®

Check for
updates

Physics-Based Checksums for Silent-Error
Detection in PDE Solvers

Maher Salloum, Jackson R. Mayo®, and Robert C. Armstrong

Sandia National Laboratories, P.O. Box 969, Livermore, CA 94551, USA

{mnsallo, jmayo,rob}@sandia.gov

Abstract. We discuss techniques for efficient local detection of silent data
corruption in parallel scientific computations, leveraging physical quanti-
ties such as momentum and energy that may be conserved by discretized
PDEs. The conserved quantities are analogous to “algorithm-based fault
tolerance” checksums for linear algebra but, due to their physical founda-
tion, are applicable to both linear and nonlinear equations and have effi-
cient local updates based on fluxes between subdomains. These physics-
based checksums enable precise intermittent detection of errors and recov-
ery by rollback to a checkpoint, with very low overhead when errors are
rare. We present applications to both explicit hyperbolic and iterative ellip-
tic (unstructured finite-element) solvers with injected memory bit flips.

Keywords: Silent errors - Partial differential equations - Linear
algebra + Algorithm-based fault tolerance + Checkpoint/restart

1 Introduction

The effects of faults at extreme scale are a growing concern for high-performance
computing (HPC) applied to scientific simulation [4]. Much resilience work deals
with recovery from hard failures, such as a node that crashes. However, erroneous
behavior can manifest in other ways. For example, an error may not immediately
cause a crash, but may lead to an insidious wrong answer or cascade to a costly
wider failure, which could be avoided if caught earlier. Thus, detecting errors
with locality in space and time provides the best opportunity to mitigate them.
In scientific computations, error detection at the application level is facili-
tated by properties that are common in these simulations and are typically vio-
lated when errors occur: smoothness, conservation, and other numerical charac-
teristics. In the face of uncertainty about likely error types and rates at extreme
scale, improved algorithmic detection can aid both diagnosis and recovery.
Silent hardware errors, such as silent data corruption, are a prime example
where precise detection is important. The future prevalence of these errors is

Under the terms of Contract DE-NA0003525, there is a non-exclusive license for use
of this work by or on behalf of the U.S. Government.
© National Technology & Engineering Solutions of Sandia, LLC. 2020

U. Schwardmann et al. (Eds.): Euro-Par 2019 Workshops, LNCS 11997, pp. 681-693, 2020.
https://doi.org/10.1007/978-3-030-48340-1_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48340-1_52&domain=pdf
https://doi.org/10.1007/978-3-030-48340-1_52

682 M. Salloum et al.

unclear, but there is concern that they will be significant at extreme scale [4]. In
addition, improved algorithmic detection could help diagnose and localize subtle
software issues such as numerical instability and race conditions [2,9].

Existing work on algorithm-based fault tolerance (ABFT) has developed
approaches for application-level error detection. Generic ABFT for linear algebra
solvers can be achieved using checksums [13]. In addition, scientific computations
often feature physical conserved quantities such as energy or momentum, which
can be viewed as a type of checksum, even for nonlinear problems. Such check-
sums and conserved quantities enable detecting errors reliably. However, in their
standard form, they are defined globally, so in a parallel solver they require
expensive collective communication [1] and do not localize errors to specific pro-
cesses or tasks.

Spatially local error detection offers the potential for greater scalability of
resilience, reducing communication and allowing more efficient local (rather than
global) recovery, just as is sought for other localized failures in parallel program-
ming models [6,14]. Techniques explored for detecting errors locally in scien-
tific computations include machine learning [12], comparison between different
numerical methods [2], and outlier detection [11], but these techniques are empir-
ical and inexact, with significant risk of false positives and false negatives.

Here we present a “physics-based checksum” (PBC) approach that builds on
ABFT checksums and physical conservation laws applicable to scientific com-
putations, and enables precise and efficient local error detection when such
conserved quantities exist. As long as some form of checkpoint /restart remains
viable, focusing purely on detection can allow recovering from occasional silent
errors by rollback, as for hard failures. This is efficient for rare errors because it
avoids the cost of more complex checksums that would support not only detec-
tion but also correction (roll-forward).

While the greatest expected benefit of the PBC approach is in conjunction
with local recovery (restarting only the processes or tasks with errors) [14], the
present work uses global checkpoint/restart (driven by local PBC detection) to
illustrate the effectiveness in a familiar resilience setting. We demonstrate the
approach in simple MPI-based solvers for partial differential equations (PDEs)
and evaluate the effect on solver completion time and accuracy in the presence
of emulated silent errors.

An abstract of this work was presented previously [10].

2 Checksum Approaches for Resilience

2.1 Error Detection Concepts

Checksums aim to introduce efficient redundancy in a solver via a smaller “side”
computation that remains consistent with the solver state if all computations
are correct (Fig. 1). State-of-the-art linear algebra checksums (LACs) [13], when
verified after a series of linear algebra operations, can indicate with very high
probability whether an error (processor or memory error) occurred somewhere in
those operations (including in the checksum itself). Even if multiple errors occur,

Physics-Based Checksums for Silent-Error Detection in PDE Solvers 683

precise cancellation of their effects so that the checksum still matches is very
unlikely. Thus, the verification of consistency can be performed intermittently,
e.g., just before each checkpoint.

Solver variables Checksums

Init

| Checkpoint
Operation 1 Update
| X 1
Operation 2 Update
Operation 3 Update
\
[Checkpoint
Verify
& re-init

Fig. 1. Data flow in a solver using checksums. An error introduced in an intermediate
step (red x) can be detected when the checksums are verified, and the solver can then
restart from a valid state. (Color figure online)

The checksum for a floating-point vector w is typically taken as the sum of
its entries, Q(u) = eTu, where e = {1,...,1}. When an operation is performed
on u, the linearity of such a checksum allows it to be updated in a way other
than directly recomputing it, thus providing the redundant error check. Even
with correctly functioning hardware and software, algebraic checksum relations
hold numerically only to the level of floating-point roundoff. Silent errors in low-
order bits whose numerical magnitude is within the roundoff level will be false
negatives (undetected). When a checksum is verified by recomputing it from the
underlying data, it is prudent to re-initialize (refresh) the checksum to remove
accumulated roundoff drift.

From a different perspective, physical conserved quantities can be used in a
similar way. Global conservation laws of the form

Q= dV p = const, (1)

space

where p is a density expressible in terms of solver variables, are an exact prop-
erty of many continuum equations, including nonlinear ones. We here consider
the preferred case of a “conservative discretization”, where a version of the con-
servation law holds independent of the mesh size or time step and is exact up to
roundoff. As with standard LACs, these conserved quantities can detect errors
reliably (via comparison of) at an initial time and a later time) but involve
global communication and do not localize errors in space.

To better leverage the benefits of conservation laws and create efficient local
PBCs, we consider the more fundamental, local form of a continuum conservation
law, dp/0t = —V -J, where J is the flux density of the conserved quantity. Then,

684 M. Salloum et al.

defining the conserved quantity in a spatial region R (e.g., a computational
subdomain), Q(R) = [, dV p, we find the integrated conservation law

dQ(R) _
o ——]ngSJ. (2)

Thus, Q(R) changes only due to the flux through the boundary OR. The
flux is much faster to compute than Q(R) itself because the integral in (2) is
lower-dimensional. When a discretized form of the local conservation law holds,
Q(R) is a local PBC that can be updated efficiently and verified intermittently,
in contrast to generic LACs [13] that are as costly to update as to verify. While
this conservation derivation applies to time-dependent problems, we show in
Sect. 4.1 that PBCs of the same form also apply to iterative elliptic solvers.

2.2 Injecting and Recovering from Errors

To demonstrate the practical effectiveness of PBC error detection, we test par-
allel solvers in a simple resilience framework with emulated silent errors. As in
previous work [11], each solver process includes a concurrent thread that per-
forms asynchronous, uniformly distributed bit flips in the large memory regions
in use (floating-point data arrays) at an adjustable rate. Such a memory error
model is representative of other error types also [3], such as processor errors.

We use a simple global checkpoint /restart scheme where verification of local
checksums and writing of checkpoints occur periodically after a certain number
of solver time steps or iterations, termed the verification interval. In our solvers,
to establish a baseline given ideal checkpoint reliability and performance, check-
points are stored in memory and are not subject to error injection, and time
spent in checkpointing is not included in our measurements of resilience over-
head. Rather, we measure the cost of updating and verifying the checksums and
of redoing the computations from the previous checkpoint (global rollback) when
an error is detected by any process based on a local checksum discrepancy. Check-
sum verification occurs together with each checkpoint, so the verification cost
has the same effect as checkpointing cost. The cost could be adjusted to reflect
any specific checkpoint storage technology. We seek resilience efficiency similar
to that seen in standard global checkpoint/restart usage, which can achieve very
low overhead using long intervals when failures are rare [5].

The impact of silent errors should be judged in relation to existing numerical
inaccuracies (roundoff, discretization, and incomplete convergence) that solvers
exhibit even on perfect hardware. An error rate is considered tolerated by a
solver, and overhead results are reported, only when the solver reliably finishes
with accuracy similar to that of an error-free run. Silent errors are stochastic
and vary from run to run, so the results must be considered as a distribution.
A solver is deemed to fail in the presence of errors if, in >10% of runs, it takes
longer than a cutoff time or returns a solution for which the residual or error
compared to an analytic solution is more than 3 times that obtained by a run
without error injection.

Physics-Based Checksums for Silent-Error Detection in PDE Solvers 685

3 Application to 1D Hyperbolic Solvers

We describe the application of PBCs to a linear advection equation and to the
nonlinear Burgers equation, and present test results for the latter.

3.1 Algorithm

The 1D linear advection equation is written as
9¢(t,z) | 04(t,x)
ot ' oa

where v is a constant. The explicit finite-difference Lax-Wendroff scheme for the
linear advection equation is determined by the stencil

" cc+1 n n cle—1 n .
¢j+1:(T) j—1+(1—02)¢j+% o 0Si<N-1, (4)

where the CFL number is ¢ = v At/Ax. This can be thought of as a linear algebra
operation, a sparse matrix-vector product ¢"T! = A¢", where the tridiagonal
matrix A is not explicitly stored.

The vector checksum Q(¢) = eT'¢ = Zj ¢, where e is a vector of ones, is
the discrete version of the quantity [dz ¢ conserved by the continuum PDE
(3). The checksum computed for each update ¢! should correspond to the
matrix-vector product. A general LAC formula for such a checksum update is

Q(¢") = (A —de™) ¢" +dQ(¢"), ()

where d is an arbitrary scalar constant, whose choice may affect the detectability
of propagated errors [13]. In general, this approach incurs the cost of the dot
product of (eI’ A—de™) with ¢, the former being a constant precomputed vector.
However, based on our physical reasoning, it must be possible to compute the
update more efficiently. The natural PBC is obtained with the choice d = 1. For
global conservation (e.g., a periodic closed domain), all columns of A have sum 1,
as is seen by adding the coefficients of the three terms in (4); so (e A —eT) =0
and the update is trivial: Q(¢"*!) = Q(¢"). For local conservation (e.g., a
subdomain within a parallel computation), the column sums of the local matrix
A differ from 1 only at the boundaries where fluxes occur, i.e., (eZ'A —eT) is a
sparse vector, and the update is much more efficient than a general dot product.
For the parallel Lax-Wendroff scheme, the local PBC update is
clc+1 clc—1
D g, a0+ e, ©
where ¢”, and ¢}, are values communicated from neighboring subdomains.
PBCs can also be constructed for nonlinear equations where LACs do not
apply. The 1D inviscid Burgers equation is written as

ou(t,) Ou(t,)
ot Ox

Q") = Q") +

+ vu(t,) = 0. (7)

686 M. Salloum et al.

The explicit finite-difference MacCormack scheme for the Burgers equation is
determined by the stencil

W =) - () - g?), 0<< N,
uj = uj — ;((U?H)Z—(“?)Z)' ®)

This stencil cannot be cast purely in terms of linear algebra operations.
However, the conservation principle is still valid for the MacCormack scheme,
which is conservative by construction. The checksum Q(u) = eTu = > U
corresponds to the momentum [dzu conserved by the Burgers equation, with
the continuum flux density J = %Z/UQ. The corresponding PBC update is

c

Q™) = Q™) + 7 ((wr)” + (1)) = 7 (w1 + (Wh)) . (9)

Here again, the checksum can be updated from the previous time step by only
adding contributions from boundary terms.

3.2 Evaluation

108

1.4x10™

=-7.1x10"?

100 ~0-2.8x107?

7.1 x1073

>28x10"°

% _10%F |[+—1.4x107™0
£ S
S <
© e}
2 3
g £
I 2
0]

10 10'f \
Non-robust solver
5 failsatp =1.4x 101
oL L L L L
1 5 10 50 100 10100 10! 102 10° 10
Checkpoint interval Verification interval (time steps)

Fig. 2. Left: Example overhead behavior of global checkpoint/restart predicted by an
analytic model [5]. Checkpointing and restarting each have a cost of 1 time unit, and
the global failure rate per time unit varies from 1072 (bottom curve) to 107" (top
curve). Right: Overhead due to the detection algorithm and additional computations
upon restarts when the PBC technique is used in solving the 1D Burgers equation.
Results are reported for runs performed on 1024 cores with 100,000 mesh points per
core for 25,000 time steps, at several bit-flip rates expressed as probability p per bit
per standard time step.

Alongside a typical behavior of global checkpoint/restart for hard failures as a
comparison, the overhead results for the Burgers equation are shown in Fig. 2.
Upon completing a given verification interval (VI), a global restart is performed

Physics-Based Checksums for Silent-Error Detection in PDE Solvers 687

if any subdomain’s recomputed “true” checksum @Q; differs from its efficiently
updated checksum @ by more than 10~2. The cost of checksum verification is
reduced with a longer VI, leading to the initial decreasing trend of overhead
with VI, but as VI increases further, the overhead increases due to more restarts
and more wasted work. The optimal VI increases at lower error rates. Error
injection is also performed on the non-robust version of the solver without error
detection, to determine the maximum error rate tolerated. As shown, error rates
significantly higher than this level can be tolerated by the robust solver with
overhead of ~10% or less.

4 Application to 3D Elliptic Solver

To illustrate the applicability of PBCs to iterative unstructured applications,
we consider a conjugate gradient solver modeled on the HPCCG and MiniFE
mini-apps [7].

4.1 Algorithm

The 3D Laplace equation is a linear elliptic PDE often solved using a finite-
element method. The solution is represented as a vector x encoding a superposi-
tion of basis functions (elements) defined on a mesh, and the PDE is discretized
as a linear system Ax = b. Here A is a sparse, symmetric “stiffness matrix”
determined by the basis functions, and b is a vector determined by the boundary
conditions. In a parallel solver, the mesh is partitioned into subdomains and
the corresponding blocks of A, b, and x are distributed among the processes. A
typical iterative solver approach is the conjugate gradient method, which repeat-
edly updates an estimate of the solution z using linear algebra operations until
the residual b — Az becomes sufficiently small. HPCCG implements an unpre-
conditioned conjugate gradient solver for the Laplace equation using a notional
hexahedral mesh.

A key operation in the conjugate gradient solver is a sparse matrix-vector
product Ap, where p is a vector generated within the algorithm. As discussed in
Sect. 3.1, the generic LAC update for this operation is

Q(Ap) = (e"A—de") p+dQ(p), (10)

requiring a dot product that is as costly as recomputing the checksum. Again, a
more efficient update is possible with the PBC approach. In our problem, e (a
vector of ones) represents a superposition of elements into a constant function,
and A represents a differential operator constructed from gradients; thus e A,
corresponding to the derivative of a constant, is a sparse vector (zero except at
boundaries). We can take d = 0 and obtain the simpler PBC update

Q(Ap) = (" A) p. (11)

688 M. Salloum et al.

Even though elliptic equations do not involve time advancement and so a con-
servation law does not literally apply, the solver operations are mathematically
analogous to time steps and PBCs can still be used.

To obtain a somewhat more generic example, we replace HPCCG’s simple
cubic mesh by a cylinder composed of wafers with an unstructured cross-section.
Our solver reads in a corresponding stiffness matrix computed offline using basis
functions that interpolate between values assigned to each mesh node (trilinear
hexahedral elements). Each process operates on a subset of the wafers. The
curved surface of the cylinder uses a standard Neumann zero-flux boundary
condition, so fluxes in and out of subdomains occur on the boundaries between
wafers. The mesh, stiffness matrix, and PBC update are visualized in Fig. 3.

Meshed cylinder Meshed cylinder
front view side view

non-zeros

Vector of ones Stiffness matrix ’ Sparse vector

Fig.3. Top: Schematic 3D unstructured mesh of a cylinder; each wafer (side view
not to scale) corresponds to a block in the stiffness matrix. Bottom: In the physics-
based approach, the vector of ones (e) is used to form the checksum of solution vectors;
the vector on the right is used to update checksums when performing matrix-vector
products. The vector on the right is nonzero only on the boundary where fluxes occur,
reflecting conservation properties of the Laplace operator.

In this case, due the uniformity of the cylinder, the above-diagonal blocks
are copies of a square matrix B and the below-diagonal blocks are BT. The
nonzero entries in e’ A arise from these B and BT blocks that couple adjacent
subdomains. If p; denotes the part of the vector p on process i, which can span
several wafers, then let p;; and p;, be the sub-vectors corresponding to the
leftmost and rightmost of these wafers. The local PBC update on process i for
the vector ¢ = Ap is then

Qq = (" BM)pi—1r + (" B)piz1, — (¢" BT)piy — (" B)ps . (12)

The full conjugate gradient method including local error detection and global
checkpoint /restart is shown in Algorithm 1. Steps in blue are PBC updates

Physics-Based Checksums for Silent-Error Detection in PDE Solvers 689

performed during every iteration, while steps in green are error detection and
checkpointing operations performed only after each verification interval. The
basis for detection is the relative discrepancy in each local checksum, e.g., n, =
(Qx — Qzt)/||mi|l1, upon computing the true checksum Q. ; = e?'z; on process i.

Algorithm 1. Conjugate gradient method with PBCs. Checksums Q, Qp, Qq,
and @, correspond to local portion of vectors on each process i.

20:=0 {Initial guess of solution}
ro :=b— Axo, po := 70 {Initial residual and direction vectors}
(Ro)? :=rg 0
for n =0,1,... until convergence do

Gn := Apn,

Qq = (€"BNpni—1,r + (€T B)pn,iv11 — (€T B pn,ii — (X B)pnir

a:= (Bn)?/ (pran)
In+1 ‘= Tn + QPn

Qs +=aQp
Tntl = Tn — QQn
Qr —= aQq

(Rni1)? =rpi1rni
B = (Rnt1)*/(Rn)®
Pr+1 i= Tnt1 + Bpn
Qp = Qr + Qp
if mod(n + 1,vi) = 0 then
{Recompute checksums}

if 7 > € on any process then
{Restart}

else

end if
end if
end for
Return z,,

We note several details of error detection:

— Verifying the x, p, and r checksums is sufficient because an error in ¢ propa-
gates to an error in r that remains detectable.

— The PBC update (11) does not itself preserve the detectability of an error in
p, because (), is not used in computing),. However, because a multiple of p
is subsequently added to z, the consequence would still be a detectable error
in . Our results support that errors are detected well with d = 0.

690 M. Salloum et al.

— The dot products p”'q and r”r require special consideration because dot prod-
ucts do not have checksums [13]. In our memory error model, this is not a
problem because an existing error in p, ¢, or r that affects a dot product will
also affect the subsequent use of the same vectors in a detectable way.

— Error injection is not performed on the stiffness matrix A itself. If corruption
of static data like A is a concern, then there are simple protection schemes
that can be used [8], but we do not consider this here.

4.2 Evaluation

Error detection thresholds are chosen based on the maximum roundoff-induced
checksum discrepancies observed in the solver in the absence of any injected
errors. These accumulated errors in the checksum updates increase with VI due
to the nonlinear feedback in the conjugate gradient algorithm over iterations
and between processes. We have fitted thresholds for our cylinder example as a
function of subdomain size and VI.

[=R,=8 —R,=16 R,=32 R, =64
10 . ; ; ; ; ; 14 ;
* Dashed lines: Linear algebra checksum
N Solid lines: Physics-based checksum
. 12
el =10
©]
g4
o = 8
3 2
o 5
E 4t g 6
7] Z
3 2
3 g 4
<]
O 27 O
2
0 0
1 2 5 10 20 50 100 1 2 5 10 20 50 100
Verification interval (iterations) Verification interval (iterations)

Fig.4. Error detection overhead is plotted for LACs and PBCs (percent overhead
of each technique on left, ratio of LAC to PBC overhead on right) in the conjugate
gradient solver on 32 processes with no bit flips injected. Different subdomain sizes are
indicated by the volume-to-boundary ratio Ryp.

We now examine the overhead induced by our error detection mechanism.
With no error injection, we compare the overhead of PBC-based detection to a
version where the LAC with d > 0 [13], but computed locally, is used for the
matrix-vector product. As shown in Fig. 4, the PBC approach has significantly
lower overhead for larger computational subdomains and larger VI (infrequent
verification, expected to be feasible for low error rates). This difference occurs
because the LAC update requires a dot product with cost proportional to the
subdomain volume at every iteration, whereas the PBC update requires compu-
tations only along the subdomain boundaries, which are smaller by a ratio Ryy,.

Physics-Based Checksums for Silent-Error Detection in PDE Solvers 691

In the remaining results, we set R, = 8, corresponding to a subdomain size of
8840 mesh points per process.

The results of overhead measurements with error injection and local PBC
detection, shown in Fig.5, are similar to the those for explicit solvers and like-
wise reflect the similarity to hard-failure checkpoint/restart (left plot in Fig.2).
A difference is that the conjugate gradient solver cannot afford as large a VI,
because roundoff in the checksum updates propagates more strongly through the
algorithm and error detection becomes less precise. Error rates and VIs plotted
in Fig. 5 are those for which the accuracy criteria in Sect. 2.2 are met.

Residual tolerance = 0.03

S
kel
©
£,
§ 10 Error probability
3 per bit
per standard iteration
—+1.25x10°
—t-8.88x10°
5.07x10°
—+F377x10°
1.26x 10°

Fs511x10 Non-robust solver fails
T127x10"° | «—no

!

0

10

10° 10'
Verification interval (iterations)

Fig. 5. For the conjugate gradient solver on 32 processes, overhead is plotted versus
VI for several rates of memory bit flips. At relatively low error rates, the overhead is
<10% for suitable VI. At larger error rates, the optimal VI decreases and overhead
increases due to greater rollback costs, but the solver can still complete.

5 Conclusion

We have demonstrated a streamlined approach to silent-error detection that
shows promise for physics simulations. Physics-based checksums (PBCs) enable
precise and efficient local error detection with intermittent verification. In con-
junction with recovery by rollback, PBCs fit into a typical checkpoint/restart
resilience technique. Moreover, PBCs can apply to a range of solvers and error
types that may occur at extreme scale. The approach has generality for scientific
computing due to its physical foundation.

While existing ABFT linear algebra checksums correspond to conserved
quantities in special cases, the conservation viewpoint leads to a general and effi-
cient method for updating subdomain checksums using boundary fluxes, includ-
ing for nonlinear equations. The local detection provided by these checksums
can be further leveraged with local recovery [14].

692 M. Salloum et al.

Reliable algorithmic error detection provides a risk mitigation for future HPC
systems and opens a broader space for co-design in which hardware reliability
requirements could be relaxed. The conditions under which resilience techniques
are effective can provide useful guidance for these future system designs.

Acknowledgments. Sandia National Laboratories is a multimission laboratory man-
aged and operated by National Technology & Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department
of Energy’s National Nuclear Security Administration (NNSA) under contract DE-
NA0003525. This work was funded by NNSA’s Advanced Simulation and Computing
(ASC) Program. This paper describes objective technical results and analysis. Any
subjective views or opinions that might be expressed in the paper do not necessarily
represent the views of the U.S. Department of Energy or the United States Government.

References

1. Bautista-Gomez, L., Benoit, A., Cavelan, A., Raina, S.K., Robert, Y., Sun, H.:
Which verification for soft error detection? In: Proceedings of the 22nd IEEE Inter-
national Conference on High Performance Computing (HiPC) (2015)

2. Benson, A.R., Schmit, S., Schreiber, R.: Silent error detection in numerical time-
stepping schemes. Int. J. High Perform. Comput. Appl. 29(4), 403-421 (2015)

3. Bridges, P.G., Ferreira, K.B., Heroux, M.A., Hoemmen, M.: Fault-tolerant linear
solvers via selective reliability (2012). https://arxiv.org/abs/1206.1390

4. Cappello, F., Geist, A., Gropp, W., Kale, S., Kramer, B., Snir, M.: Toward exascale
resilience: 2014 update. Supercomput. Front. Innov. 1(1), 5-28 (2014)

5. Daly, J.: A model for predicting the optimum checkpoint interval for restart dumps.
In: Proceedings of the International Conference on Computational Science (2003)

6. Gamell, M., et al.: Local recovery and failure masking for stencil-based applica-
tions at extreme scales. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (2015)

7. Heroux, M.A., et al.: Improving performance via mini-applications. Report
SAND2009-5574, Sandia National Laboratories (2009)

8. Hukerikar, S., Engelmann, C.: Resilience design patterns: a structured approach
to resilience at extreme scale. Supercomput. Front. Innov. 4(3), 4-42 (2017)

9. Rinard, M.: Parallel synchronization-free approximate data structure construction.
In: Proceedings of the 5th USENIX Workshop on Hot Topics in Parallelism (2013)

10. Salloum, M., Mayo, J., Armstrong, R.: Physics-based checksums for silent-error
detection in PDE solvers. In: SIAM Conference on Computational Science and
Engineering (2019)

11. Salloum, M., Mayo, J.R., Armstrong, R.C.: In-situ mitigation of silent data cor-
ruption in PDE solvers. In: Proceedings of the 6th Workshop on Fault-Tolerance
for HPC at Extreme Scale (2016)

12. Subasi, O., et al.: MACORD: online adaptive machine learning framework for silent
error detection. In: Proceedings of the IEEE International Conference on Cluster
Computing (2017)

https://arxiv.org/abs/1206.1390

13.

14.

Physics-Based Checksums for Silent-Error Detection in PDE Solvers 693

Tao, D., et al.: New-sum: a novel online ABFT scheme for general iterative
methods. In: Proceedings of the 25th ACM International Symposium on High-
Performance Parallel and Distributed Computing (2016)

Teranishi, K., et al.: ASC CSSE level 2 milestone #6362: resilient asynchronous
many-task programming model. Report SAND2018-9672, Sandia National Labo-
ratories (2018)

	Physics-Based Checksums for Silent-Error Detection in PDE Solvers
	1 Introduction
	2 Checksum Approaches for Resilience
	2.1 Error Detection Concepts
	2.2 Injecting and Recovering from Errors

	3 Application to 1D Hyperbolic Solvers
	3.1 Algorithm
	3.2 Evaluation

	4 Application to 3D Elliptic Solver
	4.1 Algorithm
	4.2 Evaluation

	5 Conclusion
	References

