global validation which rules the non-navigational usage of international
water sources including both surface and groundwater (Wehling 2018). It mainly
aims to further the optimal and sustainable usage as well as to ensure the develop-
ment and conservation of internationalwater sources (Salman 2007). Because of their
wide acceptance, the former explained principle of Limited Territorial Sovereignty
(LTS) is incorporated in the convention. Based on Article 5, the water utilization
has to be equitable and reasonable. The factors for such an equitable and reason-
able usage are listed in Article 6 of the convention. These factors are, for instance,
natural characteristics such as geographical and hydrological conditions, social and
economic needs as well as the population dependent on the watercourse. Further-
more, the following articles oblige the riparian states to take appropriate measures to
prevent significant harm to other watercourse states, to cooperate with each other on
the basis of sovereign equality, territorial integrity, mutual benefit, and good faith, as
well as to a regular exchange of available data and information on the condition of
the watercourse (e.g., hydrological, meteorological, and water quality conditions).

The Berlin Rules on Water Resources—which replaced the Helsinki Rules—
were passed at the 71st Conference of the International Law Association (ILA),
August 21, 2004. While the Helsinki Rules and the UN Convention established the
right for each riparian state to a reasonable and equitable share, the Berlin Rules
emphasize the obligation to manage the shared watercourse in an equitable and
reasonable manner (Salman 2007). The term manage is specified in Article 3 (14) of
theBerlinRules and contains the development, use, protection, allocation, regulation,
and control of the waters. In contrast to the former principles, the Berlin rules are
not only valid for international watercourses, but also relevant for national water
sources. Furthermore, the Berlin Rules have downgraded the principle of equitable
and reasonable utilization and have equated this principle with the obligation of not
causing significant harm to other riparians (Salman 2007; Bourne 2004).

3. The weight to be given to each factor is to be determined by its importance in comparison with
that of other relevant factors. In determiningwhat is a reasonable and equitable share, all relevant
factors are to be considered together and a conclusion is reached on the basis of the whole.

4This convention entered into force when the minimum quorum for ratification was reached on
August 17, 2014, after Vietnam signed the ratification document as the 35th state.
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6.2 Benefit Sharing BetweenTwo Riparians

6.2.1 Principles of Benefit Sharing

In Sect. 3.7, we have analyzed the IWRM approach for water allocation along rivers
in which the generated benefit in the entire basin was maximized. However, this
analysis ignores the fact that generated benefits could be arbitrarily assigned between
the riparians by realizing side payments between the riparians. This question about
an efficient and incentive-compatible assignment of the basin’s benefit is the main
focus of the benefit sharing problem.5

In this section, we focus on the case with just two riparians at an international
water body. This is quite common, as themajority of international rivers are shared by
just two riparian states (De Stefano et al. 2012). There exist two possible cooperation
scenarios in such a basin:

• Either the riparians act unilaterally in a noncooperative way where they maximize
their individual benefit from water usage,

• or they form a joint arrangement where they act in a cooperative manner which
means that both riparians consume the water in such a way that the common
benefit in the entire basin is maximized.6

If both states act in a noncooperative manner, country 1 diverts the amount wNC
1

and generates the benefit B1(wNC
1 ), while country 2 receives the water amount wNC

2
and generates the benefit B2(wNC

2 ). Thus, the benefit generated in the entire basin is
B1(wNC

1 ) + B2(wNC
2 ).

However, if both riparians make an agreement where they act and share the water
in a cooperative manner, we assume that states 1 and 2 receive the water amount wC

1
and wC

2 , respectively. The resulting benefit in the entire basin is B1(wC
1 ) + B2(wC

2 ).
The cooperation gain Δ is the additionally generated benefit in the entire basin
compared to the noncooperation scenario (see (6.1)):

Δ = B1(w
C
1 ) + B2(w

C
2 ) − B1(w

NC
1 ) − B2(w

NC
2 ) (6.1)

From an economic perspective, there is only an incentive for forming a joint arrange-
ment if the cooperation gain is positive (Δ > 0), which means

B1(w
C
1 ) + B2(w

C
2 ) > B1(w

NC
1 ) + B2(w

NC
2 ) (6.2)

The generated benefit from consumption B1(wC
1 ) and B2(wC

2 ) results from the opti-
mal water allocation in the joint arrangement. However, the assignment of benefit to

5In this context, incentive compatible means that each riparian has an incentive for realizing the
social-optimal solution.
6A joint arrangement is only achievable if both riparians are willing to form a joint arrangement
where they cooperate. However otherwise, if one or both riparians do not want to form a joint
arrangement, both riparians act unilaterally in a noncooperative way.
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the riparians is the focus of benefit sharing problems. The benefit of each riparian is
not only affected by the benefit from consumption, but also by side payments paid
or received.7

The benefit of the riparians 1 and 2 in a joint arrangementwhich are represented by
the variables x1 and x2 results, therefore, from the benefit of consumption (B1(wC

1 )

and B2(wC
2 )) and the level of the side payments, with sp1,2 representing the side

payments made by riparian 1, while sp2,1 stands for the side payments made by
riparian 2:

x1 = B1(w
C
1 ) + sp2,1 − sp1,2

x2 = B2(w
C
2 ) + sp1,2 − sp2,1

(6.3)

Of course the assignment of benefits to the riparians has to be equal to the generated
benefit in the joint arrangement which is represented as (6.4)

x1 + x2 = B1(w
C
1 ) + B2(w

C
2 ) (6.4)

A solution in which the sum of the assigned benefits exceeds the total generated
benefits in the joint arrangement (x1 + x2 > B1(wC

1 ) + B2(wC
2 )) is not realizable

and would therefore violate the feasibility condition. However, the contrary case
in which the sum of assigned benefits falls below the total generated benefits (x1 +
x2 < B1(wC

1 ) + B2(wC
2 )) is Pareto-inefficient andwould therefore violate thePareto-

efficiency condition. The determination of the assigned benefits to the riparians in a
joint arrangement is the main focus of the benefit sharing problem.

If we assume that side payments are made by just one riparian, it is possible
to derive from Eq. (6.3) that riparian 1 has to make side payments if its assigned
benefit x1 falls below its benefit from consumption B1(wC

1 ), while similarly, riparian
2 has to make side payments if its assigned benefit x2 falls below its benefit from
consumption B2(wC

2 ). The level of the side payments results from the difference
between the assigned benefits (x1 and x2) and the benefit from consumption (B1(wC

1 )

and B2(wC
2 )) (see Eq.6.5).

If: x1 < B1(w
C
1 ) ⇔ x2 > B2(w

C
2 ) then: sp1,2 = B1(w

C
1 ) − x1 = x2 − B2(w

C
2 )

If: x1 > B1(w
C
1 ) ⇔ x2 < B2(w

C
2 ) then: sp2,1 = x1 − B1(w

C
1 ) = B2(w

C
2 ) − x2

(6.5)

In a cooperative arrangement, the riparians have to receive at least the benefit
which they would have gained if they acted unilaterally. This requirement is also
known as individual rationality, which has the following algebraic formulation:

x1 ≥ B1(w
NC
1 )

x2 ≥ B2(w
NC
2 )

(6.6)

7Side payments are payment transactions between the riparians; the side payment is beneficial for
the receiving riparian, while it is a financial burden for the paying one.
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A riparian whose individual rationality condition is not met has an incentive to leave
the joint arrangement and act in a noncooperative way.

Hence, due to the feasibility and Pareto-optimality conditions (see Eq. (6.4)) as
well as the individual rationality condition (see Eq. (6.6)), sharing of the cooperation
gain Δ is the main focus of the benefit sharing problem with two riparians.

6.2.2 UID,DID and the Shapley Solution

There are two extreme solutions for assigning the cooperation gain to the riparians,
either the first or the second riparian receives the entire cooperation gain. Assuming
riparian 1 is the upstream and riparian 2 is the downstream riparian, it is possible to
distinguish between two extreme scenarios regarding the allocation of the coopera-
tion gain:

• Upstream incremental distribution (UID): When applying the UID approach,
the cooperation gain is completely assigned to the upstream riparian 1, while the
downstream riparian 2 just gets enough benefit to meet its individual rationality
condition:

xU I D
1 = B1(w

NC
1 ) + Δ

xU I D
2 = B2(w

NC
2 )

(6.7)

If we assume that either riparian 1 makes side payments (sp1,2 > 0 ∧ sp2,1 = 0)
which is the case if xU I D

1 < B1(wC
1 ) or riparian 2 makes side payments (sp2,1 >

0 ∧ sp1,2 = 0) which is the case if xU I D
2 < B2(wC

1 ), it is possible to determine
the level of side payments:

sp1,2 =

⎧
⎪⎨

⎪⎩

B1(wC
1 ) − B1(wNC

1 ) − Δ = B2(wNC
2 ) − B2(wC

2 ) if: xU I D
1 < B1(wC

1 ) ⇔ xU I D
2 > B2(wC

2 )

0 if: xU I D
1 ≥ B1(wC

1 ) ⇔ xU I D
2 ≤ B2(wC

2 )

p2,1 =

⎧
⎪⎨

⎪⎩

B1(wNC
1 ) + Δ − B1(wC

1 ) = B2(wC
2 ) − B2(wNC

2 ) if: xU I D
1 > B1(wC

1 ) ⇔ xU I D
2 < B2(wC

2 )

0 if: xU I D
1 ≤ B1(wC

1 ) ⇔ xU I D
2 ≥ B2(wC

2 )

(6.8)

• Downstream incremental distribution (DID): In the DID approach, the cooper-
ation gain Δ is completely assigned to the downstream riparian 2. The upstream
riparian 1 receives benefit, such that its individual rationality condition is fulfilled.

xDI D
1 = B1(w

NC
1 )

xDI D
2 = B2(w

NC
2 ) + Δ

(6.9)
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Hence, the following side payments result:

p1,2 =
{
B1(w

C
1 ) − B1(w

NC
1 ) = B2(w

NC
2 ) + Δ − B2(w

C
2 ) if: xDI D

1 < B1(w
C
1 ) ⇔ xDI D

2 > B2(w
C
2 )

0 if: xDI D
1 ≥ B1(w

C
1 ) ⇔ xDI D

2 ≤ B2(w
C
2 )

p2,1 =
{
B1(w

NC
1 ) − B1(w

C
1 ) = B2(w

C
2 ) − B2(w

NC
2 ) − Δ if: xDI D

1 > B1(w
C
1 ) ⇔ xDI D

2 < B2(w
C
2 )

0 if: xDI D
1 ≤ B1(w

C
1 ) ⇔ xDI D

2 ≥ B2(w
C
2 )

(6.10)

Based on these two extreme cases, it is possible to find all possible realizations
for x1 and x2 for the benefit sharing problem based on the linear combination of the
extreme scenarios (see Eq.6.11):

x1 = β · xU I D
1 + (1 − β) · xDI D

1 ⇔ x1 = B1(w
NC
1 ) + β · Δ

x2 = β · xU I D
2 + (1 − β) · xDI D

2 ⇔ x2 = B2(w
NC
2 ) + (1 − β) · Δ

with: 0 ≤ β ≤ 1

(6.11)

The value of parameter β is defined within the range [0, 1]. It becomes obvious from
Eq.6.11 that we get the UID or DID solution if β is set equal to 0 or 1, respectively.
The higher the value of β, the more advantageous the benefit sharing solution for the
upstream user 1, while the profit for the downstream user 2 raises with a decreasing
value of β.

A further specific case is the determination of β with β = 0.5 which means
that each riparian receives half of the cooperation gain. This solution results from
applying the Shapley value approach for the case with two riparians (Shapley 1953).
Therefore, this could be termed the Shapley solution. The Shapley solutions for x SH1
and x SH2 are

x SH1 = B1(w
NC
1 ) + 0.5 · Δ

x SH2 = B2(w
NC
2 ) + 0.5 · Δ

(6.12)

For this Shapley solution, the following side payments result on the basis of Eqs. 6.5
and 6.12:

sp1,2 =
{
B1(w

C
1 ) − B1(w

NC
1 ) − 0.5 · Δ = B2(w

NC
2 ) + 0.5 · Δ − B2(w

C
2 ) if: x SH1 < B1(w

C
1 ) ⇔ x SH2 > B2(w

C
2 )

0 if: x SH1 ≥ B1(w
C
1 ) ⇔ x SH2 ≤ B2(w

C
2 )

sp2,1 =
{
B1(w

NC
1 ) − B1(w

C
1 ) + 0.5 · Δ = B2(w

C
2 ) − B2(w

NC
2 ) − 0.5 · Δ if: x SH1 > B1(w

C
1 ) ⇔ x SH2 < B2(w

C
2 )

0 if: x SH1 ≤ B1(w
C
1 ) ⇔ x SH2 ≥ B2(w

C
2 )

(6.13)

The benefit sharing problem in a basin with two riparians is also illustrated by
Fig. 6.1. We draw riparian 1’s assigned benefit (x1) on the horizontal axis (abscissa),
while the benefit of riparian 2 is illustrated on the vertical axis (ordinate). The benefits
of the riparians 1 and 2 when acting unilaterally in a noncooperative way (B1(wNC

1 )

and B2(wNC
2 )) are pictured in this graph by the vertical and horizontal functions,

respectively. In this diagram, these two functions have the algebraic expression: x1 =
B1(wNC

1 ) and x2 = B2(wNC
2 ). The benefit generated in the basin when both riparians
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Fig. 6.1 Benefit sharing in a basin with two riparians. Source own illustration

form a joint arrangement is illustrated by the monotonous-decreasing diagonal line.
In this diagram, the function has the algebraic expression: x2 = B1(wC

1 ) + B2(wC
2 ) −

x1 due to Eq.6.4. This means the higher the assignment of benefits to riparian 1, the
lower the assignment to riparian 2 and vice versa. For meeting the feasibility and
Pareto-efficiency conditions, the benefit sharing solution has to be located on the
function.8

The function x2 = B1(wC
1 ) + B2(wC

2 ) − x1 intersects with the horizontal and
vertical axes at the level B1(wC

1 ) + B2(wC
2 ). These points can be interpreted as

the full assignment of the basin’s benefit to just one riparian. Of course, these
two benefit sharing solutions would meet the feasibility and Pareto-efficiency con-
ditions, but would fail the individual rationality condition which states that the
assignment of benefits to each riparian must be as high as the benefit the riparians
would generate if they acted unilaterally in a noncooperative manner, which means
x1 ≥ B1(wNC

1 ) and x2 ≥ B2(wNC
2 ) (see Eq.6.6). Therefore, for meeting the individ-

ual rationality condition, the UID solution with x1 = xU I D
1 = B1(wNC

1 ) + Δ and
x2 = xU I D

2 = B2(wNC
2 ) limits the assigned benefit to the upstream riparian 1 to the

maximum level B1(wNC
1 ) + Δ, while theDID solutionwith x1 = xDI D

1 = B1(wNC
1 )

and x2 = xDI D
2 = B2(wNC

2 ) + Δ determines the maximum possible assigned ben-
efit for riparian 2 to the level B2(wNC

2 ) + Δ. Therefore, the solutions which are on

8A solution which is located in between the area which is spanned by the axis and the function
x2 = B1(wC

1 ) + B2(wC
2 ) − x1 would fail the Pareto-efficiency condition, because fewer benefits are

allocated than generated, while a solution beyond the function x2 = B1(wC
1 ) + B2(wC

2 ) − x1 would
fail the feasibility condition, because more benefits are allocated to the riparians than generated.
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the function x2 = B1(wC
1 ) + B2(wC

2 ) − x1 and which are in between the UID and
DID solution, which means B1(wNC

1 ) ≤ x1 ≤ B1(wNC
1 ) + Δ and B2(wNC

2 ) ≤ x2 ≤
B2(wNC

2 ) + Δ, form the set of solutions for the benefit sharing problem with two
riparians.

A specific focal point solution of this benefit sharing problem is the Shapley solu-
tion with x1 = x SH1 = B1(wNC

1 ) + 0.5 · Δ and x2 = x SH2 = B2(wNC
2 ) + 0.5 · Δ.

This solution could be found in Fig. 6.1 at the intersection point between the
monotonous-decreasing diagonal function x2 = B1(wC

1 ) + B2(wC
2 ) − x1 and the

45◦-degree line whose origin is at the intersection of the vertical and horizontal
lines that represent the benefit for noncooperative acting riparians x1 = B1(wNC

1 )

and x2 = B2(wNC
1 ).

6.3 Benefit Sharing BetweenMore ThanTwo Riparians

In this section, we focus on methods to allocate the generated benefits in a basin with
more than two riparians.9

6.3.1 Model of a River Basin

6.3.1.1 Superadditivity Condition
If the solution of the allocation problem is beneficial for all riparians, they have
an incentive to form a cooperation scheme where they decide together about water
management plans, water allocation strategies, and the allotment of benefits. An
important condition for forming joint arrangements is the superadditivity of benefits
which can be expressed by the following relation:

V (S) + V (T ) ≤ V (S ∪ T ) with: S ∩ T = ∅ (6.14)

The sets S and T stand for coalitions where participants, which are represented by
elements of these sets, act in a cooperative manner. The sets could contain just one
element or a multitude of elements. If the set S or T contains just one element,
the corresponding riparian is not participating in a joint arrangement and, therefore,
acts unilaterally in a noncooperative manner. However, if there are a multitude of
elements in the set, the corresponding riparians act together in a sub-coalition. For
the analysis of superadditivity, one riparian cannot be part of both sets S and T , hence
S ∩ T = ∅. In the case of a grand coalition, all riparians act in one joint arrangement,
whichmeans that the union set S ∪ T would contain all riparians.10 The V (...) stands
for the benefit which can be generated in the respective coalition, therefore, it is the

9The chapter-annex (Sect. 6.9) provides a full account to the mathematical derivations.
10The grand coalition cannot be represented by S or T , while a unilaterally acting player can not
be represented by S ∪ T . Sub-coalitions can be represented by S, T as well as by S ∪ T .
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value of the coalition. The superadditivity condition (6.14) states that the value of a
joint arrangement between the sub-coalitions S and T must be at least as high as the
sum of values of arrangements S and T .

If the superadditivity condition is fulfilled, the additional benefit due to the joining
of S and T to a mutual arrangement can be expressed by the following equation:

V (S ∪ T ) − V (S) − V (T ) (6.15)

If the superadditivity condition holds for all cooperation arrangements, the highest
benefits for the entire basin can be generated by forming the grand coalition.11

Finally, for finding adequate solutions for sharing the benefit between the riparians
of a coalition, methods from cooperative game theory can be applied.12

6.3.1.2 General Procedure for Solving a Benefit Sharing Problem
For solving the benefit sharing problemwithin a river basin, the first step is to set up a
model of the river containing the riparians, their benefit and cost functions as well as
the main hydrological conditions such as natural external inflows into the river and
the flow direction. Afterwards, various options for cooperation in the river basin are
addressed. Every riparian has the option either to cooperate and form an arrangement
with other riparians, or not to cooperate and act unilaterally. Therefore, it is usually
possible to form either one joint arrangement (grand coalition), or to arrange different
forms of sub-coalitions between selected riparians. Further, it is also possible that
no arrangement occurs in the basin, so that every riparian acts unilaterally. These
different options of cooperation are quantified by calculating the joint benefit within
the cooperation arrangement and by finding the individual benefit of each unilaterally
acting riparian for any cooperation scenario. Finally, it is important to find a way
to allocate the benefit generated in a joint arrangement between the participating
riparians.

For this benefit sharing issue, various techniques from cooperative game theory
can be applied. In this context, we focus on the concept of the core which gives a set
of possible solutions to the question of how to share the benefit of a joint arrange-
ment between its member riparians. Based on this, the bargaining power of each
riparian can be found. While the core gives a set of possible solutions, there also

11In this textbook, we focus on sharing benefits. However, if there is a cost game (e.g., realizing
a dam project under different coalition scenarios), the subadditivity condition has to be fulfilled
which can be expressed by the following formulation:

C(S) + C(T ) ≥ C(S ∪ T ) with: S ∩ T = ∅
The C(...) represents the cost for the related coalition. The subadditivity condition means that the
cost under a cooperative arrangement between coalition S and T must not exceed the sum of costs if
coalition S and T act separately. If this subadditivity condition is fulfilled for all coalition scenarios,
the lowest cost is caused by forming the grand coalition.
12In contrast to the concepts of noncooperative game theorywhich aremore popular in the economic
literature, interaction and payments between the relevant actors are possible in cooperative game
theory.
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Fig. 6.2 Network of a
hypothetical river basin.
Source own illustration

exist focal point solution concepts for calculating concrete results for sharing the
benefit: We focus on the concept of the Shapley value, the Nash-Harsanyi solution,
and the nucleolus. The Shapley value allocates the benefits according to the strength
of each player in the joint arrangement, while the Nash-Harsanyi solution maximizes
the additional utility from cooperation in a joint arrangement compared to the non-
cooperative case for each riparian. The nucleolus is a procedure for minimizing the
maximum objection against the benefit sharing solution. Finally, parameters indicat-
ing the acceptability of a benefit sharing solution can be calculated. Nonacceptance
of a solution results if one riparian views its payoff as unfair against the payoff of
other players in the coalition. The higher the nonacceptance, the higher the risk that
the unsatisfied player will leave the coalition.

The procedure which was explained for the general case above is now applied to a
hypothetical river basin whose water is shared by three riparians. We assume a river
basin (see Fig. 6.2) which consists of upstream, midstream, and downstream ripari-
ans, represented by index i with i = {1, 2, 3}. The river is fed by an inflow upstream
of the first user; there are no other external inflows. By consuming thewater, the ripar-
ians generate benefits. Assuming a constant marginal benefit, the benefit increases
linearly with increasing consumption. If the available water amounts are consumed
completely by the upstream or midstream or downstream user, the generated benefit
is α or β or γ , respectively. Furthermore, we suppose the relation α < β < γ , which
means that the upstream riparian is the least productive one while the downstream
user is the most productive one. Backflows to the river after withdrawing and con-
suming do not occur for this hypothetical case, hence the consumption of water is
completely rivalrous. Furthermore, there are no limitations regarding the access to
and extraction of water.

Options of Cooperation
For the hypothetical river network, there are different options of cooperation:

• All riparians act unilaterally which means that an arrangement in the river basin
does not exist. The set which states the occurring coalition is, therefore, an empty
set, ∅. The unilateral acting of riparians is stated with sets which just contain one
element. This means if riparians 1, 2, and 3 act unilaterally, this is stated by the
formulation {1}, {2}, and {3}, respectively.
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Table 6.1 Generated benefits for different cooperation scenarios

Coalition Benefit for ...

Non-cooperating Coalition Entire
Basin

{1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
∅ α 0 0 – – – - α

{1, 2} – – 0 β – – – β

{1, 3} – 0 – – α – – α

{2, 3} α – – – – 0 – α

{1, 2, 3} – – – – – – γ γ

• Two of three actors cooperate with each other. Hence, the following arrangements
between the riparians are possible: {1, 2}, {1, 3}, and {2, 3}. The residual riparian
that is not a member of the coalition acts unilaterally.

• All actors cooperate in one joint arrangement and thus form a grand coalition,
which is symbolized by {1, 2, 3}.

Value of Coalitions
For the different options of cooperations, different levels of generated benefits can
be found which are summarized in Table6.1.

If no arrangement is formed between the riparians, the available water is com-
pletely consumed by the upstream user who is able to generate a benefit α. Further,
downstream users do not receive any amount of water from the river and therefore
cannot generate any benefit. The same water consumption pattern in the basin is also
observable, if the mid- and downstream riparians form a coalition {2, 3} without the
upstream user.13 However, if the up- and downstream users arrange a cooperation
without themidstream riparian, {1, 3}, there seems to be an incentive for the upstream
one to leave water in the river, because the downstream riparian could generate the
highest benefit for the coalition. However, the intermediatemidstream riparianwould
seize the full amount of water, which is also known as leakage. (Ansink et al. 2012)
This reaction of the midstream is anticipated by the upstream, hence the upstream
would withdraw the total amount of water to maximize the benefit for the formed
coalition. The generated benefit for the coalition would be α, while the midstream
does not receive any amount of water.

If all the riparians form a joint cooperative arrangement, {1, 2, 3}, the upstream
and midstream leave the total amount of water in the river, hence the downstream
user is the only one who uses the water and is able to generate a benefit of γ for the
grand coalition.

13This means that for the coalition {2, 3}, the same situation occurs as for the case that all riparians
act unilaterally. The total amount of water is consumed by the upstream user who generates a benefit
of α. The coalition of the mid- and downstream users {2, 3} does not receive any amount of water
and gets a benefit of 0.
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Superadditivity Conditions
For the presented case, the superadditivity condition holds for all cooperation sce-
narios:

V ({1})
︸ ︷︷ ︸

=α

+ V ({2})
︸ ︷︷ ︸

=0

≤ V ({1, 2})
︸ ︷︷ ︸

=β

→ α ≤ β �

V ({1})
︸ ︷︷ ︸

=α

+ V ({3})
︸ ︷︷ ︸

=0

≤ V ({1, 3})
︸ ︷︷ ︸

=α

→ α ≤ α �

V ({2})
︸ ︷︷ ︸

=0

+ V ({3})
︸ ︷︷ ︸

=0

≤ V ({2, 3})
︸ ︷︷ ︸

=0

→ 0 ≤ 0 �

V ({1})
︸ ︷︷ ︸

=α

+ V ({2})
︸ ︷︷ ︸

=0

+ V ({3})
︸ ︷︷ ︸

=0

≤ V ({1, 2, 3})
︸ ︷︷ ︸

=γ

→ α ≤ γ �

V ({1, 2})
︸ ︷︷ ︸

=β

+ V ({3})
︸ ︷︷ ︸

=0

≤ V ({1, 2, 3})
︸ ︷︷ ︸

=γ

→ β ≤ γ �

V ({1, 3})
︸ ︷︷ ︸

=α

+ V ({2})
︸ ︷︷ ︸

=0

≤ V ({1, 2, 3})
︸ ︷︷ ︸

=γ

→ α ≤ γ �

V ({1})
︸ ︷︷ ︸

=α

+ V ({2, 3})
︸ ︷︷ ︸

=0

≤ V ({1, 2, 3})
︸ ︷︷ ︸

=γ

→ α ≤ γ �

Due to this fulfillment of the superadditivity condition, the grand coalition is the
best option in order to maximize the total benefit in the entire basin. The result is
also visible from the rightmost column of Table 6.1, which illustrates the aggregated
benefit in the river basin for all possible cooperation scenarios.

Sharing the Benefits
After forming the grand coalition, the generated benefit with the level of γ has
to be shared between all riparians. For this bargaining problem, different methods
from cooperative game theory are available such as the core or various focal point
solutions, for instance, the Shapley value, the Nash-Harsanyi solution as well as
the nucleolus. For this analysis, the sets I , S, and G are defined. I contains as set
elements those riparians which act unilaterally in a noncooperative way. Therefore,
the value of the characteristic function for the set I , being V (I ), is based either on the
benefits for the non-cooperating case in the entire river basin (see line ∅ of Tables6.1
and 6.2) or on the minimum benefit which is gained under all coalition scenarios in
which the relevant riparian is not a member (see Table 6.2).

Regardless of the applied approach, both procedures result in the same solution for
this example. In the unilateral acting case, riparian 1 generates a benefit of α, while
riparians 2 and 3 are not able to divert any water amounts and generate, therefore,
a benefit of 0. The set S represents all possible sub-coalitions, which means that
a cooperative scheme is formed between 2 or more riparians but does not contain
all riparians of the basin. For the presented example, the three tuples {1, 2}, {1, 3},
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Table 6.2 Generated benefits of unilaterally acting riparians for different cooperation scenarios

Coalition Benefit for ...

Non-cooperating

{1} {2} {3}
∅ α 0 0

{1, 2} – – 0

{1, 3} – 0 –

{2, 3} α – –

MINIMUM α 0 0

Table 6.3 Value of cooperations

V (I ) V (S) V (G)

V ({1}) V ({2}) V ({3}) V ({1, 2}) V ({1, 3}) V ({2, 3}) V ({1, 2, 3})
α 0 0 β α 0 γ

and {2, 3} form the set S. However, the set G stands for the grand coalition, which
means that all riparians of the basin form a coalition. For the presented example,
the riparians 1, 2, and 3 would form a common cooperative scheme, hence the tuple
{1, 2, 3} is element of the set G. The characteristic functions of the cooperation
scenarios, V (I ), V (S), and V (G), are based on the analysis concluded in Table 6.1
and are listed in Table6.3.

The grand coalition is the optimal coalition due to the fulfillment of the super-
additivity condition. Therefore, we assume that a grand coalition is formed and the
basin’s benefit of γ has to be shared between the riparians. The payoff (or imputa-
tion)14 that each riparian i receives is symbolized by the variable xi in the following.
All the variables xi develop the vector x , which contains for the presented example:

x =
⎛

⎝
x1
x2
x3

⎞

⎠. The determination of x is the main focus of the benefit sharing problem.

6.3.2 Benefit Sharing in the Grand Coalition: Four Approaches

6.3.2.1 The Core
The core is a set of payoffs which meets the four following conditions (Gillies 1959):

• Feasibility: Only benefits which are received can be allocated, which means∑
i [xi ] ≤ V (G).

14The term imputation is used as a synonym of the term payoff.
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• Pareto-efficiency:Nobody’s payoff can be improvedwithoutworsening the payoff
of another riparian. Therefore, there must not be an under-allocation of the gained
benefits to the riparians,

∑
i [xi ] ≥ V (G).

• Combining the feasibility and Pareto-efficiency conditions leads to the require-
ment that the allocated benefits are equal to the generated benefits,

∑
i [xi ] =

V (G).
• Individual rationality: Each riparian rejects a payoff which is below its benefit

when acting in a noncooperative way. Hence, xi ≥ V (I ). If this condition does
not hold, the riparian would have an incentive to leave the grand coalition and to
act unilaterally.

• Group rationality: Each sub-coalition of the grand coalition rejects a payoff which
is below the benefit which is gained when the riparians act in a sub-coalition.
Hence,

∑
i∈S [xi ] ≥ V (S). If this condition is not met, the relevant riparians i ∈ S

would have an incentive to leave the grand coalition and form the sub-coalition
S.

Based on the presented example, it can be indicated whether the core is empty and
has no solution (Z < 0), or there is only one solution (Z = 0) or there is a multitude
of solutions (Z > 0) by solving the following optimization problem:

max [Z = V ({1, 2, 3}) − [x1 + x2 + x3]]

x1 ≥ V ({1}) , x2 ≥ V ({2}) , x3 ≥ V ({3})
[x1 + x2] ≥ V ({1, 2}) , [x1 + x3] ≥ V ({1, 3}) , [x2 + x3] ≥ V ({2, 3})

which is equivalent to the following formulation:

max
[
Z = γ − [x1 + x2 + x3]

]

x1 ≥ α , x2 ≥ 0 , x3 ≥ 0

[x1 + x2] ≥ β , [x1 + x3] ≥ α , [x2 + x3] ≥ 0

Here, it is possible to calculate Z = γ − β > 0, hence, there are various payoff
combinations which fulfill the conditions of the core.

Based on the core, the range of payoffs for each riparian can be indicated. There
exists a lower bound and an upper bound for each riparian in the core:

• The riparian does not have an incentive to stay in the coalition until its payoff
falls below the lower bound.

• However, if the payoff of an riparian exceeds its upper bound, another riparian
certainly has an incentive to leave the coalition.

The lower and upper bounds of each player can be derived by solving the following
optimization problems:

Lower Bound or Upper Bound of riparian i :
min [xi ] or max [xi ]

s.t . [x1 + x2 + x3] = V ({1, 2, 3})
x1 ≥ V ({1}) , x2 ≥ V ({2}) , x3 ≥ V ({3})
[x1 + x2] ≥ V ({1, 2}) , [x1 + x3] ≥ V ({1, 3}) , [x2 + x3] ≥ V ({2, 3})
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Table 6.4 Lower and upper bounds of payments which are in the core

Riparian Lower bound Upper bound

Upstream riparian (User 1) α γ

Midstream riparian (User 2) 0 γ − α

Downstream riparian (User 3) 0 γ − β

which is, for the presented river basin example, equivalent to the following formu-
lation:

Lower Bound of riparian i : Upper Bound of riparian i :
min [xi ] max [xi ]

s.t . [x1 + x2 + x3] = γ s.t . [x1 + x2 + x3] = γ

x1 ≥ α , x2 ≥ 0 , x3 ≥ 0 x1 ≥ α , x2 ≥ 0 , x3 ≥ 0

[x1 + x2] ≥ β , [x1 + x3] ≥ α , [x2 + x3] ≥ 0 [x1 + x2] ≥ β , [x1 + x3] ≥ α , [x2 + x3] ≥ 0

The objective contains the payment of the considered riparian i , which has to be
minimized or maximized for finding the lower or upper bound of the core, respec-
tively. The constraints of the optimization problem contain the conditions that have
to be fullfilled for a payoff to be in the core:

• Feasibility and pareto-efficiency, [x1 + x2 + x3] = γ ;
• individual rationality, x1 ≥ α , x2 ≥ 0 , x3 ≥ 0;
• and group rationality, [x1 + x2] ≥ β , [x1 + x3] ≥ α , [x2 + x3] ≥ 0.

For the presented example, the lower and upper bounds of payments are listed in
Table 6.4.

The lower bound of the riparians is determined by their individual rationalities.
Therefore, the upstream user has to receive at least a payment of α, while the lower
bounds of the mid- and downstream users are determined at the value 0.

Regarding the upper bound of payments, the upstreamuser could postulate a claim
for the total generated benefits γ , because all constellations without the upstream
user generate a benefit of zero,

xCore1 = min [γ − V ({2})
︸ ︷︷ ︸

0

, γ − V ({3})
︸ ︷︷ ︸

0

, γ − V ({2, 3})
︸ ︷︷ ︸

0

] = γ .

However, due to the fact that the upstream user must receive at least a payment
of α, the midstream user could get a maximal payment of γ − α,

xCore2 = min [γ − V ({1})
︸ ︷︷ ︸

α

, γ − V ({3})
︸ ︷︷ ︸

0

, γ − V ({1, 3})
︸ ︷︷ ︸

α

] = γ − α .

The downstream riparian cannot claimmore than γ − β, because of the threat that
the up- and midstream riparians can form a sub-coalition {1, 2} where they would
generate a benefit of β,
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xCore3 = min [γ − V ({1})
︸ ︷︷ ︸

α

, γ − V ({2})
︸ ︷︷ ︸

0

, γ − V ({1, 2})
︸ ︷︷ ︸

β

] = γ − β .

To sum up, the concept of the core gives a set of possible payments, which
meets the feasibility, Pareto-efficiency, individual and group rationality conditions.
By considering these conditions, a proposed payment which is in the core provides
an incentive for each riparian to join the grand coalition. However, the core may be
impractical in practice, because of the large amounts of possible solutions. There-
fore, it might be advantagous to use focal point solution concepts for calculating a
concrete payment vector x .

6.3.2.2 The ShapleyValue
The Shapley Value which is based on Shapley (1953) shares the benefits in terms of
the incremental value of the respective player for the coalition. The solution can be
calculated using Eq.6.16:

xi =
∑

I : i ∈ I ∨
S : i ∈ S ∨

G

[
(#G − #I SG)! · (#I SG − 1)!

#G! · [V (...) − V (... − i)]

]

(6.16)

The #I SG sign in Eq. (6.16) represents the number of riparians which form a coali-
tion. These coalition scenarios can be

• unilaterally acting riparians, represented by set I with I = {{1} ; {2} ; {3} };
• sub-coalitions, represented by set S with S = {{1, 2} ; {1, 3} ; {2, 3} };
• the grand coalition, which is represented by set G with S = {{1, 2, 3}}.

We already discussed that the set I stands for unilaterally acting riparians which
act in a noncooperative way. Therefore, the set I contains the tuples: {1}, {2}, and
{3}. There is just one element in these tuples, hence, #I SG = 1 for these types
of coalition scenario. The set S stands for the sub-coalitions which represent all
coalitions between the riparians except the grand coalition. Therefore, the tuples
{1, 2}, {1, 3}, and {2, 3} form the set S. It is obvious that there are two riparians which
form a sub-coalition, hence, #I SG = 2 for all sub-coalition-constellations. In case
of a grand coalitionG, all riparians of the basin form a common cooperation scheme,
which means that the tuple {1, 2, 3} is an element of set G. This coalition includes
three riparians, hence #I SG = 3. Furthermore, the parameter #G also represents the
number of riparians in the grand coalition, hence #G = 3.

Due to the formulation
∑

I : i ∈ I ∨
S : i ∈ S ∨

G

[...] in Eq. (6.16), only those coalitions are

addressed in which riparian i is a member. These involve the unilateral action situ-
ation for riparian i (i ∈ I ), appropriated sub-coalitions (i ∈ S) as well as the grand
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coalition (G). Therefore, the following constellations are relevant for solving the
Shapley solution of the riparians:

• Riparian 1: {1}, {1, 2}, {1, 3}, {1, 2, 3}
• Riparian 2: {2}, {1, 2}, {2, 3}, {1, 2, 3}
• Riparian 3: {3}, {1, 3}, {2, 3}, {1, 2, 3}

The term
(#G − #I SG)! · (#I SG − 1)!

#G! in Eq. (6.16) is a weighting factor which

comes frommathematical permutation, based on the normative assumption that every
player in the coalitions is randomly ordered, with every ordering equally possible
(Wu and Whittington 2006).

The term V (...) in Eq. (6.16) represents the generated benefit for the addressed
coalition, while V (... − i) symbolizes the benefit of the coalition which is formed on
the basis of the addressed coalition without the riparian i . Therefore, the difference
V (...) − V (... − i) could be interpreted as the incremental benefit of riparian i for
the coalition.

The application of Eq.6.16 for the presented simple example is concluded in Table
6.5. Because of the three users (upstream, midstream, and downstream), it becomes
obvious that #G = 3. Regarding riparian 1, there is the realization probability of 1

3
each that this riparian acts unilaterally or works in a grand coalition. Furthermore,
there exists the realization probability of 1

6 each that riparian 1 forms a sub-coalition
either just with riparian 2 or 3 (see column (IV) of Table 6.5). If we observe the
cooperation scenarios {1}, {1, 2}, {1, 3}, and {1, 2, 3}, the benefits α, β, α, and γ

could be generated in the coalition scenarios, respectively (see column (V) of Table
6.5). A coalitionwithout the unilaterally acting riparian 1, does not exist and therefore
generates a benefit of 0. The coalitions {1, 2}, {1, 3}, and {1, 2, 3} without riparian
1 result in the coalition constellations {2}, {3}, and {2, 3} (see column (VI) of Table
6.5) which are each characterized by the generated benefit of 0 (see column (VII) of
Table 6.5). Hence, the incremental benefit of riparian 1 for the coalitions {1}, {1, 2},
{1, 3}, and {1, 2, 3} is α, β, α, and γ , respectively, which can also be found as the
difference between the columns (V) and (VII) of Table 6.5 (see column (VIII) of
Table 6.5). The incremental benefit of riparian 1 for each coalition scenario has to
be multiplied with the realization probability of each coalition scenario, which can
be found by the product of columns (IV) and (VIII) in Table 6.5 (see column (IX) in
Table 6.5). By summing up all these weighted incremental benefits of riparian 1, we
get the Shapley solution of riparian 1 which is 3·α+β+2·γ

6 .
This procedure could be applied for riparians 2 and 3, analogously.
Therefore, it is possible to formulate the following payment vector as the focal

point solution for the bargaining problem:

x SH = (
x SH1 x SH2 x SH3

) =
(
3·α+β+2·γ

6
β+2·γ−3·α

6
γ−β
3

)
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It becomes obvious that

x SH1 > x SH2 > x SH3

which means that the upstream riparian 1 receives the highest benefits, while the
downstream riparian receives the lowest payoffs, which is reasoned by the hydrolog-
ical power of the respective riparians. Themore upstream the riparian is located in the
basin, the earlier the riparian is able to abstract (or control the water amounts), which
makes an upstream riparian more (hydrological) powerful than the downstream one.
For instance, a coalition with just riparians 2 and 3 generates a benefit of 0. When
riparian 1 joins this arrangement, which means that the grand coalition would be
formed, it would generate the benefit of γ . Therefore, the incremental benefit of
riparian 1 for this coalition is γ . The upstream riparian receives a higher proportion
of the generated benefit than the downstream riparian.

6.3.2.3 The Nash-Harsanyi Solution
The Nash-Harsanyi solution maximizes the product of assigned benefits in excess
to the benefits generated in the noncooperative case (Harsanyi 1958). Furthermore,
the feasibility, Pareto-efficiency, individual rationality, and group rationality are also
addressed, hence it is guaranteed that the solution is within the core. Therefore, the
following general optimization problem can be formulated for finding the Nash-
Harsanyi solution:

max

[
∏

i

(xi − V (I ))

]

s.t .
∑

i

[xi ] = V (G) (Feasibility and Pareto-Efficiency)

xi ≥ V (I ) ∀I (Individual rationality)
∑

i∈S
[xi ] ≥ V (S) ∀S (Group rationality)

which is for the presented river basin example:

max [(x1 − α) · x2 · x3]
s.t . [x1 + x2 + x3] = γ (Feasibility and Pareto-efficiency)

x1 ≥ α , x2 ≥ 0 , x3 ≥ 0 (Individual rationality)

x1 + x2 ≥ β , x1 + x3 ≥ α , x2 + x3 ≥ 0 (Group rationality)

When applying this solution procedure for the presented river basin example, the
following optimality conditions can be found:

x2 · x3 = (x1 − α) · x3 = (x1 − α) · x2
x1 + x2 + x3 = γ
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Table 6.6 Additional benefits for Nash-Harsanyi solution in the Grand Coalition for the simple
river basin example

Upstream riparian
(User 1)

Midstream riparian
(User 2)

Downstream riparian
(User 3)

Nash-Harsanyi
solution

1
3 · (2 · α + γ ) 1

3 · (γ − α) 1
3 · (γ − α)

Benefit for
noncooperative acting

α 0 0

Additional benefits in
grand coalition

1
3 · (γ − α) 1

3 · (γ − α) 1
3 · (γ − α)

The equation x2 · x3 = (x1 − α) · x3 = (x1 − α) · x2 can be reformulated to the fol-
lowing expression:

x1 − α = x2 = x3

which is nothing else than

x1 − V ({1}) = x2 − V ({2}) = x3 − V ({3})
Hence, the assigned benefit in excess of the respective noncooperative benefit is equal
for each riparian, which is a typical characteristic of the Nash-Harsanyi solution.
This characteristic results mainly from the objective function of the Nash-Harsanyi
optimization problem.

The concrete Nash-Harsanyi solution of the presented river example is

xNH = (
xNH
1 xNH

2 xNH
3

) = (
1
3 · (2 · α + γ ) 1

3 · (γ − α) 1
3 · (γ − α)

)

Therefore, the additional benefit in the grand coalition compared to the noncoopera-
tive case is the same for every player 1

3 · (γ − α), which is also illustrated by Table
6.6.

For the unilateral acting case, the upstream riparian generates the highest benefit
with the level α, while the mid- and downstream ones do not receive any water and
therefore generate a benefit of 0. Hence, when applying the Nash-Harsanyi solution,
the upstream riparian receives the highest payoffs while the mid- and downstream
users receive equal payoffs:

xNH
1 > xNH

2 = xNH
3

The total benefit in the basin when all riparians act unilaterally is α, because
V ({1}) + V ({2}) + V ({3}) = α, while the basin’s benefit in case of a grand coali-
tion is γ , because V ({1, 2, 3}) = γ . Therefore, the term γ − α can be interpreted as
the cooperation gain in the basin. The Nash-Harsanyi solution shares this coopera-

tion gain equally among the riparians, hence each riparian obtains the benefit
γ − α

3
in excess to those benefits the riparian would generate when acting unilaterally.
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Table 6.7 Objection against the Shapley solution in the Grand Coalition

{1} {2} {3} {1, 2} {1, 3} {2, 3}
Benefit of
Coalition

α 0 0 β α 0

Payoff in
{1, 2, 3}
based on
Shapley
solution

3·α+β+2·γ
6

β+2·γ−3·α
6

γ−β
3

β+2·γ
3

3·α−β+4·γ
6

4·γ−3·α−β
6

Objections
of coalition
against
Shapley
solution

3·α−β−2·γ
6

3·α−β−2·γ
6

β−γ
3

2·β−2·γ
3

3·α+β−4·γ
6

3·α+β−4·γ
6

6.3.2.4 The Nucleolus
The main goal of the nucleolus is to find a solution in which the maximum objection
against a benefit sharing solution is minimized. This concept was first presented by
Schmeidler (1969). The objection of a coalition against a benefit sharing solution
results from the difference between the generated benefit of this coalition (if it was
formed in the basin) and the payoff for this coalition due to the benefit sharing
solution.15

For instance, the objections of the various cooperation constellations against the
Shapley solution in the grand coalition are illustrated in Table 6.7.

The maximum objection against the Shapley solution is therefore

max

[
3 · α − β − 2 · γ

6
; β − γ

3
; 2 · β − 2 · γ

3
; 3 · α + β − 4 · γ

6

]

= β − γ

3

For minimizing the maximum objection under the consideration of the feasibility,
Pareto-efficiency, individual rationality, and group rationality conditions, the follow-
ing general optimization problems have to be solved to find the nucleolus solution
(see Wang et al. (2003)):

15For the presented river basin example, the objections of the coalition constellations are

• Objection of riparian 1, {1} : V ({1}) − x1
• Objection of riparian 2, {2} : V ({2}) − x2
• Objection of riparian 3, {3} : V ({3}) − x3
• Objection of coalition {1, 2} : V ({1, 2}) − x1 − x2
• Objection of coalition {1, 3} : V ({1, 3}) − x1 − x3
• Objection of coalition {2, 3} : V ({2, 3}) − x2 − x3
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min [e]

s.t .
∑

i

[xi ] = V (G) (Feasibility and Pareto-efficiency)

e + xi ≥ V (I ) ∀I (Individual rationality)

e +
∑

i∈S
[xi ] ≥ V (S) ∀S (Group rationality)

which for the presented river basin example is equivalent to the following formula-
tion:

min [e]

s.t . [x1 + x2 + x3] = γ (Feasibility and Pareto-efficiency)

e + x1 ≥ α , e + x2 ≥ 0 , e + x3 ≥ 0 (Individual rationality)

e + [x1 + x2] ≥ β , e + [x1 + x3] ≥ α , e + [x2 + x3] ≥ 0 (Group rationality)

The maximum objection against a benefit sharing solution is represented by the vari-
able e. This variable e is a free variable, therefore, it is defined within the domain
[−∞, ∞]. If the variable e becomes zero or negative, the individual and group ratio-
nality conditions are certainly fulfilled. However, regardless of the value of variable
e, the feasibility and Pareto-efficiency conditions are always met. The objective of
the optimization problem sets the goal to minimize the value of e, which means that
the maximum objection against the benefit sharing solution has to be minimized. As
we already discussed, this is the main motivation of the nucleolus solution concept.
The value of the variable e can not be set arbitrarily low, because the lowest possi-
ble value of e is restricted by the individual and group rationality conditions. If the
superadditivity condition is met, the variable e takes a positive value. Therefore, the
individual and group rationality conditions are fulfilled.

When applying the optimization problem to identify the nucleolus solution, we
have to differentiate between two cases of parameter specifications α, β, and γ :

• Case 1: We specify β and γ such that β ≤ γ
3 . However, if in contrast β >

γ
3 ,

this case is also relevant for the specification 3·β−γ
2 ≤ α. Therefore, the compact

description of this case is (β ≤ γ
3 ) ∨ ((

γ
3 < β) ∧ (

3·β−γ
2 ≤ α)).

• Case 2: This case becomes relevant when α, β, and γ are specified such that
case 1 does not fit. Therefore, we know that γ

3 < β. Furthermore, we also know

that α <
3·β−γ

2 . Hence, the compact description of this case is (
γ
3 < β) ∧ (α <

3·β−γ
2 ).

The optimality conditions which result from the application of the optimization
problem are

For case 1: e = α − x1 = −x2 = −x3
For case 2: e = β − x1 − x2 = −x3
For cases 1 and 2: x1 + x2 + x3 = γ
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Table 6.8 Objection against the nucleolus solution in the Grand Coalition (for case 1)

{1} {2} {3} {1, 2} {1, 3} {2, 3}
Benefit of
Coalition

α 0 0 β α 0

Payoff in
coalitions
based on
nucleolus
solution

2·α+γ
3

γ−α
3

γ−α
3

α+2·γ
3

α+2·γ
3

2·γ−2·α
3

Objections
against
nucleolus
solution

α−γ
3

α−γ
3

α−γ
3

3·β−α−2·γ
3

2·α−2·γ
3

2·α−2·γ
3

For case 1, it follows from the optimality conditions that the unilaterally acting
riparians, denoted by {1}, {2} and {3}, state the maximum objections against the
proposed nucleolus solution. Therefore, the level of the variable e which stands for
the maximum objection is limited in its lowest value by the individual rationality
conditions. The nucleolus solution for this case is

xnuc,1 =
(

xnuc,11 xnuc,12 xnuc,13

)
=
(
2·α+γ

3
γ−α
3

γ−α
3

)

This solution is equal to the Nash-Harsanyi solution. This means that the equal shar-
ing of cooperation gains between the riparians (which is done by the Nash-Harsanyi
solution) minimizes the maximum objections which are stated by the unilaterally
acting riparians. The objections under this case 1 are listed in detail in Table 6.8.

The maximum objection under this case 1 is

e = max

[
α − γ

3
; 3 · β − α − 2 · γ

3
; 2 · α − 2 · γ

3

]

= α − γ

3

which is stated by the unilaterally acting riparians 1, 2, and 3. Of course, this maxi-
mum objection determines the value of the variable e.

Under case 2, the sub-coalition between the riparians 1 and 2, denoted by {1, 2}
and the unilaterally acting riparian 3, represented by {3}, state themaximumobjection
against the nucleolus solution which becomes apparent by the relevant optimality
conditions. Therefore, the level of the variable e is limited in its lowest value by
the group rationality of coalition {1, 2} as well as by the individual rationality of
riparian 3.

Based on the assumption under this case 2 (e = β − x1 − x2 = −x3) as well as
the formerly presented optimality conditions, the following relations are valid:

e = β − x1 − x2 = −x3
x1 + x2 + x3 = γ

e + x1 ≥ α, e + x2 ≥ 0, e + x1 + x3 ≥ α, e + x2 + x3 ≥ 0
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When solving this problem, we can find an explicit solution for x3, which is

xnuc,23 = γ − β

2

Furthermore, we find that the sub-coalition containing riparians 1 and 2 has to receive
a payoff in the level:

xnuc,21 + xnuc,22 = β + γ

2

However, there is no concrete solution regarding the assignment of benefits to ripar-
ians 1 and 2. However, for meeting the optimality conditions, we know that the
solutions of x1 and x2 have to be in the following intervals:

xnuc,21 =
[
xnuc,2,min
1 , xnuc,2,max

1

]
=
[
2 · α − β + γ

2
, β

]

xnuc,22 =
[
xnuc,2,min
2 , xnuc,2,max

2

]
=
[
γ − β

2
, β − α

]

Of course, we would like to have a focal point solution, which means that we want
to find an explicit assignment of payoffs for riparians 1 and 2.

A possible opportunity for assigning the payoffs is just to apply the nucleolus
procedure for the sub-coalition {1, 2}.16

In Exercise 6.2,we present the solution steps of the nucleolus procedure for a basin
with 2 riparians in detail. Every riparian has to receive the benefit it would get when
acting unilaterally (individual rationality condition). On top of that, the riparians get
a share of the cooperation gain, which results from the difference between the payoffs
the sub-coalitionwould receive in the nucleolus solution , which is 0.5 · (β + γ ), and
the sum of the benefits the riparians would receive when acting unilaterally which is

16The optimization problem for finding the nucleolus solution of the sub-coalition {1, 2} is
min{e,x1,x2}

[e]

s.t . x1 + x2 = 0.5 · (β + γ )

e + x1 ≥ α

e + x2 ≥ 0
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Table 6.9 Objection against the nucleolus solution (case 2)

{1} {2} {3} {1, 2} {1, 3} {2, 3}
Benefit of
Coalition

α 0 0 β α 0

Payoff
based on
nucleolus
solution

2·α+β+γ
4

β+γ−2·α
4

γ−β
2

β+γ
2

2·α−β+2·γ
4

3·γ−2·α−β
4

Objections
of coalition
against
nucleolus
solution

2·α−β−γ
4

2·α−β−γ
4

β−γ
2

β−γ
2

2·α+β−2·γ
4

2·α+β−3·γ
4

α. When applying the nucleolus procedure in a coalition or basin with 2 riparians,
we have to share the cooperation gain equally between the riparians.17

Therefore, we can set the following payoffs for the riparians 1 and 2:

xnuc,21 = 2 · α + β + γ

4

xnuc,22 = β + γ − 2 · α

4

Hence, the nucleolus solution for this case is

xnuc,2 =
(

xnuc,21 xnuc,22 xnuc,23

)
=
(
2·α+β+γ

4
β+γ−2·α

4
γ−β
2

)

The objections under case 2 are listed in detail in Table 6.9.
The maximum objection is:

e = max

[
2 · α − β − γ

4
; β − γ

2
; 2 · α + β − 2 · γ

4
; 2 · α + β − 3 · γ

4

]

= β − γ

2

17In case of unilateral acting, riparians 1 and 2 generate a benefit of α, i.e., V ({1}) + V ({2}) = α.
The sub-coalition between riparians 1 and 2 should receive a benefit of 0.5 · (β + γ ) in the
nucleolus solution, i.e., xnuc,21 + xnuc,22 = 0.5 · (β + γ ). Therefore, the cooperation gain is

Δ = xnuc,21 + xnuc,22 − V ({1}) − V ({2}) = 0.5 · (β + γ ) − α

Half of the cooperation gain is 0.5 · Δ = 0.25 · (β + γ ) − 0.5 · α. Therefore, the riparians receive
the following benefits:

xnuc,21 = V ({1}) + 0.5 · Δ = α + 0.25 · (β + γ ) − 0.5 · α = 0.5 · α + 0.25 · (β + γ )

xnuc,22 = V ({2}) + 0.5 · Δ = 0.25 · (β + γ ) − 0.5 · α = 0.25 · (β + γ ) − 0.5 · α
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The maximum objection e = β−γ
2 is stated by the unilaterally acting riparian 3 and

the sub-coalition between riparians 1 and 2.
Because of the hydrological power in the river basin, which results in the highest

payoff for riparian 1 due to its position in the river basin, and the fact that the sub-
coalition {1, 2} states the maximum objection, the payoff for riparian 2 exceeds the
one of riparian 3, hence

xnuc,21 > xnuc,22 > xnuc,23

Box 6.1 Benefit sharing in the Nile river basin

With a total length of 6700 km, theNile is the longest river in theworld; its basin
stretches over 11 countries: Egypt, Sudan, South Sudan, Ethiopia, Uganda,
Kenya, Tanzania, Burundi, Rwanda, Democratic Republic Congo, and Eritrea.
Similar to other international rivers (such as Euphrates and Tigris, Syr Darya,
AmuDarya, andGanges), there is a gap between thewater quantity available in
the basin and the water quantity claimed by the riparians. (Wu andWhittington
2006) Therefore, the riparians compete for the scarce water sources in the river.
Wu andWhittington (2006) state awater defecit of about 50 billion cubicmeter
per year in the basin. Egypt which is the most downstream country in the basin
contributes essentially nothing to the flow of the Nile, however, it currently
consumes more than 80% of the Nile water due to its political and military
power in the region (Wu and Whittington 2006). Ethiopia which is located in
the upstream of the basin contributes over 85% of the water flow. It claims
significantly more water resources than its current consumption for realizing
its dam and irrigation project which became necessary to meet the needs of an
increasing population.

There exist a number of Nile river models in the scientific literature which
are explained in detail by, for instance, Nigatu and Dinar (2011). The Nile
Economic Optimization Model (NEOM, see Wu (2000)) is a basin-wide eco-
nomic optimization model which quantifies the economic benefits from water
usage. Wu and Whittington (2006) use the NEOM to study conflict incentive-
compatible resolution strategies based on various cooperation scenarios in
the basin. Block and Strzepek (2010) set up the Investment Model for Plan-
ning Ethiopian Nile Development (IMPEND) which focuses on the impact of
dams constructed for irrigation and hydropower purposes. The model which is
applied by Nigatu and Dinar (2011) as well as by Dinar and Nigatu (2013) is
based on the NEOM model and takes into account additional features such as
the resource degradation, various climate change scenarios, and the possibility
of introducing basin-wide water trade. It just focuses on the basin of the Blue
Nile which involves the countries Ethiopia, Sudan, and Egypt.
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Dinar and Nigatu (2013) distinguish different scenarios of allocation
between the riparians in the Blue Nile. The scenario WRA-I, which allocates
12.2, 22.0, and 65.8%, respectively, to Ethiopia, Sudan, and Egypt, is based
on the notion of Egypt’s long-term use pattern. The scenario WRA-II, which
allocates 38.4, 14.1, and 47.5% to Ethiopia, Sudan, and Egypt, respectively, is
based on the notion of equitable access as reflected in the UN Water conven-
tion from 1997. The generated benefit for the different allocation scenarios are
listed in the following table, with ETH, SDN, and EGY representing Ethiopia,
Sudan, and Egypt, respectively. In cases of cooperation, the allocated water
amounts are traded to another country of the cooperation scheme if increasing
benefits result from this transfer. Therefore, the highest basin’s benefit is gener-
ated for all allocation scenarios in the cooperation arrangement which involves
all three riparians. The highest basin’s benefit with 9.21 is generated under the
allocation scenario WRA-II, followed by the allocation scenario WRA-I with
8.77.

Benefits under different allocation and cooperation scenarios. Source
Dinar andNigatu (2013)
Allocation Unilateral Acting Sub-Coalitions Grand Coalition
Scenario ETH SDN EGY ETH+SDN ETH+EGY SDN+EGY ETH+SDN+EGY
WRA-I 1.29 2.62 4.83 3.94 5.71 7.55 8.77
WRA-II 2.21 2.56 3.91 4.62 6.60 6.80 9.21

Assuming the three riparians form a joint arrangement, we focus on the ques-
tion of how to allocate the common benefit to the individual riparians. This
means that for the scenarios WRA-I and WRA-II, the basin’s benefits of 8.77
and 9.21, respectively, have to be allocated to the riparians. The incremental
benefit for any riparian results from the difference between its received benefit
in the joint arrangement and the benefitwhich the riparianwould generatewhen
acting unilaterally. Applying the Nash-Harsanyi solution, the benefits are allo-
cated in a way that the incremental benefits become equal for all riparians. For
the scenarioWRA-I, the benefits when acting unilaterally for Ethiopia, Sudan,
and Egypt are 1.29, 2.62, and 4.83, respectively, which results in the basin’s
benefit of 8.74. The basin’s benefit in the joint arrangement is 8.77, hence
when applying the Nash-Harsanyi solution, the incremental benefit of every
riparian becomes 0.01, because 8.77−8.74

3 = 0.01. This means that Ethiopia,
Sudan, and Egypt are assigned a benefit of 1.30, 2.63, and 4.84, respectively,
for the Nash-Harsanyi solution. For scenarioWRA-II, acting unilaterally holds
benefits of Ethiopia, Sudan and Egypt, respectively, which results in a basin’s
benefit of 8.68. The basin’s benefit in the joint arrangement is 9.21. Hence, the
incremental benefit of each riparian amounts to about 0.18 ( 9.21−8.68

3 ≈ 0.18)
when applying the Nash-Harsanyi solution. Hence Ethopia, Sudan and Egypt
receive a benefit of 2.39, 2.74 and 4.08, respectively. The Shapley and Nash-
Harsanyi solution for the Benefit Sharing problem of the Blue Nile basin is
illustrated in the following table.
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Shapley and Nash-Harsanyi solution under different allocation scenarios
Allocation Shapley Nash-Harsanyi
Scenario ETH SDN EGY ETH SDN EGY
WRA-I 1.20 2.79 4.78 1.30 2.63 4.84
WRA-II 2.33 2.61 4.27 2.39 2.74 4.08

Regardless of the allocation scenario, the upstream riparianEthiopia prefers the
Nash-Harsanyi to the Shapley solution, because 1.3 > 1.2 and 2.39 > 2.33.
For the allocation scenario WRA-I, Sudan and Egypt prefer the Shapley
(2.79 > 2.63) and Nash-Harsanyi solution (4.84 > 4.78), respectively, while
for the other allocation scenario WRA-II, the contrary situation becomes
obvious because Sudan and Egypt prefer the Nash-Harsanyi (2.74 > 2.61)
and Shapley solution (4.27 > 4.08), respectively. The Shapley solution of the
allocation scenario WRA-I is not in the core, because the assigned benefits to
Ethiopia and Egypt with 1.20 and 4.78, respectively, are lower than the benefits
Ethiopia and Egypt would generate under unilateral acting which are 1.29
and 4.83, respectively (see Table 6.10). Therefore, the Shapley solution for
the allocation scenario WRA-I violates the individual rationality of Ethiopia
and Egypt. However, the Shapley solution of the allocation scenario WRA-II
is within the core. The Nash-Harsanyi solution is also in the core for both the
scenarios WRA-I and WRA-II.

Source Dinar and Nigatu (2013)

6.3.3 Concluding Remarks on the Benefit Sharing Problem

The benefit sharing problem focuses on the question of how to assign benefits to
riparians which are generated in a joint arrangement. The assigned benefit in this
context is termed as payoff or imputation. The first important concept is the core
which contains all payoffs which meet the feasibility, Pareto-efficiency, individual
and group rationality conditions. Due to the feasibility and Pareto-efficiency con-
ditions, the generated benefit in the joint arrangement has to be assigned to the
riparians of this arrangement in total. The individual rationality condition means
that any riparian of the joint arrangement has to receive at least as much payoffs
as it would generate when acting unilaterally in a noncooperative way. However,
the group rationality condition means that a coalition which could be formed by
a subset of riparians acting cooperatively in the joint arrangement must receive at
least as much benefits in the joint arrangement as it would generate if the respec-
tive coalition was formed in the basin. Usually, either the core is empty—which
means that it is not incentive-compatible to form this joint arrangement—or there
are a multitude of payoffs in the core. Therefore, we discussed the lower and upper
bounds of the core for each riparian. The lower bound of each riparian is the mini-
mum payment the respective riparian has to receive to have an economic incentive to
join the cooperative arrangement, while the upper bound is the maximum payment
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Table 6.10 Payoffs for riparians regarding the presented focal point solution concepts

Rriparian 1 Riparian 2 Riparian 3

Shapley solution 1
6 · (3 · α + β + 2 · γ ) 1

6 · (β + 2 · γ − 3 · α) 1
3 · (γ − β)

Nash-Harsanyi
solution

1
3 · (2 · α + γ ) 1

3 · (γ − α) 1
3 · (γ − α)

Nucleolus (case 2) 1
4 · (2 · α + β + γ ) 1

4 · (β + γ − 2 · α) 1
2 · (γ − β)

the respective riparian would get without setting an incentive for another riparian to
leave the cooperative arrangement.

Furthermore, we also discussed some focal point solution concepts which state
concrete solutions (a specific payment for each riparian): The Shapley value may
be in the core, while the Nash-Harsanyi and nucleolus solutions are certainly in the
core when the superadditivity condition is fulfilled. The Shapley value assigns the
benefits depending on the (weighted) incremental benefit of the respective riparian for
the coalitions. Particularly powerful riparians, e.g., those riparians that are located
upstream in the river basin and, therefore, have hydrological power, benefit from
this concept. The more the benefit in a coalition increases due to the joining of
the respective riparian in this coalition—which is nothing else than the incremental
benefit of the respective riparian for the coalition—the higher the proportion of
benefits of the joint arrangement that goes to this respective riparian. However, the
Nash-Harsanyi and nucleolus solutions do not focus as much on the power situation
of a riparian, but more on aspects of justice. TheNash-Harsanyi solution allocates the
benefits to the riparians in a way that the assigned benefit in excess to the respective
noncooperative benefit is equal for each riparian. This means that the cooperation
gain is shared equally between the riparians. The nucleolus is a solution concept
in which the maximum objection against a payment solution is minimized. The
objection of a coalition against a benefit sharing solution results from the difference
between the generated benefit of this coalition (if it was formed in the basin) and the
payoff for this coalition due to the benefit sharing solution.

For the presented river basin example, the realized benefit sharing solutions are
illustrated in Table 6.10. Please note that we differentiate between two cases of
parameter specification regarding α, β, and γ . The nucleolus and Nash-Harsanyi
solutions just differ for the second case. For the first case, the nucleolus solution and
Nash-Harsanyi solutions are the same.

The upstream riparian prefers the Shapley solution, because due to its upstream
position (hydrological power) it generates high incremental benefit for the possible
coalitions. For example, a coalition with just riparians 2 and 3 generates a benefit of
0. If riparian 1 joined this arrangement, it would generate the benefit of γ . Hence, the
incremental benefit of riparian 1 for this coalition is γ . This relation illustrates why
riparian 1 gets such a high proportion of benefit when applying the Shapley value.

Case 1: x SH1 > x1NH Case 2: x SH1 > xnuc,21 > xNH
1
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Themidstream riparian also prefers the Shapley solution, because theNash-Harsanyi
solution and nucleolus solution are based on the low benefit level of 0, if this riparian
acted unilaterally.

Case 1: x SH2 > xNH
2 Case 2: x SH2 > xnuc,22 > xNH

2

The downstream riparian has the lowest hydrological power due to its position in
the basin. Because of its limited hydrological power, the riparian has the highest
aversion against the Shapley solution, while it prefers the Nash-Harsanyi solution:

Case 1: xNH
3 > x SH3 Case 2: xNH

3 > xnuc,23 > x SH3

In the grand coalition, the benefit of the entire basin which is γ is generated by the
water consumption of the downstream riparian. The less productive riparians 1 and
2 leave the water in the river, hence, they generate no benefit in the grand coalition.
However, they have to receive payoffs for all presented benefit sharing solutions.
Therefore, riparian 3 has to make side payments:

Side payments made by riparian 3 = γ − x3

which means for the focal point solution concepts:

Side payments made by riparian 3 =
{

β+2·γ
3 Shapley solution

α+2·γ
3 Nash-Harsanyi and nucleolus solutions

Riparians 1 and 2 receive the following side payments from riparian 3 in the level
of their respective benefit sharing solution:

Side payments received by riparian 1 = x1
Side payments received by riparian 2 = x2

6.4 Bankruptcy Rules forWater Allocation

6.4.1 Principles of Bankruptcy Rules

The last two sections were based on the construction of monetary or utility-measured
characteristic functions of cooperative game theory. Now, we turn to the so-called
bankruptcy methods that distribute scarce water quantities directly to riparian states
without calculating the economic value they create. Thus, the distributandum is not
the monetary benefit, but the water itself. These methods have been developed in
a completely different context: If a firm goes bankrupt, how should the residual
liquidated wealth be distributed among its creditors? There is a plethora of rules
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and principles on how to allocate the insolvency assets to the creditors.18 Should
the residual assets be divided, for example, proportionally or equally? Suppose the
first creditor lent 200 e to the company, a second 100 e. However, the remaining
goodwill is only 200 e, so not all claims are covered. If we apply the proportional
rule, then the first creditor receives two-thirds of the residual value, i.e., 133e, while
the second creditor receives only one third, i.e., 67 e. It is also possible to allocate
equal shares to both creditors, in which case both would receive 100 e. Hence, it
is necessary to develop bankruptcy rules according to which the residual value is
distributed.

These methods have been applied to transboundary water issues as well, both
theoretically and empirically (Box 6.2). The application of the bankruptcy rules
is based on the Principle of the Territorial Integration of all Basin States (TIBS)
as explained in Sect. 6.1. The whole catchment area is collectively owned by the
riparian countries. If water becomes scarce, the allocation should not be based on
the geographical position of these countries. Their claims are equally legitimate and
are the sole information that will be taken into account within the allocation process.

On the one hand, it is advantageous that we do not need any complex models
that reflect the link between water usage and economic welfare. It is all about water
quantities that are measurable. On the other hand, by restricting water distribution
alone, we give up the possibility of combined contracts in which other goods and
services are specified in addition to water, which makes trade possible. As will be
shown subsequently, one has to be careful when transferring these rules from the
context of credit markets to water issues, because the very nature of claims in both
sectors is rather different.

Suppose a set of N = {1, 2, 3, . . . , n} countries share a water resource R. Their
claims can be summarized by a claim vector c = [

c1 c2 . . . cn
]
. Water is scarce,

hence, we assume that

n∑

i=1

ci > R (6.17)

Bankruptcy rules specify the allocation of R to the countries by a sharing rule
function x(R, c), where x is an n-dimensional vector. There is a variety of properties
that are met by different distribution rules to varying degrees. These properties refer
to consistency criteria that follow the principle of rationality and to normative criteria
that take fairness considerations into account.

Basic properties are the following requirements that represent plausibility:

1. Feasibility: The implementation of bankruptcy rules must be feasible, i.e., the
sum of water allotments required by the rules should not exceed the amount of

18A concise survey is Thomson (2002).
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water available, i.e.,
n∑

i=1

xi (R, c) ≤ R (6.18)

2. Efficiency: Efficiency excludes waste. There is no water loss, i.e.,

n∑

i=1

xi (R, c) = R (6.19)

3. Claim boundedness: Claim boundedness is not only a basic property that relates
to plausibility but also to fairness considerations. The water allotment of a rule
shall never exceed the claim stated, i.e.,

x(R, c) ≤ c (6.20)

A rationing scheme would be considered very unfair if it were to allocate more
water than the claim of the respective riparian state.

There are additional, more specific properties to make a bankruptcy rule consider-
able for implementation. These rules refer to fairness considerations, and what the
Helsinki Rules (Article 4) call “a reasonable and equitable share in the beneficial
uses of the waters of an international drainage basin”.

4. Consistency: Consistency refers not only to rationality but also to fairness. Awater
allocation which is considered as fair for all countries in a water treaty remains
fair also if a subgroup shares the water allotted to them. Formally,

for all S ⊂ N xi (R, c) = xi

⎛

⎝R −
∑

i∈(N/S)

xi , cS

⎞

⎠ (6.21)

where cS is the vector of claims of the countries in S.
5. Equal Treatment of Equals: This condition is central to a fair water allocation.

The same claims should lead to the same water allocation. Formally,

for all i, j ∈ N if ci = c j ⇒ xi (R, c) = x j (R, c) (6.22)

6. Order Preservation: Fairness also requires that those countries claiming more
water receive more water under the sharing rule.

for all i, j ∈ N if ci ≥ c j ⇒ xi (R, c) ≥ x j (R, c) (6.23)

Of course, this requirement presumes that claims are legitimate and justifiable.
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7. Regressivity: If a certain degree of inequity aversion prevails, regression may be
required:

for all i, j ∈ N if ci ≥ c j ⇒ xi (R, c)

ci
≤ x j (R, c)

c j
(6.24)

In other words, the relative fulfillment of the claims decreases with the amount
of the claims. Whether this criterion makes sense depends heavily on the nature
of the claims.

8. Claim monotonicity: Division rules should not be static. This means that they
should not only refer to actual values of claims and water quantities but also
be flexible with regard to changes in framework conditions. Fairness must also
apply to changed input data. It is fair to say that the allocation of water resources
increases for those riparian states whose justified claims increase. Formally,

for all i, j ∈ N if c′
i ≥ ci ⇒ xi (R, c′

i , c−i ) ≥ xi (R, c) (6.25)

where c−i = [c1, c2, ci−1, ci+1, cn].
9. Resource monotonicity: The supply of water varies heavily depending on weather

and climate conditions. The distribution rules must be fair for all possible water
scarcity scenarios. Resource monotonicity is considered as fair. If there is less
(more) water, every riparian state should get less (more):

if R′ ≥ R ⇒ x(R′, c) ≥ x(R, c) (6.26)

6.4.2 Hydrologically Unconstrained Allocation Rules

The fulfillment of the individual properties defined above does not determine a unique
allocation. In the literature, it is rather the case that different rules, seen as reasonable
and fair, are proposed. The application of these rules leads to different allocations. In
the following, we will present the most important ones, examine their properties and
their practical applicability. We assume that the rules can be implemented hydrolog-
ically, i.e., the calculated allocations can also be physically transferred to the water
users. This is the unconstrained case.19

Proportional Rule
Let us start with themost widely known and used rule. This rule is alreadymentioned
inAristotle’sNikomachian ethics.20 The rule divides the availablewater in proportion
to the claims, i.e.,

x Pi = ci
∑n

j=1 c j
R, i = {1, 2, . . . , n} (6.27)

19The constrained cases refer to river basins where the unidirectionality of the water flow may lead
to the case that the calculated allocations cannot be physically realized. See the next subsection.
20Nikomachian ethics, book V. See the explanation in Young (1994), p. 64 ff.
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This rule is self-evident and fulfills, it seems, the sense of justice at once. This is cer-
tainly due to the principle of accountability21 that underlies this rule. Subsequently,
we will compare this rule with other rules for different types of claims.

Adjusted Proportional Rule
This rule puts more weight to those countries with higher claims. It is derived in a
two-step procedure. First, the so-called minimum rights have to be determined as

mi = max

⎡

⎣0, R −
∑

j �=i

c j

⎤

⎦ , i = {1, 2, . . . , n} (6.28)

Minimum rights refer to the water allocation which is not contested. All j �= i con-
cede this residual to i . It is simply the water that is left after serving the claims of all
the other water users.22 After the minimum rights have been distributed, the second
step follows:

x AP
i = mi + ci − mi

∑n
j=1(c j − m j )

⎛

⎝R −
n∑

j=1

m j

⎞

⎠ , i = {1, 2, . . . , n} (6.29)

Here, the water division consists of the minimum rights plus the proportional portion
of the residual water supply, whichwill be left after deduction of theminimum rights.
The proportionality factor is formed with the help of the claims adjusted for the
minimum rights. One should be careful with the concept of minimum rights. This is
not a minimal provision of water in terms of human rights for water. It refers only
to the amount of water the other competitors would leave without the request for
negotiation.

Constrained Equal Award (CEA)
The CEA rule sets the water allocation in a very egalitarian way. Each country
receives the same portion of available water regardless of its claims. Claims only
play a role insofar as the equal shares apportioned may be higher than these. In this
case, only the claims will be covered.

Formally,

xCE A
i = min[E, ci ] where

n∑

i=1

min[E, ci ] = R (6.30)

where E is the equal share provided E is less than both claims.

Constrained Equal Loss (CEL)
Instead of focussing on the distribution of the water, it is also possible to turn the
observation around and look at the distribution of thewater loss defined as the number

21See Sect. 3.3.
22Of course, if the residual R −∑

j �=i c j were negative, then the other claims are not met because
negative minimum rights are excluded. That is reasonable and therefore acceptable.
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Fig. 6.3 Bankruptcy rules.
Source own illustration

of claims not fulfilled, i.e., the allocation of the total loss
∑

ci − R . The CEL rule
is defined as follows:

xCE A
i = max[0, ci − E] where

n∑

i=1

max[0, ci − E] = R (6.31)

where E is the equal share of loss.
All the rules introduced do satisfy the properties with the exception of regressiv-

ity.23

Which rule is fair now?Aswewill see, this question cannot generally be answered,
but depends on the circumstances24. By circumstances, we understand the object of
allocation, in this casewater, and the type and degree of legitimacy of claims.With the
help of an example, we will discuss the appropriateness of sharing rules depending
on the type of legitimacy of claims. At first, however, we want to look at a numerical
example in order to examine the distributional effects of the four rules. Assume
the following numerical values: R = 200, c1 = 180, and c2 = 120. Straightforward
application of the rules allows to calculate the corresponding allocations and to insert
the numerical values in Fig. 6.3.25

The budget line x2 = R − x1 represents all possible water distributions. The
claims are plotted with a vertical and a horizontal line. Due to the scarcity of water,
its intersection lies north-east of the budget line. The allocation according to the

23For the case of two countries, the proof is left to the reader; for the n-country case, the proof is
more extensive, see, e.g., Thomson (2002).
24There are interesting studieswhich empirically determine the assessment of fairness of bankruptcy
rules within the framework of experiments, see, e.g., Gaechter and Riedl (2006)
25Details can be found in Exercise 6.3.
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proportional rule is the intersection of the budget line with the line connecting the
origin with the claim point A, the slope of which is c2/c1 (see Fig. 6.3). Similarly,
the CEA rule can be identified by the intersection of a line with a slope of 1 that
starts from the origin. The available water is shared in half. This is due to this numer-
ical example where the water allocation according to this rule falls short of both
claims. The CEL rule is constructed by running a 45◦-line from point A to the bud-
get line. This line implements the requirement that the loss should be apportioned on
a fifty-fifty base between the two countries. In the two country case, this allocation is
identical to the adjusted proportionality rule. Here, we start from the minimal right
point {m1,m2} with a line of 45◦ degrees.

What we can see from this figure is that there is an ordering of rules with respect to
the degree of equality. The CEA rule distributes the available water equally. Only if
claims are fully covered, the rule deviates from the equal share principle (see pointA).
The proportional rule prefers the country with the higher claims somewhat whereas
the CEL rule and the adjusted proportionality rule favor countries with higher claims.

But what is just, the complete equality of water allocations or the equality of the
individual water losses suffered, measured by the degree of regressivity xi/ci? It
turns out that only the proportional rule weakly satisfies this property in general,
i.e., the ratio is constant with respect to different values of R. The CEA rule exhibits
progressivity, i.e., the percentage of fulfilled claims rises with the number of claims
and the CEL rule is undetermined. Progressivity and degressivity depend on the
amount ofwater supplied. However, the question remains as towhether the allocation
should be made more evenly distributed or whether the claims should be taken into
account in the allocation. This question depends on the very nature of these claims
or on the attributes claimants have. The following scenarios show that a sharing rule
should only be decided upon once the legitimacy of claims has been clarified.

Scenario I
There are two countries with different population sizes. Country 1 (L1) is large
compared to country 2 (L2), i.e., n1 is larger than n2, where ni is the population size.
The (culturally determined) subsistence level of water per person is υ. We assume
that this subsistence level is the same in both countries. The claims are therefore

ci = υni , i = {1, 2} (6.32)

We assume that the water available is less than the aggregated claims, i.e., c1 + c2 >

R. Applying the proportionality rule immediately results in xi = (ni/(n1 + n2))R.
Dividing the allocation by the respective population size yields the water allocation
per capita, which is equal in both countries:

x1
n1

= R

(n1 + n2)
= x2

n2
(6.33)

Of course, due to water scarcity, this allocation is less than υ.
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For water allocation under the CEA rule, we have to differentiate between two
cases because of the claim boundedness: If R/2 < c2, i.e., the water allocation is
less than the lesser claim, both countries receive the same amount of water R/2. It
follows that the water allocation per capita in L1 is lower than in L2. In other words,
the more populous country gets less water per capita than the country with a smaller
population. This result follows also for the case that R/2 > c2. In this case, people
from L2 receive c2/n2 = (υn2)/n2 (see Eq. (6.32)). Because water is scarce, i.e.,
c1 + c2 > R, per capita allocation in L1 is less than υ.

Both claims arewell-founded, as they are derived frompeople’s elementary needs.
They should, therefore, not be called into question when drawing up awater contract.
Fundamental needs should bemet as good as possible. Themore fundamental a need,
the greater the role of equality that applies here to people, not countries. Therefore,
the P rule is likely to be preferred to the CEA rule, because it is not acceptable that
the more populous country has a lower per capita water supply due to the basic need
property of water.

Scenario II
Let us resume the water allocation problem within the same mathematical structure,
but with a different economic context. Again, there are two countries L1 and L2. Both
countries have the same national product y and the same population size. However,
the water consumption of the first country is higher than that of the second country,
because L1 is more inefficient than L2, which leads to different water claims:

ci = εi y, i = {1, 2} (6.34)

where εi is the water intensity per unit of social product of the respective country.
Since L1 is less efficient than L2, we have ε1 > ε2. Again, we assume water scarcity,
which makes it necessary to apply a bankruptcy rule. Applying the P rule leads to

x1 = (ε1/(ε1 + ε2))R and x2 = (ε2/(ε1 + ε2))R (6.35)

Hence, the inefficient country L1 gets more water than country 2. Dividing xi by εi
yields the national product under rationing, i.e.,

x1
ε1

= (1/(ε1 + ε2))R = x2
ε2

(6.36)

Both countries end up with less affluence. However, the P rule allocates the water
such that both countries bear the scarcity equally.

Again, if we apply the CEA rule, we have to distinguish between two cases: In
the first case, i.e., R/2 < c2, both countries are allocated the same amount of R/2.
This implies that L2 can sustain a larger national product than L1:

x2
ε2

= R

2ε2
>

R

2ε1
= x1

ε1
(6.37)
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The same result occurs if R/2 > c2. In this case, the water allocation to L2
is c2 = yε2. Hence, L2 can sustain the social product of y. This implies that the
affluence in L1 decreases due to water scarcity, i.e., the social product is less than y:

R − c2
ε1

<
c1
ε1

= y (6.38)

since R − c2 < c1.

Is it fair that the efficient country can maintain its standard of living, while L1,
due to its inefficient water economy, has to accept a loss of welfare if the CEA
rule is applied? Or should the proportional rule be applied, which will lead to an
equal decrease in GDP in both countries? In contrast to scenario I, this might require
more inquiries about the reasons for the different water efficiencies. Are countries
accountable for that, or do these different efficiencies reflect geological properties
countries cannot influence? In the latter case, they are not responsible in the sense of
the principle of moral arbitrariness (as introduced in Sect. 3.3) and they should bear
the scarcity equally. If the different water intensities are rooted in mismanagement,
then the principle of accountability will apply with the consequence that the CEA
rule is to be applied.

A comparison of both scenarios shows that bankruptcy rules should be weighted
carefully before being adopted. Beyond the question of which rule has to be applied,
the nature of the claims must also be examined. Are those derived from existential
needs or are they economic wants? In analogy to Maslow’s hierarchy of needs26, we
can put the claims in a prioritized order. This naturally means that the introduced
water allocation rules have to be adapted to these hierarchies of needs. Let us go
back to our numerical example and assume that the claims can be subdivided into
basic needs and secondary needs. Let us assume that L1 is a developed country with
a relatively small population (n1 = 4) while L2 is a developing country with a large
population (n2 = 10). The subsistence minimum of water per capita is ws = 10.
Claims are the sum of basis needs and secondary wants. For L1, we have

c1 = 180 = c11 + c21 = wsn1 + c21 = 40 + 140 (6.39)

and for L2:

c2 = 120 = c12 + c22 = wsn2 + c22 = 100 + 20 (6.40)

Wefirst look at the undifferentiatedwater allocation to the twocountries (seeFig. 6.3).
The numerical values are given in Table 6.11 for each country and for the three
distribution rules considered.27 The quantities of water per capita are calculated for
each rule: These values differ considerably between the different rules. For the P rule
and CEL rule, the water allocation per capita is below the subsistence minimum ws .

26See Sect. 3.5 for Maslow’s hierarchy.
27Notice, that in the two country case, the water allocation under the AP-rule is identical to the
allocation under the CEL rule.
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Table 6.11 Non-differentiated water allocation

P Rule CEA Rule CEL Rule

Countries x Pi x Pi /ni xCE A
i xCE A

i /ni xCEL
i xCEL

i /ni
L1 120 30 100 25 130 32.5

L2 80 8 100 10 70 7

Table 6.12 Differentiated water allocation

P Rule CEA Rule CEL Rule

Countries x Pi x Pi /ni xCE A
i xCE A

i /ni xCEL
i xCEL

i /ni
L1 92.5 23.125 80 20 100 25

L2 107.5 10.75 120 12 100 10

Needs of different priority make the direct application of bankruptcy rules to the
aggregated claims questionable. Basic needs should definitely be met.28 Thus, we
should adopt a sequential approach. First, water should be distributed according to
basic needs {c11, c12}. After that, the residual water R − c11 − c12 should be allocated
taking into account the secondary claims {c21, c22}. The water allocation rule is then
xi (R − c11 − c12, {c21, c22}). Total water assignments are

c11 + x1(R − c11 − c12, {c21, c22}) and c12 + x2(R − c11 − c12, {c21, c22}) (6.41)

In Table 6.12, we have calculated these allocations for the three rules.
The sequential treatment of the requirements leads to the fact that the subsistence

level is also fulfilled for the more populated country. The remaining water is then
distributed to the two countries on the basis of the remaining entitlements, without
taking into account the population figures. As shown in Table 6.11 and in Fig. 6.3,
the CEA- and CEL rule take greater account of the asymmetry of claims than the P
rule.

6.4.3 Sequential Allocation Rules

If we want to apply bankruptcy rules to a river system, its specific hydrological
characteristicsmust be taken into account. The unmodified application of bankruptcy
rules could lead to the fact that the resultingwater allocations are not feasible. Imagine
L1 is upstream, L2 downstream. The river system is characterized by a relatively low
inflow in L1 and a big inflow in L2. A direct application of the CEA rule, for example,
could lead to an equal distribution of the available water, i.e., the sum of all water

28Of course, if the sum of basic needs exceeds the water quantity available, we can apply the rules
directly taking the basic needs as claims.
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Table 6.13 Claims and inflows along a river

Countries Inflows Claims Rule-based
allocation

Downstream
availability

Downstream
excess claims

L1 R1 = 100 c1 = 180 x1 E1 = R1 cd1 = (c2 −
R2) = 20

L2 R2 = 100 c2 = 120 x2 E2 = R2 +
(R1 − x1)

cd2 = 0

Sum 200 300 200 – –

inflows. This would not be possible considering the geographical position of the two
countries and the low inflow in L1. For this constrained case, a sequential sharing rule
has been proposed.29 This bankruptcy rule takes the hierarchical order of countries
and the unidirectionality of the river into account. As before, the sum of claims
c1 + c2 is higher that the sum of inflows R1 + R2. However, due to the specific
geography of the river, the feasibility of a water allocation must also be ensured. For
this purpose, we define total available water in the two territories:

E1 = R1, E2 = R2 + (R1 − x1) (6.42)

where xi is the water allocation (per country) according to a sharing rule to be
specified. Equation (6.42) shows the typical water availability structure of a river
depending on the position of the countries. Finally, to apply the bankruptcy rules to
a river system, we have to define the downstream excess claims

cd1 = (c2 − R2), cd2 = 0 (6.43)

Equation (6.43) is of crucial importance for the sharing rules. Downstream coun-
try’s claims are adjusted by its inflow R2. The very reason for this approach is the
insight that R2 is always with country two due to the unidirectional flow of the river.

Starting with the water allocation for L1, we have to compare the available water
forL1with the excess claimsofL2. In the following table, all the relevant variables are
summarized. In addition to the numerical values in the example above,we have added
numerical values for the inflows R1 and R2, so we can calculate the water allocations
proposed by the sequential sharing rules. Table 6.13 lists all relevant parameters to
apply bankruptcy rules. In the following, we will consider the sequential variants of
the P rule, the CEA rule, and the CEL rule. Let us start with the P rule.

P Rule
In the first step, the water allocation for L1 is calculated, as shown in the first row
of Table 6.14. x S−P

1 is a fraction λ1 of the claim c1. The amount of water remaining
is the same fraction of the residual net claims of L2, the downstream excess claims.
The proportionality factor λ1 is simply the ratio between the availability of water

29See Ansink and Weikard (2012).



250 6 TransboundaryWater Resource Management

Table 6.14 The sequential proportionality rule

Countries Rule-based water
allocation to Li

Rule-based downstream
allocation

Proportionality factor

L1 x S−P
1 = λ1c1
x S−P
1 = 0.5 · 180 = 90

x S−P
cd1 = λ1cd1

= 0.5 · 20 = 10
λ1 = E1/(c1 + cd1)
= 100/(180 + 20) = 0.5

L2 x S−P
2 = E2 =
R2 + (R1 − x S−P

1 )

x S−P
2 =
100 + (100 − 90) = 110

x S−P
cd12 = 0 ——

Table 6.15 The sequential CEA Rule

Countries Rule-based water
allocation to Li

Rule-based downstream
allocation

Award calculation

L1 x S−CE A
1 = Min[c1, λ1]
x S−CE A
1 = 80

x S−CE A
cd1 = Min[cd1, λ1]
x S−CE A
cd1 = 20

x S−CE A
1 + x S−CE A

cd1 =
E1
Min[180, λ1] +
Min[20, λ1] = 100
→ λ1 = 80

L2 x S−CE A
2 = E2

= 100 + (100 − 80) =
120

x S−CE A
cd2 = 0 —-

and the sum of claims c1 + cd1. After having determined the water allocation for
L1, we go one step downstream and determine the water allocation for L2. In our
simple two country case, we only have to allocate the remaining water supply E2.

CEA Rule
The water shares that follow from the CEA rule are also calculated in a sequential
way. Again, we begin with the upstream country L1. We start in the first line (L1) of
Table 6.15 and split the available water R1 to L1 and L2 downstream according to
the CEA rule. The upper bounds (see the principle of claim boundedness Eq. (6.20))
are the claims c1 and the excess claims of the downstream country cd1. For the
given numerical values, it follows that L1 receives 80 and the downstream country
20. We proceed to the second country L2 and calculate the residual water available,
E2 = R2 + (R1 − x S−CE A

1 )which yields 120. Finally,we have to calculate thewater
allocation sequentially for the CEL rule.

CEL Rule
Again, we begin with the first row for country L1 (Table 6.16), and calculate λ1.
First, we assume that there exists an equal share of loss. This is not feasible, because
under this assumption the second term of the right-hand side would get negative.
Hence, we assume that this term is nil which yields that λ1 = 80. Having calculated
x S−CEL
1 , we can compute x S−CEL

2 = E2.

Discussion
The sequential sharing rules are somewhat exhaustive with regard to the calculation
effort even if there are only two riparian countries. However, their logic is clear. The



6.4 Bankruptcy Rules forWater Allocation 251

Table 6.16 The sequential CEL Rule

Countries Rule-based water
allocation to Li

Rule-based downstream
allocation

Loss calculation

L1 x S−CEL
1 =
Max[0, c1 − λ1]
x S−CEL
1 = 100

x S−CEL
cd1 =
Max[0, cd1 − λ1]
x S−CEL
cd1 = 20

x S−CEL
1 + x S−CEL

cd1 = E1
Max[0, 180 − λ1]+
Max[0, 20 − λ1] = 100
→ λ1 = 80

L2 x S−CEL
2 = E2

= 100 + (100 − 100) =
100

x S−CEL
cd2 = 0 —-

calculation begins upstream and first divides the available water on the basis of the
existing claims between the first country and the remaining countries. If the water
allocation for L1 is calculated, the calculation moves downstream and the remaining
water is allocated to L2. The reason for the sequential approach is justified by the
unidirectionality of the river system flow. However, one must be careful with the
direct application of the sequential sharing rules, whenever water is to be distributed
along a river.

Figure 6.4 shows thewater allocation calculated in the last three tables graphically
and compares it with the actual application of pure bankruptcy rules. The figure
displays the water allocation from the bankruptcy rules {P,CE A,CEL} depicted
in Fig. 6.3. The P rule and theCEL rule are not feasible since these rules allocatemore
water to L1 than available by R1. The river structure is depicted by the blue dotted
water budget line with its kink at {R1, R2}. Feasible water allocations are only those
along the blue dotted budget line. The sequential rules are by construction feasible.
The P Rule (see Table 6.14) allocates the water on the basis of proportional shares.
The proportional distribution is calculated with respect to inflow R1. In addition,30

country 2 also receives inflow R2, which for hydrological reasons cannot be split
between L1 and L2.

One has to be careful: The fact that the algorithm of the sequential sharing rule
takes the hydrology of a river into account does not imply that these rules should
always be applied for river basins. This is a normative decision. The consideration
of the flow direction has the consequence that the claims from upstream are no
longer considered in the calculation of the water allocation downstream. This follows
from the construction of downstream excess claims (see, e.g., Table 6.14). Thus
the calculated water allocations are compatible with hydrology, but at the expense
of the lower weighting of upstream claims. The modification of the bankruptcy
rules for unidirectional running waters is therefore not only of a technical nature,
but also involves a normative adjustment. Thus, the decision as to which of the
two sets of rules, the direct or the sequential, is to be applied remains not only a

30The line from {0, R2} to the point S-P and {c1, c2} can be constructed from the L1-row
in Table6.14. Since, x S−P

1 = λ1c1 = R1[c1/(c1 + (c2 − R2))] and x S−P
2 − R2 = R1 − x S−P

1 =
R2 + R1((c2 − R2)((c1 + (c2 − R2)) we can calculate (x S−P

2 − R2)/x
S−P
1 = (c2 − R2)/c1.
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Fig. 6.4 Bankruptcy rules
and sequential sharing rules.
Source own illustration

technical-hydrological one, but also a normative one. Table 6.14 clearly shows that
the sequentiality favors the downstream country.

If the application of this sequential rule is perceived as unfair, one can return to the
direct rule. Since it cannot be implemented in our example, a second best option is
available, namely to come as close as possible to the desired allocation. This alloca-
tion is {x1 = R1, x2 = R2}. In Fig. 6.4, we see that this second best option is closest
to the P rule and the CEL rule. At the same time, it is the water allocation according to
the principle of absolute territorial sovereignty (ATS). Both riparian countries make
full use of the water that originates in their territory. Notice, however, that this result
is not based on the principle of sovereignty, but on fairness considerations.

The normative problem of the sequential rule is even clearer in Fig. 6.5. Here, we
have chosen numerical values of the relevant variables such that both sets of sharing
rules, the direct ones and the sequential ones, are hydrologically feasible.31

In this scenario, the choice of allocation only depends on normative criteria.
The hydrology does not constrain the choice. The sequential sharing rules favor the
downstream country with exception of the sequential CEL rule. In our two country
example, both CEL rules, together with the direct CEA rule, lead to the same water
allocation. This is due to the assumption that both countries have the same claims.
The sequential versions of the P- and CEA rule do not satisfy the principle of Equal
Treatment of Equals.32 Thus, whenever the hydrology allows the direct application
of bankruptcy rules, the application of the sequential rules cannot be justified. But
even if the direct rules cannot be applied for hydrological reasons, the sequential
rules cannot be applied automatically. It may turn out that second-best solutions are
preferred for reasons of fairness, as shown above.

31The numerical values are {R = 180, c1 = 160, c2 = 160, R1 = 120, R2 = 60}.
32See the above-introduced properties. If c1 = c2 then x1 = x2. However, this might not be possible
due to the hydrological conditions.
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Fig. 6.5 Bankruptcy rules.
Source own illustration

The discussion shows that we have to be careful when applying bankruptcy rules.
The mere application of mathematical rules does not solve the sharing problem.
These methodological tools are helpful but cannot substitute the intrinsic fairness
problems of sharing scarce water resources. If the distribution rules are discussed
in principle, the geographical position of the countries poses a principle problem.
Geography could be regarded asmorally arbitrary.33 This implies that the actual order
along the rivermust not result in any disadvantages for the individual countries. If this
argument is valid, it ismight be necessary to talk about the legitimacy of claims before
applying a rule of division. Moreover, if moral arbitrariness is the basis of the TIBS
principle, we might end up with the insight that water treaties have to be constructed
in a more complex way. The pure allocation of water might not suffice to compensate
for geographical disadvantages. This leads back to our discussion of welfare-based
approaches which allow for side payments and other in-kind compensations. Of
course, with this step we have to face all the problems discussed in Sect. 6.3.

Box 6.2 Applying water bankruptcy rules to the Euphrates River

The Euphrates flows through three countries: Turkey, Syria, and Iraq. Together
with the Tigris, it forms the water catchment area, which has been known as
Mesopotamia ever since. From its springs in Turkey to the Persian Gulf, the
Euphrates River stretches over a length of 2,786 km. The average annual water
flow is 25 billionm3 serving 23 million people in the transboundary catchment
area. The water use in all three riparian countries relates mainly to irrigation

33See the fairness principles in Sect. 3.3.
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(70%), hydropower, and drinking water supply. Data records of the past 70
years indicate a negative trend of water availability measured as a decrease
in mean annual flows. The need for sustainable water treaties is, therefore,
becoming increasingly important. Currently, there are two bilateral accords
in force: an agreement between Syria and Turkey specifying the minimum
average flow at the Syrian-Turkish border and another treaty between Iraq and
Syria determining the water allocation of Euphrates water between these two
countries.

The linear arrangement of neighboring states and the simple geography of
tributaries make the Euphrates a good example of the sequential sharing rule.
The following map shows the geographical structure. The main water inflow is
provided from Turkey. In Syria, there are three tributaries contributing water to
the Euphrates (the Sajur, the Balikh, and the Khabur). Iraq does not contribute
to the watercourse.

The following table summarizes all necessary information to apply the sharing
allocation rules.

Claims and contributions
Riparian Claim Claim Contribution Contribution
Countries (MCM/year) % (MCM/year) %
Turkey 14,000 25.6 31,580 88.8
Syria 12,600 23 4000 11.2
Iraq 28,100 51.4 0 0

While water inflows are well measurable, the determination of the claims
requires an estimate of the water demand components from the various eco-
nomic sectors of the riparian countries. There are several studies in the litera-
ture, the results of which are gathered by Jarkeh et al. (2016) and then entered
into the table as a best guess. The application of the sequential sharing rule
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yields the following water allocation for the three countries (as a percentage
of the claims).

Sequential sharing rule. Source Jarkeh et al. (2016)
Riparian Sequential sharing rule

P Rule CEA Rule CEL Rule
Turkey 62 100 32
Syria 66 86 62
Iraq 66 38 83

It is interesting to see that the percentage satisfaction is almost the same
for all three countries in the case of the sequential P rule, despite Iraq’s
lack of inflow and its high claims. The application of the CEA rule leads
to a complete coverage of Turkish water demand, while Iraq only receives
about 40% of its claims. The CEL rule would yield exactly the opposite: Iraq
achieves the highest fulfillment of claims while Turkey is allowed to use only
extremely little water, 70% of its claims would not be covered. The remaining
water is to cross the Turkish border for the benefit of downstream states. The
question remains as to whether this water allocation has any chance of being
implemented...

Sources UN-ESCWA and BGR (2013), Jarkeh et al. (2016)

6.5 FlexibleWater Sharing

If one examines the emergence of water agreements between riparian states on an
international water body, it becomes apparent that it often takes years to reach a
successful conclusion. The Indus Waters Treaty, for instance, took over 6 years of
bargaining until it was concluded with the assistance of theWorld Bank. Agreements
are rather difficult to alter in response to unexpected changes of underlying hydro-
climatological conditions. Specifically, if the volume and the pattern of the regional
water inflow into an international catchment area changes, conflicts may occur. This
instability is the result of the inflexibility of water agreements. New hydrological
framework conditions are difficult to be taken into account in the treaties. Com-
pliance with a treaty on the basis of outdated framework conditions can lead to a
situation inwhich the conflict ismore advantageous for some partner states than com-
pliance with the treaty concluded. In the following, we will, therefore, investigate
how different contract types can influence the behavior of the contracting parties in
the event of unexpected changes in the hydrological conditions. We limit ourselves
to investigating the case of decreasing water inflows into an international river.

Contract Types
Roughly, we can distinguish between three contract types:

• Complete contingent contracts: This complex type of contract would be the best
answer to the variability of the water supply. For every conceivable hydrological
and climatological scenario, the water quantities are allocated ex ante, possibly
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with corresponding non-water transfers. However, the amount of information
required is very high. The concept of complex contingent contracts actually leaves
out the problem of unexpected events. Thus, we subsequently only focus on the
following two contract types.

• Fixed flow allocation: This type of water sharing rule is most common. A fixed
amount of water for the downstream country is stipulated. In the following anal-
ysis, we assume that this fixed amount is accompanied by a non-water transfer
from the downstream country to the upstream one.

• Proportional allocations: The water allocation follows a percentage rule. The
downstreamcountry is entitled to a certain percentageof thewater supply available
upstream. Again, we combine this type of agreement with a non-water transfer
which is also proportional to the water received.

To analyze these two contract forms, we take up our example of a river with two
riparian countries from Sect. 6.2. Upstream is labeled 1 and downstream is denoted
by 2. In the following, we assume that the river is fed only by water upstream. There
is no downstream tributary (i.e., R2 = 0). The optimal allocation then can be derived
from the following maximization program.

max
w1,w2

B1(w1) + B2(w2) w1 + w1 ≤ R1 (6.44)

Let the water supply be scarce. Then, the optimal fixed water supply for downstream
w∗
2 satisfies the following condition

B
′
1(R1 − w2) = B

′
2(w2) (6.45)

Similarly, the proportional sharing rule can be fixed. The allotted amount of water
downstream is expressed as percentage α∗ of the total water available:

w∗
2 = (1 − α∗)R1 w∗

1 = R1 − w∗
2 = α∗R1 (6.46)

Thus if the water supply is constant, both allocations are identical. However, if
the water supply R1 decreases unexpectedly, the effects on both contract types are
rather different. To show this, we first have to determine the non-water transfers in
both contracts, the level of which depends on the bargaining power of both riparian
countries. Of course, whatever the amount of money (or other non-water transfer
vehicles) will be, the solution must lie in the core as defined in Sect. 6.2:

B1(w1) + T ≥ B1(R1) and B2(w2) − T ≥ 0 (6.47)

where T is the non-water transfer. In the case of a fixed flow agreement, T is also a
fixed amount. In the case of a proportional allocation of the water supply, T varies
with the amount of water transferred from upstream to downstream whereby the
price of water t is fixed.

T (r) = t(1 − α)r (6.48)
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where r ≤ R1 is the actualwater supply and t is thefixedwater price.Theproportional
water agreement makes the non-water transfer contingent on the actual amount of
water delivered to the downstream country. The fixed water price is calculated as

t = T

R1(1 − α∗)
(6.49)

that is, t are the average payments per amount of water delivered to the downstream
riparian at the time of the conclusion of the contract, i.e., when r = R1. Inserting
Eq. (6.49) into Eq. (6.48) yields

T (r) = r

R1
T (6.50)

Robustness to Changing Hydrological Conditions
Now, the question needs to be answered on how the two types of contracts perform
if, let’s say as a result of climate change, the water inflow unexpectedly decreases.
Three criteria are important here: efficiency, robustness, and fairness. Before the
unexpected water reduction, both contracts are efficient and fair by construction.
The sum of the benefits is maximized, both parties have agreed to the contract by
appropriate choice of a transfer T in the core and the resulting distribution of the
benefits is considered fair.

What happens now, if the water supply decreases, that is r < R1? In both types
of contracts, the quantities of water allocated differ from the quantities originally
negotiated, with the result that the efficiency properties change. This also applies
to the distribution of benefits. Further, it is unclear whether the two parties have an
incentive to complywith the contract, i.e., how robust the contract is. In the following,
we focus on this issue.

Let us assume that the water supply of the river r is falling, i.e., r < R1. In the case
of a fixed contract, the stipulated water allocation at the outset is w∗

2 (R1 − w∗
2) for

downstream (upstream). Let us assume that the fixed non-water transfer is calculated
such that both countries are better off than in the case of no agreement, i.e.:

B1(R1 − w∗
2) + T ∗ > B2(R1) and B2(w

∗
2) − T ∗ > 0 (6.51)

For example, we could calculate T ∗ such that total welfare of both riparian countries
is distributed according to the Shapley values.34 In this case,

T ∗ = 1

2

[
B2(w

∗
2) − B1(R1 − w∗

2) + B1(R1)
]

(6.52)

Now, let us analyze the robustness of this contract with the help of a numerical exam-
ple: B

′
i = a − bwi , a = 100, b = 1, and R1 = 100. Let’s start with the upstream

country. The country will stick to the contract as long as it is better off than in the

34See Sect. 6.2 and Exercise 6.4.
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Fig. 6.6 Robustness of a
fixed contract. Source own
illustration

stand-alone case. This can be observed in Fig. 6.6. The blue line shows the welfare
(utility) in the stand-alone case, i.e., in the case of conflict. In this case, country 2 does
not receive water from country 1. The upstream country uses the whole water supply
R1. Of course, it does not receive any transfer because the downstream country has
stopped to pay due to the breach of contract. The black line represents total utility for
the case that the upstream country complies with the contract. It delivers the fixed
amount of water w∗

2 and receives in exchange T
∗. As the water supply is decreasing,

the water available for upstream decreases because the downstream country receives
the fixed amount ofwater. There is a critical threshold r̂ , the intersection of both lines,
where it does not pay for the upstream country to comply any more with the contract
if r continues to drop. The length of the range R1 − r̂ indicates the robustness of this
type of contract.

Let us turn to the proportional contract. At the outset, i.e., r = R1, the agreement
provides that downstreamcountry receivesw∗

2 which can be expressed as a proportion
of R1 (see Eq. (6.46)). The amount of non-water transfer to the upstream country
depends on the actual amount of water delivered downstream whereas the price is
fixed according to Eq. (6.48). Thus, the countries’ benefits including transfers are

B1(α
∗r) + t(1 − α)r and B2((1 − α∗)r) − t(1 − α)r (6.53)

Figure 6.7 shows the stand-alone benefit of upstream as a function of the variable
water supply r (blue line) again. The black line depicts benefits plus transfers under
thefixed agreement and the gray line is net benefits of upstreamunder the proportional
contract. The black and gray lines begin at r = R1 at the same point “coop”where the
difference to point “conflict” indicates the benefit increase for upstream to conclude
a contract with downstream. However, this difference shrinks as r decreases. Then,
comparing the intersections of both benefit lines of the two contract forms with the
benefit lines in the conflict case (blue line) shows that the proportional contract is
more robust than the contract with fixed quantities.

Durability of Agreements
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Fig. 6.7 Comparing fixed
and proportional contracts.
Source own illustration

The robustness of a water agreement depends on the flexibility of its construction.
But the flexible design is not sufficient for the durability of an agreement:

• Water agreements are more viable if the participating countries share the risk
associated with unexpected water shortage. A proportional contract provides a
rule to share the risk. A fixed water agreement shifts the risk to the upstream
country. Its only incentive to complywith the agreement is the anticipated threat of
downstream to cancel the non-water transfer if no water is delivered. The stability
of a water agreement depends on the flexibility of its items stipulated, specifically,
the transfers agreed upon. If these non-water transfers are to be provided on a
periodical basis, downstream can cancel its payment in reaction to a breach of
contract by upstream. Here again, the fixed term agreement is less flexible than the
proportional rule. If upstream does not deliver the amount of water agreed upon,
downstream stops the payments. In contrast, the proportional contract allows (a
bit) more flexibility. Less water delivered by upstream leads only to less payment
from downstream according to the internal water price stipulated.

• The analysis so far assumes that the contract parties assess the advantage of the
agreement by comparing the outcome under compliancewith the stand-alone ben-
efits. As long as the contract leads tomore utility compared to the conflict situation
(breach of contract), the terms and conditions agreed uponwill be respected.How-
ever, whether to comply with the contract under a shrinking water supply might
not be the only consideration of the parties. Even if the benefits under a contract
are higher than in the conflict case (breach of contract), the distribution of benefits
changes with less water supply. If the resulting benefit distribution is considered
unfair, the contract might be broken even if the resulting conflict situation wors-
ens the economic situation of one or both parties. We know from experimental
economics that people do not only look at their benefits but also at the relative
position, i.e., the distribution of benefits.35

35The ultimatum game has shown this with astonishing evidence, see, e.g., Thaler (1988).
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• Even if a certain degree of flexibility is built into the treaty, there may be rene-
gotiation because the countries are not satisfied with the scheduled outcome of
the agreement when the supply of water has declined. Then it is important that
the institutional framework of the treaty is operational. Regular contacts between
representatives of the two countries create a basis of trust which makes successful
renegotiation likely.

6.6 An Institutional Perspective onTransboundaryWater
Agreements

6.6.1 An Institutional Approach

In the previous sections, we have investigated designs to divide a transboundary
water resource among riparians. It is evident that the solutions, such as the Shap-
ley value, will not be translated into a real-world treaty as such. An institutional
economic approach suggests that real-world transboundary management would not
follow such a technocratic top-down approach. The study of the theoretical prin-
ciples of water allocation, however, allows to clarify which division rules can be
qualified as fair in principle and worthy of approval. These concepts are deeply con-
nected with the fundamental principles of justice and ethics and have also shaped
international water law. They certainly belong to what institutional economics calls
the institutional environment, traditions, and informal institutional framework condi-
tions shaped by cultural configurations (Ostrom 1990; North 1990). For example, the
ancient Talmud’s garment rule already contains a simple version of the constrained
equal awards rule.

The two approaches presented here, benefit sharing and bankruptcy rules, differ
with regard to the weighting of two traditions of thought in social philosophy and
political theory. The concept of the core and Shapley value can be assigned to the
concept of the social contract as the constitution of cooperation. Rational people
come together and agree to divide the advantages of cooperation in a fair and accept-
able way.36 The underlying fairness concept of the Shapley value is certainly the
accountability principle.37 The Shapley value is calculated on the basis of the aver-
age marginal productive contributions of the individual partners to the overall result.
Those who do not contribute to the cooperation receive nothing. The consideration
of individual productivity also leads to the fact that the allocation is acceptable. In

36Remember that α < β < γ where the latter number is the outcome with cooperation.
37See Sect. 3.3.
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this way, the Shapley value combines the concept of fairness (accountability) with
the concept of rationality as exploiting mutual cooperation advantages.

The nucleolus is close to the concept of the “veil of ignorance” by John Rawls.38

This approach implies that the allocation of resources should follow those who are
most disadvantaged. The nucleolus first determines all “disappointments” that follow
from a proposed allocation and selects the largest one. Then, in an iterative procedure,
a new proposal is put forward with the aim of reducing the largest disappointment.
This leads to disappointments of other sub-coalitions. Thus, the search process is
continued until the maximum disappointment has been minimized. This approach is
also in the tradition of the social contract: it is fair (in the sense of Rawls) and worthy
of acceptance, i.e., it lies in the core and puts all partners in a better position.

However, these approaches have their limits in practice. They abstract from too
many complex relationships that have to be considered if one wants to successfully
conclude water contracts. To begin with, the contracting parties are not simply indi-
viduals, but state entities which themselves consist of a number of social groups with
differing interests. We, therefore, consider the game theoretical allocation rules as
an element of a comprehensive holistic approach to understand the development of
international water treaties. Institutional economics39 allows this broad perspective
to be built up scientifically. Here, we distinguish between institutional environment
(blue area in Fig. 6.8) and institutional arrangements (yellow bottom area).

The fundamental considerations of justice and its game theory specifications cer-
tainly belong to the first area together with culturally determined concepts of justice,
religious belief systems, and grown principles of law, written and unwritten. In
contrast, the institutional arrangements are the structure within which the members
of a society act politically and carry out economic transactions (production, con-
sumption). These structures have grown historically, a development process that is
not solely the result of planning, but is often predetermined by the past. Historians
speak here of path dependencies or lock-in effects. Socio-technical structures often
exhibit an inertia that resembles a lock-in, such as an energy system based on fossil
resources that does not change to a system of renewable energy production without
deliberate energy policy measures. Similar retarding forces of grown institutional
structures inhibit the further development of spatially bound infrastructures, such as
waterways. Changed geographical settlement structures, for example, require new
waterways instead of simply preserving the historic ones.40 The interaction between
environment (vegetation, landscape, terrestrial eco-system) and man-made infras-

38This is the concept underlying the social welfare function: If no one knew in advance how he
would fare on earth because he had no prior information about it (veil of ignorance), he would argue
in favor of improving the situation of the worst off in the world. In the context of the nucleolus, the
worst off is the one who is most disappointed with respect to the difference of the utility apportioned
to him in the grand coalition and the welfare level he can achieve by himself.
39Saleth and Dinar (2004) explain the importance of the institutional economics approach to under-
stand the water sector.
40See Willems and Busscher (2019) for an analysis of the Dutch national waterways.
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Fig. 6.8 The institutional embeddedness. Source own illustration

tructure determines the political level in which social and economic developments
are embedded. Interventions in the water cycle can lead to ecological effects that
extend beyond the boundaries of the local infrastructure. It is then not enough to
assess infrastructure investments at the lower local political levels, but also higher
levels must be involved in the decision-making process. This is entirely in the spirit
of integrated water resource management, linked to the principle of subsidiarity. The
integrative approach does not only refer to the geographical dimension, but also to
the water users and indirect users of the water cycle. The latter are, for example,
farmers who not only use water directly (irrigation), but also depend on a function-
ing ecosystem to ensure soil fertility. An inclusive approach to water management
should be pursued at national level. All stakeholders should be taken into account in
the sustainable shaping of the water cycle.

The problem of incomplete inclusion of all social groups in water management is
not only due to an asymmetry of political power. Even if access to co-determination
is guaranteed constitutionally and politically, it depends on the executive implemen-
tation of water policy plans. The level of governance is thus addressed. The effec-
tiveness and functioning of water management institutions depend on an adequate
design that takes into account the political environment, the inclusion of stakeholders
and the incentives of employees at different levels of the institution.

6.6.2 Principles for Effective Institutional Development

In the following, some principles are presented that are important for the develop-
ment of effective institutions, both for national authorities and for transboundary
institutions. However, this should not give the perception that effective water man-
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agement institutions can simply be assembled from a design toolbox. Institution
building is always a laborious singular historical process, which refers to the respec-
tive individual case. Nevertheless, general principles should be considered in that
context.

• Purpose, objectives, and role: It must be clear from the outset why management
institutions have been set up. What are the actual objectives and purposes of the
institution? This question must be asked at every administrative level. For exam-
ple, is the purpose confined to the mere collecting and analyzing of relevant data?
Is it about coordination of decentralized decision-makers (passive management),
of advice, or does the institution established also have decision-making power
(active management)?

• Power and duties: If water management is endowed with power, it is particu-
larly important to precisely define its competences and, to communicate its limits.
These boundaries may be of an economic or geographical nature. Is the authority
able to take planning initiatives or does it only have a monitoring function to
enforce the regulatory measures laid down by other institutions (regional parlia-
ments, etc.)?

• Decision rules : The exercise of power requires legitimacy, otherwise, the imple-
mentation of water management measures will not be enforceable. It must be
transparent how decisions have been taken, and this with reference to the consti-
tutional legal basis.

• Accountability and responsibility The responsibilities of all participants must
be clearly defined. This applies on the one hand to the managers or civil servants
employed in the administrative units and on the other hand to thewater users. In the
course of the institutional implementation of water management, the assignment
of duties and the takeover of responsibilities must be clearly communicated. This
also includes the definition and description of sanction measures in the event that
those involved do not comply with them.

• Mediation: Integrated water management is often about competing claims. Con-
flicts will inevitably arise. As a rule, these cannot be decided top-down. The
institution must, therefore, build up the competence and capacity to resolve these
conflicts in an orderly communication and negotiation process.

• Competence and expertise: Institutions do not function abstractly. Design alone
does not ensure their effectiveness. It is important to build up a personnel devel-
opment with regard to competence and expertise right from the start (capacity
building). Administrative and decision-making units must have a critical mass of
a well-trained and competent core staff. In the long term, an institution cannot
rely on external consultancy (Biswas 1996).

6.6.3 Idealtypes of Governance

If the international water catchment area is regarded as a common complex ecosys-
tem, the institutional structure should take into account the specific complex interre-
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Fig. 6.9 Idealtypes of
governance. Source
Pahl-Wostl and Knieper
(2014)

lations. The fitting of the management structure to the hydro-ecological conditions
is called adaptive management.41 For this approach, it is particularly important that
the institutional structure must “mirror” the geographical, hydrological, and eco-
logical complexity of a catchment area. An institutionalized top-down approach,
for example, is usually not effective because decision-makers at the national level
make water management decisions without necessarily taking into account regional
impacts, leading to a so-called spatial scale mismatch. The spatial scale runs from
the global level to the regional level, then to the level of regional rivers (lakes) and
finally to subwater catchment areas. At all levels, effects can arise that must be per-
ceived by suitable institutions (government agencies, NGOs, municipalities, etc.).
The information must then be brought together promptly and effectively so that it
can be processed at the respective institutional levels.

Basically, international waters should only be managed as a multilevel common
pool within the framework of co-management of all open operational units. This
can lead to problems of sovereignty, problems that must be solved in the underlying
treaty. The increasing use of regional water systems and the increasing volatility of
weather events (heavy rainfall, drought, etc.) require a very high degree of flexibility
in the institutional structure, to be able to react effectively to these unforeseeable
events and should therefore be polycentric in nature. This idealtypical structure has
certain characteristics, which are illustrated by Fig. 6.9, based on Pahl-Wostl and
Knieper (2014).

Along the horizontal axis, the degree of power decreases from the left with cen-
tralized power to the right pole, where power is equally distributed among all insti-
tutional units involved. These could be, for example, regional water authorities that
are located at the same level without hierarchies. The vertical axis indicates the
degree of cooperation or coordination between the sub-institutions. This can refer,
for example, to the coordination of decisions or to the exchange of information.Coop-

41There is an extensive literature on this concept, see, e.g., Akamani and Wilson (2011).
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eration/coordination is strongly pronounced at the upper end; it ends in a completely
uncoordinated coexistence.

Four idealtypes result from this coordination system. At the top left is the coordi-
nated, centralized water institution as found in top-down approaches. Its adaptability
is low. The transparency of information is low, the degree of participation is just as
low, and it derives its legitimacy only from the national level. At the bottom left, we
find ourselves in a completely disintegrated situation. A few players, equipped with
comparatively much power, pursue their own interests to the detriment of the inter-
national water catchment area. Economic literature refers to this constellation as rent
seeking. This system is also very susceptible to corruption. The situation improves a
little on the lower right because the un-cooperating institutions are endowed with lit-
tle power. They cannot effectively implement their interests. However, this does not
mean that the catchment area will be managed sustainably. Fragmentation does not
allow the development of a targeted sustainability strategy. The polycentric structure
is the only idealtype that has the prerequisites for adaptive management. There are
no dominance structures, such that the various user interests can be balanced. The
individual stakeholders are well networked and coordinated. It is therefore possible
to react quickly to changing environmental conditions.

However, the polycentric configuration can only be understood as an ideal type.
Whether the structure can be implemented at all in the respective political gravi-
tational fields is a completely different question. It may be that, due to historical
path dependency and cultural conditions, certain forms of adaptive management can
only be implemented in the course of a long reform process. The development of
typologies is nevertheless useful because it elaborates the necessary institutional
prerequisites for successful transboundary water management. This makes it clear
that there is a long way between fundamental considerations about the allocation of
scarce water, as described in the previous sections, and practical implementation as
recognized institutional structures.

6.6.4 Application to Transboundary Agreements

Institutional design of integrated water resource management is even more chal-
lenging once cooperation between sovereign states is required. Figure 6.8 highlights
some institutional issues of transboundary water management. The political spheres
of both countries play a role in the joint management. At the political level, nego-
tiations are first held on the allocation of water, which is restricted by geographical
patterns of watercourses (tributaries, lakes, direction of streams, etc.). Of particular
importance is whether a multidimensional contract or only a contract for the quan-
tities of water should be negotiated. The compromise space is much larger in the
case of the multipurpose contracts because different economic sectors can be com-
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bined, for example, water use can be traded against energy supply.42 This negotiation
might be conducted in the presence of power asymmetries, whether due to the posi-
tion of the riparian states (upstream, downstream) or due to economic and military
dominance. These initial strategic positions become increasingly important as water
scarcity increases. In some circumstances, riparians may not be prepared to negotiate
the use of water because they feel strong enough to use water without taking into
account the needs of other riparian states. This does not necessarily mean, however,
that conflicts must arise. There may be something like a status quo under customary
law in which the management of a transboundary water body takes place. However,
these undefined floating conditions are likely to vanish as water scarcity increases.

When a contract becomes ready to be signed, implementation is an issue. This
raises the question of the institutional nature of transboundary water management.
Here, similar aspects to those described for the national or regional level must be
considered. The organization to be formed is located in the gravitational area of
sovereign states, which makes the institutionalization and administrative work con-
siderably more difficult. The Damocles’ sword of unilateral termination or simply
noncompliance with the treaty by the contracting parties is hovering over the insti-
tution established.

The effectiveness of a transboundary organization depends not only on the prin-
ciples introduced above, but also on the depth of cooperation granted to it by the
contractual partners. A distinction can be made between different degrees of coop-
eration (see Vollmer et al. (2009)):

• Shallow cooperation: There is only a loose connection between the contracting
parties. The cooperation is not “visible”, i.e., there are no formalized structures,
like joint committees, task forces, or established partnerships. There is only a loose
direct contact with the respective national organizational entities of the riparian
countries enclosed in a treaty. This minimal institutionalization is, of course, the
result of a contract that does not explicitly regulate much, but rather represents a
declaration of intent for cooperation.

• Intermediate cooperation: The operational level is visibly structured here. There
are regular meetings between the responsible representatives of the state authori-
ties, and a secretariat organizes this interaction, which also requires its own staff.
However, there is no budget sovereignty.

• Deep cooperation: Within this framework, the established authority has a certain
autonomy. It has an independent budget and its powers go far beyond preparatory
work (information, organization). It has decision-making powers.

The varying degrees of cooperation reflect the level of allocative power conferred
on the established institution. The wider the field of competence and organizational
depth of the institution, the greater its clout. Within the framework of the Sustainable

42Benefit sharing takes account of this exploitation of exchange gains, while bankruptcy rules
restrict themselves to water as a means of distribution.
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Development Goal, UNWater has defined the effectiveness of the institutionalization
of transboundary basin management (indicator 6.5.2).43 A transboundary manage-
ment institution is called “operational” if it meets the following criteria:

• There is a joint body, joint mechanism, or commission (e.g., a river basin organization)
for transboundary cooperation;

• There are regular (at least once per year) formal communications between riparian
countries in [the] form of meetings (either at the political or technical level);

• There is a joint or coordinated water management plan(s), or joint objectives are set,
and;

• There is a regular exchange (at least once per year) of data and information.

UNWater collects data on the organizational implementation of formalized coop-
eration.44 For surface water projects, 84 of the 155 international contractual coop-
erations responded to the survey 2018. 42 of these have a very high degree of orga-
nizational structure, mainly Europe and Northern America, and sub-Saharan Africa.
However, some caution is called for when evaluating the empirical results. As UN
Water notes, the degree of organization cannot be used automatically to draw con-
clusions about the results, such as better water quality or an improvement in the
livelihood of people living in the international waters under the organizational struc-
tures implemented. There is a critical literature on this indicator.45 The mere fact
that an organizational structure has been established does not necessarily mean that
the underlying contract is fair and inclusive in terms of sustainability, i.e., involves
the various stakeholders in transboundary water management.

6.7 Exercises

Exercise 6.1 Benefit sharing in a river with two riparian states
Assume there are two riparians at one river, riparian 1 which is upstream and riparian
2 which is downstream. The riparians are indexed with the indices i , with i = {1, 2}.
The natural inflow into the river upstream of riparian 1 is given with R1 = 100, while
the natural inflow downstream of riparian 1 but upstream of riparian 2 is given with
R2 = 50. Due to the diversion and consumption of water from the river with the level
wi , the riparians generate a benefit of Bi . The benefit functions are specified with

43McCracken and Meyer (2018) analyze the methodology of the SDG indicator 6.5.2 and report on
empirical results.
44See Bertule et al. (2018).
45See Hussein et al. (2018).
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Fig. 6.10 Benefit sharing in
a river basin with two
riparians. Source own
illustration

Bi (wi ) = ai · wi − 0.5 · bi · (wi )
2

The parameters of the benefit functions are assumed with a1 = 100, a2 = 60, b1 =
b2 = 1.

The situation in the river is shown by Fig. 6.10. The marginal benefit of riparian
1 is illustrated from the left vertical ordinate to the right direction, while we plot the
marginal benefit of riparian 2 from the right vertical ordinate to the left direction.
The length of the abscissa stands for the water amount R1 + R2, while the upstream
external inflow R1 is represented by the distance between the left origin of the
diagram and the vertical line named with R1. Therefore, the downstream external
inflow R2 is represented by the distance between the right origin of the diagram and
the vertical line R1. In the following explanation, we would like to find the UID,
DID, and Shapley solution of the benefit sharing problem.

In the river basin, two cooperation scenarios are possible:

• The riparians act unilaterally in a noncooperative way. The water consumption
amounts of the riparians are symbolized with wNC

1 . The consumption level of the
upstream riparian (wNC

1 ) is represented in Fig. 6.10 by the distance from the left
origin of the diagram to the position of wNC

1 , while the consumption level of the
downstream riparian (wNC

2 ) is represented in Fig. 6.10 by the distance between
the position of wNC

1 and the right origin of the diagram.
• The riparians form a joint arrangement and act in a cooperative manner. The water

consumption amount for this scenario is represented by wC
1 . The consumption

level of the upstream riparian (wC
1 ) is represented in Fig. 6.10 by the distance

from the left origin of the diagram to the position of wC
1 , while the consumption

level of the downstream riparian (wC
2 ) is represented in Fig. 6.10 by the distance

between the position of wC
1 and the right origin of the diagram.
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The first step of the benefit sharing problem is the calculation of the benefits under
each cooperation scenario. Let’s start with the unilateral acting. If the riparians act
in a noncooperative way, any riparian would like to maximize its own specific ben-
efit. Riparian 1 is upstream of riparian 2, hence riparian 1 will receive the natural
inflow R1 first. Therefore, we start with the benefit maximization problem of ripar-
ian 1. However, we have to note that the diverted amount w1 is restricted by the
water availability R1. Therefore, we are able to formulate the following optimization
problem:

max{w1}
[B1(w1)] s.t . w1 ≤ R1 (6.54)

Therefore, the following Lagrangian function can be formulated:

L1 = B1(w1) + λ1 · (R1 − w1) (6.55)

The resulting KKTs are

∂L1

∂w1
= B ′

1(w1) − λ1 ≤ 0 ⊥ w1 ≥ 0

∂L1

∂λ1
= R1 − w1 ≥ 0 ⊥ λ1 ≥ 0

(6.56)

Both assumptions, on the one hand w1 ≥ 0 and λ ≥ 0 and on the other hand w1 ≥ 0
and λ = 0, are leading to the optimal solution. For the assumptionw1 ≥ 0 and λ ≥ 0,
it is possible to find the following solution:

(λ1) : R1 − w1 = 0

→ wNC
1 = R1 = 100

(w1) : B ′
1(w1) − λ1 = 0

→ λ1 = B ′
1(w

NC
1 ) = a1 − b1 · wNC

1 = 0

(6.57)

Based on the other assumption w1 ≥ 0 and λ1 = 0, we find the same solution:

(w1) : B ′
1(w1) = 0

→ a1 − b1 · w1 = 0

→ wNC
1 = a1

b1
= 100

(λ1) : R1 − w1 ≥ 0

→ R1 = 100 ≥ 100 = w1

(6.58)

Therefore, the benefit of riparian 1 for unilateral acting is

B1(w
NC
1 ) = a1 · wNC

1 − 0.5 · b1 · (wNC
1 )2 = 5000 (6.59)

which is represented by the illustration in Fig. 6.10 as the areas A + B + C .
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After the consumption of riparian 1 (w1) and the downstream headwater inflow
R2, the riparian 2 is able to divert and consume the water from the river. Due to
the former water abstraction by riparian 1, just R1 + R2 − w1 amounts of water are
available for riparian 2. The optimization problem of the downstream riparian 2 is
therefore

max{w2}
[B2(w2)] s.t . w2 ≤ R1 + R2 − w1 (6.60)

Hence, the following Lagrangian function can be formulated:

L2 = B2(w2) + λ2 · (R1 + R2 − w1 − w2) (6.61)

which leads to the following KKT:

∂L2

∂w2
= B ′

2(w2) − λ2 ≤ 0 ⊥ w2 ≥ 0

∂L2

∂λ2
= R1 + R2 − w1 − w2 ≥ 0 ⊥ λ2 ≥ 0

(6.62)

Based on the assumption that riparian 2will have a consumption (w2 ≥ 0) and that the
available water for riparian 2 is fully used (λ2 ≥ 0), the solution of the optimization
problem can be found as

(λ2) : R1 + R2 − w1 − w2 = 0

→ wNC
2 = R1 + R2 − wNC

1 = 50

(w2) : B ′
2(w1) − λ2 = 0

→ λ2 = B ′
2(w

NC
2 ) = a2 − b2 · wNC

2 = 10 ≥ 0 �

(6.63)

Therefore, the benefit of riparian 2 for the noncooperative acting in the basin is

B2(w
NC
2 ) = a2 · wNC

2 − 0.5 · b2 · (wNC
2 )2 = 1750 (6.64)

which is represeted by area E in Fig. 6.10.
If the riparians form a joint arrangement, in which they allocate the water in a way

that the benefit in the entire basin is maximized, the following optimization problem
can be formulated:

max{w1,w2}
[B1(w1) + B2(w2)] s.t . w1 ≤ R1, w2 ≤ R1 + R2 − w1 (6.65)

Similar to the problems (6.54) and (6.60), the water consumption of any riparian is
restricted by the available water at the respective abstraction point (see constraints of
problem (6.65)). The available water for riparians 1 and 2 is R1 and R1 + R2 − w1,
respectively. Based on problem 6.65, the following Lagrangian function can be set
up:

L = B1(w1) + B2(w2) + λ1 · (R1 − w1) + λ2 · (R1 + R2 − w1 − w2) (6.66)
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Therefore, it is possible to formulate the following KKT:

∂L

∂w1
= B ′

1(w1) − λ1 − λ2 ≤ 0 ⊥ w1 ≥ 0

∂L

∂w2
= B ′

2(w2) − λ2 ≤ 0 ⊥ w2 ≥ 0

∂L

∂λ1
= R1 − w1 ≥ 0 ⊥ λ1 ≥ 0

∂L

∂λ2
= R1 + R2 − w1 − w2 ≥ 0 ⊥ λ2 ≥ 0

(6.67)

The assumptionsw1 ≥ 0,w2 ≥ 0, λ1 = 0, and λ2 ≥ 0 lead to the following optimal-
ity condition46:

(w1) : B ′
1(w1) − λ2 = 0

(w2) : B ′
2(w2) − λ2 = 0

(λ1) : R1 − w1 ≥ 0

(λ2) : R1 + R2 − w1 − w2 = 0

(6.68)

It is therefore possible to find the optimal level of consumption based on the following
system of equations:

(w1) ∧ (w2) : B ′
1(w1) = B ′

2(w2)

→ a1 − b1 · w1 = a2 − b2 · w2

(λ2) : R1 + R2 − w1 − w2 = 0

(6.69)

The solution of the system of equations is

wC
1 = 95 , wC

2 = 55

This solution is optimal, because there are no contradictions within the optimality
conditions or assumptions:

(w1) ∧ (w2) : λ2 = B ′
1(w

C
1 ) = B ′

2(w
C
2 )

→ λ2 = a1 − b1 · wC
1 = a2 − b2 · wC

2 = 5 ≥ 0

(λ1) : R1 ≥ w1 → 100 ≥ 95

(6.70)

The benefits which result from consumption are therefore

46We assume that both riparians consume water and therefore, w1 ≥ 0 and w2 ≥ 0. Furthermore,
we assume that the upstream riparian 1 does not consume the entire available water at its abstraction
point and leaves water in the river, hence, λ1 = 0, while the downstream riparian 2 abstracts the
total amount which is available, hence, it can be assumed that λ2 ≥ 0.
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B1(wC
1 ) = a1 · wC

1 − 0.5 · b1 · (w1)
2 = 4987.5 ,

B2(wC
2 ) = a2 · wC

2 − 0.5 · b2 · (w2)
2 = 1787.5

The benefit from consumption for riparians 1 and 2 are represented in Fig. 6.10
by the areas A + B and C + D + E , respectively. Based on these benefits from
consumption, it is possible to calculate the cooperation gain, which is

Δ = B1(w
C
1 ) + B2(w

C
2 ) − B1(w

NC
1 ) − B2(w

NC
2 ) = 25 (6.71)

which is represented in Fig. 6.10 by area D.
In the joint arrangement, any riparian has to receive at least as much benefits as

it would generate for the unilateral acting case, which means z1 ≥ B1(wNC
1 ) and

z2 ≥ B2(wNC
2 ). Therefore, the question of how to share the cooperation gain is the

main focus of the benefit sharing problem for a basin with 2 riparians.
For the UID approach, the total cooperation gain is assigned to the upstream

riparian, hence,

xU I D
1 = B1(w

NC
1 ) + Δ = 5000 + 25 = 5025, xU I D

2 = B2(w
NC
2 ) = 1750

The benefit of the riparians 1 and 2 are represented by the area A + B + C + D
and E in Fig. 6.10, respectively. For realizing theUIDapproach, the upstream riparian
has to receive side payments from the downstream riparian:

spU I D
2,1 = B2(w

C
2 ) − zU I D

2 = 1787.5 − 1750 = 37.5

which is represented by the area C + D in Fig. 6.10.
However, the total cooperation gain is assigned to the downstream riparian 2 for

the DID approach, therefore,

xDI D
1 = B

wNC
1

1 = 5000 , xDI D
2 = B

wNC
2

2 + Δ = 1750 + 25 = 1775

These benefits for riparians 1 and 2 are represented in Fig. 6.10 by the areas
A + B + C and E + D, respectively. For realizing this solution, the downstream
has to make side payments to the upstream riparian of the level:

spDI D
2,1 = B2(w

C
2 ) − xDI D

2 = 1787.5 − 1775 = 12.5

which is represented by the area C in Fig. 6.10.
TheUIDandDIDsolution sets theminimumandmaximumbound for the assigned

benefits to the riparians in the joint arrangement (see Eqs. 6.72 and 6.73). Further-
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more, the generated benefit has to be assigned to the riparians in total to meet feasi-
bility and pareto-efficiency conditions (see Eq.6.74).

xDI D
1 ≤ x1 ≤ xU I D

1 → 5000 ≤ x1 ≤ 5025 (6.72)

xU I D
2 ≤ x2 ≤ xDI D

2 → 1750 ≤ x2 ≤ 1775 (6.73)

x1 + x2 = B
wC
1

1 + B
wC
2

2 → x1 + x2 = 4987.5 + 1787.5 = 6775 (6.74)

The Shapley solution is a specific focal point solution of the benefit sharing
problem, in which both riparians receive half of the cooperation gain:

x SH1 = B1(w
NC
1 ) + 0.5 · Δ = 5000 + 12.5 = 5012.5 , x SH2 = B2(w

NC
2 ) + 0.5 · Δ = 1750 + 12.5 = 1762.5

The assigned benefit for riparian 1 is represented by the areas A + B + C + 0.5 · D
in Fig. 6.10, while the benefit of riparian 2 is represented by areas E + 0.5 · D. This
Shapley solution could be realized by side payments made by riparian 2:

spSH2,1 = B2(w
C
2 ) − x SH2 = 1787.5 − 1762.5 = 25

which is represented by areas C + 0.5 · D in Fig. 6.10.

Exercise 6.2 Applying the focal point solution concepts of benefit sharing to a
water body with two riparians
Assume a water body with two riparians (1 and 2). Both riparians can either act
unilaterally (noncooperation scenario) or they can form a joint arrangement where
they act in a cooperative way:

• If both act unilaterally, we assume that the water consumption of riparians 1 and

2 is wNC
1 and wNC

2 , respectively. Based on the consumption levels, the riparians
1 and 2 generate a benefit of BNC

1 (wNC
1 ) and BNC

2 (wNC
2 ). For simplification

reasons, we will term the benefit in the case of noncooperation of riparian 1 by
BNC
1 and the one of riparian 2 by BNC

2 in the following. The benefit generated in
the entire basin is BNC

1 + BNC
2 .

• If both form a joint arrangement, the riparians allocate the water in a way that the
benefit in the entire basin is maximized. Therefore, the riparians 1 and 2 receive
the water wC

1 and wC
2 , respectively. Based on the consumption, they generate a

benefit of BC
1 (wC

1 ) and BC
2 (wC

2 ), which can be simplified as BC
1 and BC

2 . The
generated benefit in the basin is BC

1 + BC
2 . The cooperation gain Δ results from

the difference of the benefit in the entire basin between cooperation and nonco-
operation:

Δ = BC
1 + BC

2 − BNC
1 − BNC

2
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Therefore, the benefit in the entire basin under the case of cooperation BC
1 + BC

2
can be also formulated as

BNC
1 + BNC

2 + Δ

Assume the joint arrangement is formed and the generated benefit in the basin
(BNC

1 + BNC
2 + Δ) should be assigned to the riparians 1 and 2. For solving this

benefit sharing problem, we want to apply the three formerly explained focal point
solution concepts which are presented in Sect. 6.3, for finding the Shapley, Nash-
Harsanyi, and nucleolus solutions.

The Shapley Solution

We apply Eq. (6.16) for finding the Shapley solution, which is explained in detail in
Sect. 6.3.47

The Shapley value solution of one riparian is affected by the weighting factor and
the incremental benefit of this user for various cooperation scenarios.

Regarding the weighting factor, there are just two cooperation scenarios which
can be realized, either the unilateral acting or the joint arrangement. We assume
in the Shapley approach that both cooperation scenarios have the same realization
probability, which is a purely normative assumption from the Shapley approach (see
(Wu and Whittington 2006)). Hence both cooperation scenarios have a realization
probability of 0.5:

• Unilateral acting: this cooperation scenario is represented by the sets {1} and {2}.
There is of course per definition just one riparian in these sets, hence #I SG = 1.
We have two riparians in the basin, hence the grand coalition {1, 2} consists
of these two riparians and therefore #G = 2. Inserting these parameters in the
weighting factor, we get

(#G − #I SG)! · (#I SG − 1)!
#G! = (2 − 1)! · (1 − 1)!

2! = 1! · 0!
2! = 0.5

• Joint arrangement: this situation is represented by the set {1, 2} which consists of
two riparians, hence #I SG = 2. We already discussed the level of #G, which is
#G = 2. Inserting these parameters in the weighting factor, we get

(#G − #I SG)! · (#I SG − 1)!
#G! = (2 − 2)! · (2 − 1)!

2! = 0! · 1!
2! = 0.5

47The formula for finding the Shapley solution is

xi =
∑

I : i ∈ I ∨
S : i ∈ S ∨

G

[
(#G − #I SG)! · (#I SG − 1)!

#G! · [V (...) − V (... − i)]

]

(6.16)
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The incremental benefit of riparian i , which is the second main element of the
Shapley approach, is represented in Eq. (6.16) by the term [V (...) − V (... − i)]. This
incremental benefit is

• in case of unilateral acting for riparians {1} and {2}: the level of the respective
benefit the unilaterally acting riparian generates.

• in case of a joint arrangement {1, 2}: the difference between the generated benefit
in the joint arrangement and the level of benefit the other riparian generates under
the situation of unilateral acting. Hence, the incremental benefit of riparian 1 is
the difference between the generated benefit in the joint arrangement and the
generated benefit of the unilaterally acting riparian 2, V ({1, 2}) − V ({2}), while
the incremental benefit of riparian 2 is the difference between the generated benefit
in the joint arrangement and the generated benefit of the unilaterally acting riparian
1, V ({1, 2}) − V ({1}).

We know that the benefit in the grand coalition is V ({1, 2}) = BNC
1 + BNC

2 + Δ,
while the benefit of the unilaterally acting riparian 1 is V ({1}) = BNC

1 and the benefit
of the unilaterally acting riparian 2 is V ({2}) = BNC

2 .
The riparian 1 is just part of the coalition scenarios {1} and {1, 2}, hence the

Shapley solution is

x SH1 = 0.5 · V ({1}) + 0.5 · [V ({1, 2}) − V ({2})]
= 0.5 · BNC

1 + 0.5 · (BNC
1 + BNC

2 + Δ − BNC
2 )

x SH1 = BNC
1 + 0.5 · Δ

while the riparian 2 is just part of the coalition scenarios {2} and {1, 2}, hence, its
Shapley solution is

x SH2 = 0.5 · V ({2}) + 0.5 · [V ({1, 2}) − V ({1})]
= 0.5 · BNC

2 + 0.5 · (BNC
1 + BNC

2 + Δ − BNC
1 )

x SH2 = BNC
2 + 0.5 · Δ

The following table at the next page can be also used as an auxiliary tool for
finding the Shapley solution:
The Nash-Harsanyi solution

The optimization problem of the Nash-Harsanyi solution concept is (see Sect. 6.3)

max{x1,x2}

[
(x1 − BNC

1 ) · (x2 − BNC
2 )

]

s.t . x1 + x2 = BNC
1 + BNC

2 + Δ

BNC
1 ≤ x1

BNC
2 ≤ x2
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Therefore, the following Lagrangian function results:

L = (x1 − BNC
1 ) · (x2 − BNC

2 ) + μ · (BNC
1 + BNC

2 + Δ − x1 − x2) + λ1 · (x1 − BNC
1 ) + λ2 · (x2 − BNC

2 )

And hence, we are able to set up the following KKT conditions:

(x2 − BNC
2 ) − μ + λ1 ≤ 0 ⊥ x1 ≥ 0 (6.75)

(x1 − BNC
1 ) − μ + λ2 ≤ 0 ⊥ x2 ≥ 0 (6.76)

BNC
1 + BNC

2 + Δ − x1 − x2 = 0 , μ is free (6.77)

x1 − BNC
1 ≥ 0 ⊥ λ1 ≥ 0 (6.78)

x2 − BNC
2 ≥ 0 ⊥ λ2 ≥ 0 (6.79)

Suppose that both riparians receive benefits which exceed their respective individ-
ual rationality conditions. Hence, we have to assume that x1 ≥ 0, x2 ≥ 0, λ1 = 0,
and λ2 = 0.48 Based on Eqs. (6.75)–(6.77), we can set up the following system of
equations:

x1 − BNC
1 = x2 − BNC

2

x1 + x2 = BNC
1 + BNC

2 + Δ

The solution is

xNH
1 = BNC

1 + 0.5 · Δ

xNH
2 = BNC

2 + 0.5 · Δ

This solution meets the conditions (6.78) and (6.79).49

The nucleolus solution

The nucleolus solution can be calculated on the basis of the following optimization
problem (see Sect. 6.3):

min{x1,x2,e}
[e]

s.t . x1 + x2 = BNC
1 + BNC

2 + Δ

e + x1 ≥ BNC
1

e + x2 ≥ BNC
2

48The variable μ is a free variable, because it is related to an equality constraint.
49Based on condition 6.78, x1 ≥ BNC

1 . Due to x1 = BNC
1 + 0.5 · Δ, Eq. 6.78 is met.

Based on condition 6.79, x2 ≥ BNC
2 . Due to x2 = BNC

2 + 0.5 · Δ, Eq. 6.79 is met.
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Therefore, we can formulate the following Lagrangian function:

L = e + μ · (x1 + x2 − BNC
1 − BNC

2 − Δ) + λ1 · (BNC
1 − e − x1) + λ2 · (BNC

2 − e − x2)

and hence, we are able to set up the following KKT conditions:

μ − λ1 ≥ 0 ⊥ x1 ≥ 0 (6.80)

μ − λ2 ≥ 0 ⊥ x2 ≥ 0 (6.81)

1 − λ1 − λ2 = 0 , e is free (6.82)

x1 + x2 − BNC
1 − BNC

2 − Δ = 0 , μ is free (6.83)

BNC
1 − e − x1 ≤ 0 ⊥ λ1 ≥ 0 (6.84)

BNC
2 − e − x2 ≤ 0 ⊥ λ2 ≥ 0 (6.85)

Please note that e andμ are free variables, which means that they can have a positive
or negative value. Under the assumption that x1 ≥ 0, x2 ≥ 0, λ1 ≥ 0, and λ2 ≥ 0,
we are able to formulate the following system of equations50:

e = BNC
1 − x1 = BNC

2 − x2

x1 + x2 = BNC
1 + BNC

2 + Δ

The solution is

xnuc1 = BNC
1 + 0.5 · Δ

xnuc2 = BNC
2 + 0.5 · Δ

The maximum objection which is minimized by applying the nucleolus approach is
e = −0.5 · Δ.

Comparison of Focal Point Solutions

It becomes obvious from this analysis, that in a basin with just two riparians the three
presented focal point solution concepts lead to the same results:

x SH1 = xNH
1 = xnuc1 = BNC

1 + 0.5 · Δ

x SH2 = xNH
2 = xnuc2 = BNC

2 + 0.5 · Δ

This means that each riparian receives the benefit it would generate when acting
unilaterally in a noncooperative way and furthermore half of the cooperation gain.
Therefore, the cooperation gain is shared equally between the two riparians.

50We suppose that both riparians receive benefits, hence we assume x1 ≥ 0 and x2 ≥ 0. If we
furthermore assume that the maximum objection in the nucleolus solution, denoted by e, is based
on the payoff of the unilaterally acting riparian 1 (which means e = BNC

1 − x1) as well as on the
payoff of the unilaterally acting riparian 2 (which means e = BNC

2 − x2), it becomes obvious that
the conditions 6.84 and 6.85 become binding, and hence, we have to assume that λ1 ≥ 0 and λ2 ≥ 0.
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Exercise 6.3 Water allocation under bankruptcy rules
The importance of rationing rules will probably increase in the next few years. In
many internationalwaters, inflows are decreasing due to climate change. In particular,
justice issues will become even more important in the discussion. Thereby, it is
difficult to determine which bankruptcy rule leads to a fair distribution of water. We
have seen that this question is closely related to the legitimacy of claims. But even
if an agreement has been reached on what a justified level of claims is, the question
remains as to which of the bankruptcy rules is fair. We cannot answer this question
a priori here. That remains to be decided on a case-by-case basis.

What we can do, however, is to investigate how water allocations develop as a
function of the scarcity of water. Thereby, we are primarily interested in how the
relative allocation of scarce water as a function of R develops. To do so, we first
define the degree to which water claims are met51:

γ BR
i = x BR

i /ci , i = {1, 2}, BR = {P,CE A, AP} (6.86)

To compare this degree, we construct the relative fulfillment:


BR = γ BR
1 /γ BR

2 , BR = {P,CE A, AP} (6.87)

From Eq. (6.27), it is easy to derive the claim satisfaction of both countries for
the proportional rule:

γ P
1 = x P1 /c1 = R

c1 + c2
= γ P

2 = x P2 /c2 (6.88)

From Eq. (6.88), it is clear that the relative fulfillment of claims does not change
with respect to R. This bankruptcy rule is obviously fairness-stable, i.e., the relative
claim fulfillment does not vary with R.

The same applies to the CEA rule, as can easily be shown. In our example in
Sect. 6.4, the CEA allocation led52 to xCE A

1 = R/2 = xCE A
2 . Thus,


CE A = γ CE A
1 /γ CE A

2 = (R/2)/c1
(R/2)/c2

= c2
c1

(6.89)

which shows that the CEA rule is also fairness-stable with regard to a decrease of
the water supply.

It remains to analyze the Adjusted Proportional Rule. From Eq. (6.28), we have

x AP
1 = (R − c2) + c1 − R + c2

2(c1 + c2 − R)
{R − (R − c2) − (R − c1)} (6.90)

51The superscript BR refers to bankruptcy rules.
52We have assumed the following numerical values: R = 200, c1 = 180, and c2 = 120. This has
led to water allocation as depicted in Fig. 6.3.



280 6 TransboundaryWater Resource Management

which can be reduced to

x AP
1 = R + c1 − c2

2
⇒ γ AP

1 = x AP
1 /c1 = R + c1 − c2

2c1
(6.91)

Finally, utilizing the claim fulfillment of country 2, we get


AP = γ AP
1 /γ AP

2 =
(
c2
c1

)[
R + c1 − c2
R + c2 − c1

]

(6.92)

It is left as an exercise to the reader to prove that

∂
AP

∂R
=
(
c2
c1

)
2(c2 − c1)

(R + c2 − c1)2
(6.93)

Our numerical example c1 = 180 > c2 = 120 implies that with increasing R, the
relative claim fulfillment for the upstream country gets worse. Thus, with a lower
water supply the relative claim fulfillment decreases for the downstream country.

What is the lesson of this task? It shows that the riparian countries choose
bankruptcy rules not only depending on the outcome for a certain water supply
currently provided by the regional hydrological cycle but also on the characteristics
of these rules when the water supply changes.

Exercise 6.4 The robustness of water agreements
In many international waters, water inflow has declined in recent years. This is partly
due to climate change. This unexpected change in the water cycle is often not taken
into account in international water treaties. We have addressed this problem in the
section on the robustness of water contracts. In the following, we will examine the
stability of fixed and proportional contracts with the help of a very simple numerical
example.

Assume two identical countries, country 1 (upstream) and country 2 (down-
stream). The benefit function of each is Bi (wi ) = awi − (b/2)w2

i , i = {1, 2} Let
a = 100 and b = 1. As in Sect. 6.5, we assume that water inflow takes place only
upstream and is R = 100. Since both countries are identical, the optimal allocation
would be simply w∗

1 = w∗
2 = R/2 = 50, i.e., the upstream country allows half of

the water supply to flow through to country 2. It remains to analyze the non-water
transfer of the downstream country to the upstream country. Let us assume, that this
transfer is constructed such that the joint benefit of cooperation is distributed accord-
ing to the Shapley value. We know that the Shapely value lies for the case with just
two riparians in the core. The formula is

s1 = B1(R) + 1

2
[B1(R/2) + B2(R/2) − B2(0) − B1(R)] (6.94)

s2 = B2(0) + 1

2
[B1(R/2) + B2(R/2) − B2(0) − B1(R)] (6.95)
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This benefit division can be accomplished with the help of a transfer of country 2 to
country 1. We have

s1 = B1(R) + 1

2
[B1(R/2) + B2(R/2) − B2(0) − B1(R)] = B1(R/2) + T

(6.96)
where T is the non-water transfer from downstream to upstream. From this equation
it is easy to calculate T:

T = 1

2
[B1(R) + B2(R/2) − B1(R/2)] (6.97)

Notice thereby that B2(0) = 0. Sincewehave assumed identical countries B2(R/2) =
B1(R/2) and, hence, the transfer is simply

T = 1

2
B1(R) (6.98)

the downstream country ends up with

s2 = B2(R/2) − T (6.99)

It is now easy to determine the degree of robustness of both types of contracts
analyzed in Sect. 6.5 for the Shapley value. We begin with the fixed contract.

The upstream country delivers the fixed amount of water R/2 for a fixed payment
of T . As the water supply drops, the net benefit of the upstream country decreases.
Note that the benefit of country 2 is not affected by the water decrease. The contract
is robust as long as

B1(r − (R/2)) + T = B1(r − (R/2)) + (1/2)B1(R) ≥ B1(r) (6.100)

If we insert the quadratic benefit function, we can find the critical value of r for
which Eq. (6.100) is an equality:

r = (3/4)R (6.101)

This result can be found in Fig. 6.6. If the water decrease is less than 25% of R, the
water contract is stable. However, a larger water decrease would lead to a dissolution
of the agreement if the parties feel that the decrease will be long term.

To derive the r-range of the proportional contract, we start with the benefit of
the upstream county. The contract specifies that half of the available water flows
downstream. Utilizing Eq. (6.50), total benefit of country 1 is

B1(r/2) + T (r) = B1(r/2) + (r/R)T (6.102)

where T is defined in Eq. (6.98).
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To determine the range where total benefit defined in Eq. (6.102) within the con-
tract is higher than or equal to the conflict option, we have to set it equal to B1(r).
If we substitute the quadratic utility function into Eq. (6.102), it is an easy task to
calculate the critical r-value53:

r = (2/3)R (6.103)

It remains to check whether the downstream country sticks to the contract as the
water supply drops. The respective constraint is

B2(r/2) − (r/R)T = B2(r/2) − r

2R
B1(R) ≥ B2(0) = 0 (6.104)

Substituting the quadratic benefit function into this constraint yields after some
algebraic manipulation r ≤ 2R which is always satisfied, since r ≤ R. The down-
stream country never has an incentive to break the contract. It is always worse off
without water from upstream.

This analysis assumes that both countries only compare their benefits with respect
to the conflict case, i.e., the situation without a cooperative solution. However, we
know from the history of the bargaining process preceding the conclusion of a water
agreement that the distribution, i.e., the relative position of the contract partner, is
of high importance. Let us assume that in our example both countries were satisfied
with the distribution of the benefits at the outset. The allocation of water and the
transfer determined by the Shapley approach is deemed fair. As the water supply
drops, both net benefits decrease and the question remains whether the resulting
distribution of benefits continues to be regarded as just if the contract concluded for
r = R still applies. If not, it may happen that the contract will be broken even if the
conflict position makes the parties worse off. Such behavior due to an injured sense
of justice may well occur, as we know from experimental economics and also from
everyday life.

6.8 Further Reading

International environmental agreements as well as international water agreements
are often analyzed in economics as a sequence of strategic negotiation steps. Non-
cooperative game theory is particularly suitable for this purpose. Each negotiating
participant tries to maximize his advantages, taking into account the behavior of
the other participants. In cooperative game theory, the main purpose is to determine
joint action and the distribution of cooperative gains. The theory assumes that bind-
ing contracts can be concluded, i.e., the parties to the contract adhere to the agreed
arrangements. A very useful introduction to cooperative game theory with a number
of relevant examples from international water agreements is Dinar et al. (2007). Wu

53See in Fig. 6.7, the intersection between the blue and the gray line.
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and Whittington (2006) apply the concepts of the Shapley value and the nucleolus
to a water-sharing game of the Nile. In addition to the calculation of the benefits of
cooperation, the authors have also included hydrological constraints.

Contrary to cooperative game theory, bankruptcy rules deal with zero-sum games
in a noncooperative setting. What one gets, the other does not have, and vice versa. It
is obvious thatwith zero-sumgames, considerations of justice are of particular impor-
tance. Thomson (2002) gives a very instructive overview. Which rules of division
fulfill which axioms or criteria of justice? The relationship with cooperative game
theory is made. This concept can also be applied in the context of zero-sum games
(e.g., the Shapley value). Dagan and Volij (1993) compare different bankruptcy rules
with the bargaining approach of game theory. This is an interesting approach because
the criteria and properties of bankruptcy rules are interpreted as the result of cooper-
ative negotiations. For example, the authors show that the cooperative Nash solution
leads to CEA. Onemust be careful when applying bankruptcy rules to transboundary
water agreements. This applies in particular to river basins where there is a hierarchi-
cal structure of claims due to the unidirectionality of watercourses. It is possible that
a water allocation resulting from the direct application of a bankruptcy rule cannot
be implemented at all for hydrological reasons. Ansink and Weikard (2012) have
therefore developed modified bankruptcy rules (sequential sharing rules) that take
hydrological restrictions into account.

The effects of climate change will also affect international waters. For some time
now, scientists havebeenworkingon the questionof how the increasingwater scarcity
and variability of the water supply should be taken into account in international water
agreements. Cooley and Gleick (2011) analyze how existing contracts can accom-
modate these changes. The allocation rules must be made dependent on the amount
of water available. This requires a functioningmonitoring system embedded in awell
institutionalized transboundary management system. Ansink and Ruijs (2008) ana-
lyze the exact effects of sharing rules in a formal model when the average available
water quantity decreases and the variability increases at the same time. They conclude
that the increasing scarcity of water reduces the stability of international treaties, but
that increasing variability can even lead to a strengthening of contractual coopera-
tion. This analysis is deepened in Ambec et al. (2013). Different contract formats
(fixed and variable) are examined with regards to their vulnerability to increasing
water scarcity. An important finding of the authors is that contracts are stable when
their contractual components (water and compensatory transfers) are contingent on
a variable water supply. In this case, the contract becomes self-enforcing, i.e., there
is no incentive for the contracting parties to violate the contract.

The literature on the institutionalization of international treaties on water use is
very extensive. It is interdisciplinary and transdisciplinary. One of the latter is Biswas
(1996), who has worked on transboundary water management both as a scientist and
as an expert and practitioner. This also includes Draper (2007), who is active as a
researcher and political planner of water infrastructures. He developed criteria as a
necessary prerequisite for effective water-sharing agreements.

In addition to more descriptive studies, such as Vollmer et al. (2009), which bring
the institutional diversity of transboundarymanagement into a taxonomic order, there
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are analyses based on institutional economics, such as the comprehensive work of
Saleth and Dinar (2004). Here, the network of institutional structures at different
administrative and political levels is examinedwith regard to their effectiveness. This
depends primarily on the goals of the institutional units and the existing incentive
mechanisms.

The interdependence of institutional units, e.g., between water authorities at the
regional level and transboundary institutions, which are made up of representatives
of different riparian states, is also the focus of research dealing with adaptive man-
agement. However, the question is broader: How can the complexity of the ecological
system of an international water catchment area be combined with a correspondingly
adapted design of water management to form a sustainable and resilient ecological-
social integrated system? Akamani and Wilson (2011) and Pahl-Wostl et al. (2008)
give an overview. The basic philosophy is presented in Folke et al. (2005), and
Karkkainen (2004) provides two very instructive examples of how joint water man-
agement goes far beyond the rigid implementation of a treaty at a national level
(Chesapeake Bay Program, US-Canadian Great Lakes Program).

6.9 Chapter-Annex: Step-by-Step Solution of Optimization
Problems of Sect. 6.3

The Core: Identify the Number of Solutions in the Core
Optimization problem:

max
[
γ − x1 − x2 − x3

]
s.t . x1 ≥ α , x2 ≥ 0 , x3 ≥ 0

x1 + x2 ≥ β , x1 + x3 ≥ α , x2 + x3 ≥ 0

Lagrangian Function:

L = γ − x1 − x2 − x3 + λ{1} · (x1 − α) + λ{2} · x2 + λ{3} · x3
+ λ{1,2} · (x1 + x2 − β) + λ{1,3} · (x1 + x3 − α) + λ{2,3} · (x2 + x3)

KKT Conditions:

−1 + λ{1} + λ{1,2} + λ{1,3} ≤ 0 ⊥ x1 ≥ 0

−1 + λ{2} + λ{1,2} + λ{2,3} ≤ 0 ⊥ x2 ≥ 0

−1 + λ{3} + λ{1,3} + λ{2,3} ≤ 0 ⊥ x3 ≥ 0

x1 − α ≥ 0 ⊥ λ{1} ≥ 0

x2 ≥ 0 ⊥ λ{2} ≥ 0

x3 ≥ 0 ⊥ λ{3} ≥ 0

x1 + x2 − β ≥ 0 ⊥ λ{1,2} ≥ 0

x1 + x3 − α ≥ 0 ⊥ λ{1,3} ≥ 0

x2 + x3 ≥ 0 ⊥ λ{2,3} ≥ 0
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Assumption:

x1 ≥ 0, x2 ≥ 0, x3 = 0

λ{1} = λ{2} = λ{3} = λ{1,3} = λ{2,3} = 0, λ{1,2} ≥ 0

Solution: (Please note, the objective γ − x1 − x2 − x3 is denoted as Z )

x1 = α + δ, x2 = β − δ, λ{1,2} = 1

Z = γ − x1 − x2 − x3 = γ − β ≥ 0

The core: The Lower Bound of Each Player in the Core
Optimization problem:

min
[
x j
]
s.t . x1 + x2 + x3 = γ, x1 ≥ α, x2 ≥ 0, x3 ≥ 0

x1 + x2 ≥ β, x1 + x3 ≥ α, x2 + x3 ≥ 0

Lagrangian Function:

L = x j + λ{1,2,3} · (x1 + x2 + x3 − γ ) + λ{1} · (α − x1) − λ{2} · x2 − λ{3} · x3
+ λ{1,2} · (β − x1 − x2) + λ{1,3} · (α − x1 − x3) + λ{2,3} · (−x2 − x3)

KKT Conditions of Dual Variables:

x1 + x2 + x3 − γ = 0 , λ{1,2,3} is free
α − x1 ≤ 0 ⊥ λ{1} ≥ 0

−x2 ≤ 0 ⊥ λ{2} ≥ 0

x3 ≤ 0 ⊥ λ{3} ≥ 0

β − x1 − x2 ≤ 0 ⊥ λ{1,2}
α − x1 − x3 ≤ 0 ⊥ λ{1,3} ≥ 0

−x2 − x3 ≤ 0 ⊥ λ{2,3} ≥ 0

KKT Conditions of Primal Variables (primal variable is in the objective):

1 − λ{1} − λ{1,2} − λ{1,3} + λ{1,2,3} ≥ 0 ⊥ x1 ≥ 0

1 − λ{2} − λ{1,2} − λ{2,3} + λ{1,2,3} ≥ 0 ⊥ x2 ≥ 0

1 − λ{3} − λ{1,3} − λ{2,3} + λ{1,2,3} ≥ 0 ⊥ x3 ≥ 0

KKT Conditions of Primal Variables (primal variable is not in the objective):

−λ{1} − λ{1,2} − λ{1,3} + λ{1,2,3} ≥ 0 ⊥ x1 ≥ 0

−λ{2} − λ{1,2} − λ{2,3} + λ{1,2,3} ≥ 0 ⊥ x2 ≥ 0

−λ{3} − λ{1,3} − λ{2,3} + λ{1,2,3} ≥ 0 ⊥ x3 ≥ 0
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Assumption for Problem of Riparian 1:

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

λ{1} ≥ 0, λ{2} = λ{3} = λ{1,2} = λ{1,3} = λ{2,3} = 0

Solution for Problem of Riparian 1:

x1 = α

λ{1} = 1, λ{1,2,3} = 0

x2 = δ2, x3 = δ3

with 0 ≤ δ2 ≤ γ − α, 0 ≤ δ3 ≤ γ − α and δ2 + δ3 = γ − α

Assumption for Problem of Riparian 2:

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

λ{1} = λ{3} = λ{1,2} = λ{1,3} = λ{2,3} = 0, λ{2} ≥ 0

Solution for Problem of Riparian 2:

x2 = 0

λ{2} = 1, λ{1,2,3} = 0

x1 = α + δ1, x3 = δ3

with: 0 ≤ δ1 ≤ γ − α, 0 ≤ δ3 ≤ γ − α and δ1 + δ3 = γ − α

Assumption for Problem of Riparian 3:

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

λ{1} = λ{2} = λ{1,2} = λ{1,3} = λ{2,3} = 0, λ{3} ≥ 0

Solution for Problem of Riparian 3:

x3 = 0

The core: The Upper Bound of Each Player in the Core
Optimization Problem:

max
[
x j
]

s.t . x1 + x2 + x3 = γ, x1 ≥ α, x2 ≥ 0, x3 ≥ 0

x1 + x2 ≥ β, x1 + x3 ≥ α, x2 + x3 ≥ 0

Lagrangian Function:

L = x j + λ{1,2,3} · (γ − x1 − x2 − x3) + λ{1} · (x1 − α) + λ{2} · x2 + λ{3} · x3
+ λ{1,2} · (x1 + x2 − β) + λ{1,3} · (x1 + x3 − α) + λ{2,3} · (x2 + x3)
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KKT Conditions of the Dual Variables:

γ − x1 − x2 − x3 = 0, λ{1,2,3} is free
x1 − α ≥ 0 ⊥ λ{1} ≥ 0

x2 ≥ 0 ⊥ λ{2} ≥ 0

x3 ≥ 0 ⊥ λ{3} ≥ 0

x1 + x2 − β ≥ 0 ⊥ λ{1,2} ≥ 0

x1 + x3 − α ≥ 0 ⊥ λ{1,3} ≥ 0

x2 + x3 ≥ 0 ⊥ λ{2,3} ≥ 0

KKT Conditions of Primal Variables (primal variable is in the objective):

1 + λ{1} + λ{1,2} + λ{1,3} − λ{1,2,3} ≤ 0 ⊥ x1

1 + λ{2} + λ{1,2} + λ{2,3} − λ{1,2,3} ≤ 0 ⊥ x2 ≥ 0

1 + λ{3} + λ{1,3} + λ{2,3} − λ{1,2,3} ≤ 0 ⊥ x3 ≥ 0

KKT Condition of Primal Variables (primal variable is not in the objective):

λ{1} + λ{1,2} + λ{1,3} − λ{1,2,3} ≤ 0 ⊥ x1 ≥ 0

λ{2} + λ{1,2} + λ{2,3} − λ{1,2,3} ≤ 0 ⊥ x2 ≥ 0

λ{3} + λ{1,3} + λ{2,3} − λ{1,2,3} ≤ 0 ⊥ x3 ≥ 0

Assumption for Problem of Riparian 1:

x1 ≥ 0, x2 = 0, x3 = 0

λ{1} = λ{2} = λ{3} = λ{1,2} = λ{1,3} = λ{2,3} = 0

Solution for Problem of Riparian 1:

x1 = γ, λ{1,2,3} = 1

Assumption for Problem of Riparian 2:

x1 ≥ 0, x2 ≥ 0, x3 = 0

λ{1} ≥ 0, λ{2} = λ{3} = λ{1,2} = λ{1,3} = λ{2,3} = 0

Solution for Problem of Riparian 2:

x2 = γ − α

x1 = α, λ{1} = 1, λ{1,2,3} = 1
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Assumption for Problem of riparian 3:

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

λ{1} = λ{2} = λ{3} = λ{1,3} = λ{2,3} = 0, λ{1,2} ≥ 0

Solution for Problem of Riparian 3:

x3 = γ − β

α ≤ x1 ≤ α + δ, 0 ≤ x2 ≤ β − α − δ

with: 0 ≤ δ ≤ β − α as well as λ{1,2} = 1 and λ{1,2,3} = 1

The Nash-Harsanyi Solution
Optimization Problem:

max [(x1 − α) · x2 · x3] s.t . x1 + x2 + x3 = γ, x1 ≥ α, x2 ≥ 0, x3 ≥ 0

x1 + x2 ≥ β, x1 + x3 ≥ α, x2 + x3 ≥ 0

Lagrangian Function:

L = (x1 − α) · x2 · x3 + λ{1,2,3} · (γ − x1 − x2 − x3) + λ{1} · (x1 − α) + λ{2} · x2 + λ{3} · x3
+ λ{1,2} · (x1 + x2 − β) + λ{1,3} · (x1 + x3 − α) + λ{2,3} · (x2 + x3)

KKT Conditions:

x2 · x3 + λ{1} + λ{1,2} + λ{1,3} − λ{1,2,3} ≤ 0 ⊥ x1 ≥ 0

(x1 − α) · x3 + λ{2} + λ{1,2} + λ{2,3} − λ{1,2,3} ≤ 0 ⊥ x2 ≥ 0

(x1 − α) · x2 + λ{3} + λ{1,3} + λ{2,3} − λ{1,2,3} ≤ 0 ⊥ x3 ≥ 0

γ − x1 − x2 − x3 = 0, λ{1,2,3} is free
x1 − α ≥ 0 ⊥ λ{1} ≥ 0

x2 ≥ 0 ⊥ λ{2} ≥ 0

x3 ≥ 0 ⊥ λ{3} ≥ 0

x1 + x2 − β ≥ 0 ⊥ λ{1,2} ≥ 0

x1 + x3 − α ≥ 0 ⊥ λ{1,3} ≥ 0

x2 + x3 ≥ 0 ⊥ λ{2,3} ≥ 0

Assumption:

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

λ{1} = λ{2} = λ{3} = λ{1,2} = λ{1,3} = λ{2,3} = 0

Optimality Conditions:

λ{1,2,3} = x2 · x3 = (x1 − α) · x3 = (x1 − α) · x2
x1 + x2 + x3 = γ



6.9 Chapter-Annex: Step-by-Step Solution of Optimization Problems of Sect. 6.3 289

Solution:

x1 = 1

3
· (2 · α + γ ), x2 = x3 = 1

3
· (γ − α)

The Nucleolus
Optimization Problem:

min [e] s.t . x1 + x2 + x3 = γ, x1 + e ≥ α, x2 + e ≥ 0, x3 + e ≥ 0

x1 + x2 + e ≥ β, x1 + x3 + e ≥ α, x2 + x3 + e ≥ 0

Lagrangian Function:

L = e + λ{1,2,3} · (x1 + x2 + x3 − γ ) + λ{1} · (α − x1 − e) + λ{2} · (−x2 − e) + λ{3} · (−x3 − e)

+λ{1,2} · (β − x1 − x2 − e) + λ{1,3} · (α − x1 − x3 − e) + λ{2,3} · (−x2 − x3 − e)

KKT Conditions:

λ{1,2,3} − λ{1} − λ{1,2} − λ{1,3} ≥ 0 ⊥ x1 ≥ 0

λ{1,2,3} − λ{2} − λ{1,2} − λ{2,3} ≥ 0 ⊥ x2 ≥ 0

λ{1,2,3} − λ{3} − λ{1,3} − λ{2,3} ≥ 0 ⊥ x3 ≥ 0

1 − λ{1} − λ{2} − λ{3} − λ{1,2} − λ{1,3} − λ{2,3} = 0, e is free

x1 + x2 + x3 − γ = 0, λ{1,2,3} is free
α − x1 − e ≤ 0 ⊥ λ{1} ≥ 0

−x2 − e ≤ 0 ⊥ λ{2} ≥ 0

−x3 − e ≤ 0 ⊥ λ{3} ≥ 0

β − x1 − x2 − e ≤ 0 ⊥ λ{1,2} ≥ 0

α − x1 − x3 − e ≤ 0 ⊥ λ{1,3} ≥ 0

−x2 − x3 − e ≤ 0 ⊥ λ{2,3} ≥ 0

In accordance with the specification of α, β, and γ , we have to differentiate between two cases:

• Case 1 is valid if (β ≤ γ
3 ) ∨ ((

γ
3 < β) ∧ (

3·β−γ
2 ≤ α))

• Case 2 is valid if (
γ
3 < β) ∧ (α <

3·β−γ
2 )

Assumption under Case 1:

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

λ{1} ≥ 0, λ{2} ≥ 0, λ{3} ≥ 0, λ{1,2} = λ{1,3} = λ{2,3} = 0

Optimality Conditions Under Case 1:

α − x1 − e = −x2 − e = −x3 − e = 0

x1 + x2 + x3 − γ = 0

λ{1,2,3} = λ{1} = λ{2} = λ{3}
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Solution Under Case 1:

x1 = 2 · α + γ

3
, x2 = x3 = γ − α

3

e = α − γ

3

λ{1} = λ{2} = λ{3} = λ{1,2,3} = 1

3

Assumption Under Case 2:

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

λ{1} = λ{2} = λ{1,3} = λ{2,3} = 0, λ{3} ≥ 0, λ{1,2} ≥ 0

Optimality Conditions Under Case 2:

β − x1 − x2 − e = −x3 − e = 0

x1 + x2 + x3 − γ = 0

λ{1,2,3} = λ{1,2} = λ{3}

Solution Under Case 2:

x1 + x2 = β + γ

2
, x3 = γ − β

2

e = β − γ

2
λ{3} = λ{1,2} = λ{1,2,3} = 0.5

The nucleolus for the sub-coalition {1, 2} can be solved using the following optimization prob-
lem:

min{e,x1,x2}
[e]

s.t . x1 + x2 = 0.5 · (β + γ ), e + x1 ≥ α, e + x2 ≥ 0

The step-by-step nucleolus solution for a coalition with two riparians is explained in detail in
Exercise 6.2.

Solution:

x1 = 2 · α + β + γ

4
, x2 = β + γ − 2 · α

4
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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