
MPI+OpenMP Parallelization for Elastic Wave
Simulation with an Iterative Solver

Mikhail Belonosov1(&), Vladimir Tcheverda2, Victor Kostin2,
and Dmitry Neklyudov2

1 Aramco Research Center - Delft, Aramco Overseas Company B.V.,
Delft, The Netherlands

mikhail.belonosov@aramcooverseas.com
2 Institute of Petroleum Geology and Geophysics SB RAS, Novosibirsk, Russia

{cheverdava,kostinvi,neklyudovda}@ipgg.sbras.ru

Abstract. In this paper, we propose and study the hybrid (MPI and OpenMP)
parallelization for our novel approach to 3D numerical simulation of elastic
waves with Krylov-type iteration method. The quality of the parallelization is
justified by weak and strong scaling analysis.

Keywords: Parallelization � MPI � OpenMP � Elastic equation

1 Introduction

Accurate and fast estimation of the subsurface parameters is of vital importance in the
oil and gas industry. A potential candidate to handle this task is a frequency-domain
full waveform inversion (FWI) (see e.g. [6]) that has been actively developing in the
last decades. Due to advances in supercomputing technology, even 3D elastic inver-
sion, that may bring the most valuable information about the subsurface, seems to be
feasible. The most time consuming part of this process is the forward modeling per-
formed several times at each iteration. The efficiency of this process is strongly
dependent on how optimally the process is parallelized.

In this effort, we consider a frequency-domain elastic iterative solver proposed in
[3]. It is based on a Krylov-type iteration method [5] with a special preconditioner. This
method demonstrates a fast convergence at low frequencies, needed for FWI appli-
cations. In this paper, we explain an approach to parallelize it using a hybrid paral-
lelization: MPI and OpenMP. Its quality is justified by weak and strong scaling
analysis. We also illustrate, that this parallel method allows simulation in big models,
including a modified 2.5D Marmousi model comprising 90 million cells, for a feasible
time.

The original version of this chapter was revised: The abstract was updated. The correction to this
chapter is available at https://doi.org/10.1007/978-3-030-48340-1_64

© Springer Nature Switzerland AG 2020, corrected publication 2020
U. Schwardmann et al. (Eds.): Euro-Par 2019 Workshops, LNCS 11997, pp. 709–714, 2020.
https://doi.org/10.1007/978-3-030-48340-1_54

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48340-1_54&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48340-1_54&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48340-1_54&domain=pdf
https://doi.org/10.1007/978-3-030-48340-1_64
https://doi.org/10.1007/978-3-030-48340-1_54

2 A Preconditioned 3D Elastic Equation

Consider an elastic equation written in the velocity-stress form, describing propagation
of a monochromatic component of a wave in a 3D isotropic heterogeneous medium

ix
qI3�3 0
0 S6�6

� �
� 0 P̂

P̂T 0

� �
@

@x
� 0 Q̂

Q̂T 0

� �
@

@y
� c zð Þ 0 R̂

R̂T 0

� �
@

@z

� �
v ¼ f ; ð1Þ

where vector of unknowns v comprises nine components. These components include
the displacement velocities and components of the stress tensor. x is the real time
frequency, q x; y; zð Þ is the density, I3�3 is 3 by 3 identity matrix, P̂, Q̂ and R̂ are

constant matrices, S6�6 x; y; zð Þ ¼ A 0
0 C

� �
is 6 by 6 compliance matrix, and

A ¼
a �b �b
�b a �b
�b �b a

0
@

1
A;C ¼

c 0 0
0 c 0
0 0 c

0
@

1
A: ð2Þ

Coefficients a x; y; zð Þ, b x; y; zð Þ and c x; y; zð Þ are related to the Lame parameters. f is the
right-hand side representing the seismic source. c zð Þ is an attenuation function.
Equation (1) is solved in a cuboid domain of Nx � Ny � Nz points with free surface top
boundary and attenuation layers on the other boundaries.

Introducing preconditioner L0 (for details refer to [3]), we arrive at equation

I � dLL�1
0

� �
~v ¼ f ; with v ¼ L�1

0 ~v; dL ¼ L� L0; ð3Þ

We solve Eq. (3) via the biconjugate gradient stabilized method (BiCGSTAB) [7].
This assumes computing several times per iteration the product of the left-hand side
operator of Eq. (3) by a particular vector w, i.e. computing w� dLL�1

0 w
� 	

. Compu-
tations of L�1

0 w takes the most of runtime. To solve L0q1 ¼ w we assume that function
w x; y; zð Þ is expanded into a Fourier series with respect to x and y with coefficients
ŵ kx; ky; z
� �

, where kx and ky - spatial frequencies. ŵ are solutions to equation

ix
q0I3�3 0

0 S0

� �
� ikx

0 P̂
P̂T 0

� �
� iky

0 Q̂
Q̂T 0

� �
� c zð Þ 0 R̂

R̂T 0

� �
@

@z

� �
v̂ ¼ ŵ;

ð4Þ

with the same boundary conditions as for Eq. (1). Here q0 and S0 are some averaging
of q and S. We solve it numerically, applying a finite-difference approximation,
resulting in a system of linear algebraic equations with a banded matrix. Computation
of ŵ we perform via the 2D Fast Fourier Transform (FFT) and after v̂ are found, L�1

0 w
is computed via the inverse 2D FFT.

710 M. Belonosov et al.

3 Parallelization

Four computational processes including BiCGSTAB, the 2D FFTs and solving (4),
mainly drive the solver. We decompose the computational domain along one of the
horizontal coordinates and parallelize these processes via MPI: using parallel BiCG-
STAB function from PETSc [2], 2D FFT from Intel Math Kernel Library [4], and each
MPI process, corresponding to a certain subdomain, solves boundary value problems
(4) for its own set of spatial frequencies kx and ky, independently of other MPI pro-
cesses. The main exchanges between the MPI processes are while performing FFTs.

Following this strategy, each MPI process would independently solve its own set of
Nx � Ny=N (N – number of MPI processes) problems. We solve them in a loop, par-
allelized via OpenMP. Schematically, our parallelization strategy is presented in Fig. 1.

To investigate the properties of this parallelization we construct a 2.5D land model
(left image of Fig. 2) from the open source 2D Marmousi model. It is discretized with a
uniform grid of 551� 700� 235 points. In the right image of Fig. 2 we illustrate the
10 Hz monochromatic component of the computed wavefield for this model. Using 9
nodes with 7 MPI processes per node and 4 cores per process, the total computation
time is 348 min.

Fig. 1. Parallelization scheme.

Fig. 2. Left - 2.5D P-velocity model; right - 3D view of a computed wavefield.

MPI+OpenMP Parallelization 711

MPI strong scalability of the solver is defined as ratio tM=tN , where tM and tN are
elapsed run times to solve the problem with N and M[N MPI processes each cor-
responding to a different CPU. Using MPI, we parallelize two types of processes. First,
those scaling ideally (solving problems (4)), for which the computational time with N
processes is T

N. Second, the FFT, that scales as
TFFT
a Nð Þ, with coefficient 1\a Nð Þ\N. The

total computational time becomes T
N þ TFFT

a Nð Þ (here we simplify, assuming no need of

synchronization) with scaling coefficient T þTFFT
T
Nþ

TFFT
a Nð Þ

, that is greater than a Nð Þ. This is why,
we expect very good scalability of the algorithm, somewhere between the scalability of
the FFT and the ideal scalability. We did not take into account OpenMP, which can be
switched on for extra speed-up. It is worth noting, that we can not use MPI instead of
OpenMp here, since then the scaling would degrade. MPI may have worked well if
T � TFFT , but this is not the case.

We estimate the strong scaling for modeling in two different models, both of 200�
600� 155 points: a subset of depicted in Fig. 2 and the overthrust model [1]. From the
left image of Fig. 3 we conclude that our solver scales very well up to 64 MPI processes.

For weak scaling estimation, we assign the computational domain to one MPI
process and then extend the size of the computational domain along the y-direction,
while increasing the number of MPI processes. Here, we use one MPI process per

CPU. The load per CPU is fixed. For the weak scaling, we use function fweak Nð Þ ¼
T Nð Þ
T 1ð Þ ; where T Nð Þ is the average computational runtime per iteration with N MPI

processes. The ideal weak scalability corresponds to fweak Nð Þ ¼ 1.
To estimate it in our case, we considered a part of themodel presented in Fig. 2 of size

200� 25� 200 points with a decreased 4 m step along the y-coordinate. After extending
the model in the y-direction 64 times, we arrive at a model of size 200� 1600� 150
points. The right image of Fig. 3 demonstrates that for up to 64 MPI processes, weak
scaling of our solver has small variations around the ideal weak scaling.

Fig. 3. Left - strong MPI scaling of the solver: blue dashed line - for the Marmousi model, red
line - for the overthrust model, the dashed grey line - ideal scalability; right - weak MPI scaling
measurements: the blue line - the solver and the dashed grey - ideal weak scaling. (Color figure
online)

712 M. Belonosov et al.

With OpenMP we parallelize the loop over spatial frequencies for solving (4). To
estimate the scalability of this part of our solver, we performed simulations in a small
part of the overthrust model comprising 660� 50� 155 points on a single CPU having
14 cores with hyper-threading switched off and without using MPI. Figure 4 shows that
our solver scales well for all threads involved in this example. It is worth mentioning,
that we use OpenMP as an extra option applied when further increasing of the number
of MPI processes doesn’t improve performance any more, but the computational
system is not fully loaded, i.e., there are free cores.

4 Conclusions

Further improvement of the MPI scaling may be achieved by incorporating a domain
decomposition along two horizontal directions into the current MPI parallelization
scheme. Moreover, the parallelization using domain decomposition along the vertical
direction for solving boundary value problems 4 may be applied for accelerating the
computational runtime.

Acknowledgments. Two of the authors (Dmitry Neklyudov and Vladimir Tcheverda) have
been sponsored by the Russian Science Foundation grant 17-17-01128.

References

1. Aminzadeh, F., Brac, J., Kuntz, T.: 3-D Salt and Overthrust Models: SEG/EAGE Modelling
Series, no. 1, SEG Book Series, Tulsa, Oklahoma (1997)

2. Balay, S., Abhyankar, S., Adams, M. et al.: PETSc Users Manual. Argonne National
Laboratory, ANL-95/11 - Revision 3.11 (2019). https://www.mcs.anl.gov/petsc

3. Belonosov, M., Kostin, V., Dmitriev, M., Tcheverda, V.: 3D numerical simulation of elastic
waves with a frequency-domain iterative solver. Geophysics 83(6), 1–52 (2018)

Fig. 4. Strong scalability on one CPU: blue line - ideal and red line is the solver scalability.
(Color figure online)

MPI+OpenMP Parallelization 713

https://www.mcs.anl.gov/petsc

4. Intel: Intel®Math Kernel Library (Intel®MKL) (2018). https://software.intel.com/en-us/intel-
mkl

5. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)
6. Symes, W.W.: Migration velocity analysis and waveform inversion. Geophys. Prospect. 56

(6), 765–790 (2008)
7. Van Der Vorst, H.A.: BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the

solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)

714 M. Belonosov et al.

https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl

	MPI+OpenMP Parallelization for Elastic Wave Simulation with an Iterative Solver
	Abstract
	1 Introduction
	2 A Preconditioned 3D Elastic Equation
	3 Parallelization
	4 Conclusions
	Acknowledgments
	References

