
Learning Quality Improved Word Embedding
with Assessment of Hyperparameters

Beytullah Yildiz1(&) and Murat Tezgider2

1 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
byildiz@gmail.com

2 Hacettepe University, Ankara, Turkey
murat.tezgider@hacettepe.edu.tr

Abstract. Deep learning practices have a large impact on many areas. Big data
and key hardware developments in GPU and TPU are the main reasons behind
deep learning success. The recent progress in the text analysis and classification
using deep learning has been significant as well. The quality of word repre-
sentation that has become much better by using methods such as Word2Vec,
FastText and Glove has been important in this improvement. In this study, we
aimed to improve Word2Vec word representation, which is also called
embedding, by tuning its hyperparameters. The minimum word count, vector
size, window size, and the number of iterations were used to improve word
embeddings. We introduced two approaches, which are faster than grid search
and random search, to set the hyperparameters. The word embeddings were
created using documents with approximately 300 million words. A deep
learning classification model that uses documents consisting of 10 different
classes was applied to evaluate the quality of word embeddings. A 9% increase
in classification success was achieved only by improving hyperparameters.

Keywords: Deep learning � Machine learning � Text analysis � Text
classification � Word embedding � Word2Vec

1 Introduction

The data produced in the digital world is increasing overwhelmingly. As a result of the
development and widespread of the Internet, the data produced and served by internet
applications such as social media have given a different impetus to the speed of data
production. Text data have a significant share of these vast data. With the increasing
volume, tasks performed on the text such as classification [1, 2], clustering, sentiment
analysis, information extraction, information retrieval, and searching have become
more important. Moreover, the success rate of text processing has significantly
increased by deep learning methods in the advent of more data and better computing
power.

Text processing requires text representation. Therefore, various methods have been
introduced for text representation. One of the important obstacles of text processing has
been feature extraction which has been recently eased by deep learning methods. There
are different studies in which words, word grams, word roots and bodies, character

© Springer Nature Switzerland AG 2020
U. Schwardmann et al. (Eds.): Euro-Par 2019 Workshops, LNCS 11997, pp. 506–518, 2020.
https://doi.org/10.1007/978-3-030-48340-1_39

http://orcid.org/0000-0001-7664-5145
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48340-1_39&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48340-1_39&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48340-1_39&domain=pdf
https://doi.org/10.1007/978-3-030-48340-1_39

grams are used as features to represent text [3–6]. By using a set of word and context
pairs extracted from the corpus, vector representations of words can be derived by
applying various estimation methods, such as predicting words given their contexts
(CBOW), predicting the contexts from the words (Skip-Gram), or factorizing the log of
their co-occurrence matrix. Word2Vec [7, 8] implements both Continuous Bag of
Words (CBOW) and Skip-Gram (SG) methods. FastText [3] also provides these two
models to compute word representations. Although Word2Vec treats each word in
corpus like an atomic entity and generates a vector for each word, FastText, which is
essentially an extension of word2vec model, considers each word as composed of
character n-grams. Therefore, the vector for a word is the sum of these character n-
grams. For example, the word vector “orca” is a sum of the vectors of the n-grams such
as “or”, “orc”, “orca”, “rca”, “ca”. Glove [9], on the other hand, factorizes the log of the
co-occurrence matrix. In these methods, picking the right context is a critical factor that
affects the quality of the resulting vector representations. The most common method for
defining this context is to rely on a window positioned around the word. The context
window decides which contextual neighbors are taken into consideration to produce the
vector representations.

The empirical variations between representation models, which is also called
embedding, are basically because of differences in hyperparameters rather than dif-
ferences in the embedding algorithms [10]. Hence, it is likely that different results are
obtained while constructing word embedding with different corpus containing different
topics in different dimensions because the size and content of the corpus will cause the
words to take on semantically and syntactically different vector values [11]. Addi-
tionally, the quality of word representations is significantly affected by hyperparameters
such as minimum word count, vector size, window size and the number of iterations.

In this study, we present two approaches to evaluate the important hyperparameters
of Word2Vec which are faster than grid search and random search. In general, the
quality of the word embedding is not enough because the default hyperparameter
values are used to create the word embedding. In addition, unlike well-known deep
learning models such as Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN), hyperparameter tuning for word embedding has not been well
studied. Moreover, to the best of our knowledge, there isn’t a study extensively
measuring the accuracy of Word2Vec representations for the Turkish language.
3 million Turkish texts which consist of totaling 300 million words were used to create
Word2Vec word embedding.

To evaluate the quality of the word embedding, a deep learning model developed
for text classification was used. The classification model and the data are kept
unchanged to examine the effect of Word2Vec hyperparameters on the quality of word
embedding. Text classification with deep learning model was performed by using
different word embeddings created by changing Word2Vec hyperparameters.
According to the accuracy of the classification process, the quality of the word
embeddings has been measured. We used multi-core and CUDA-enabled GPU envi-
ronments to create and evaluate word embeddings. Cloud base TPU and GPU can be
used to accelerate word embedding, as the number of documents used and the number
of unique words requires more processing power.

Learning Quality Improved Word Embedding with Assessment of Hyperparameters 507

In the second section, related works are explained. Information about Word2Vec
word embedding and used environment will be given in Sect. 3. Section 4 consists of
measurements and evaluation. We conclude and give “rules of thumb” in Sect. 5.

2 Related Work

There are several studies investigating the hyperparameters of word embedding
methods. Caselles-Dupré et al. investigated the importance of hyperparameters through
large hyperparameter grid searches on various datasets [12]. The results revealed that
optimizing the hyperparameters significantly improved the performance of a recom-
mendation task.

Levy et al. claimed that most of the word embedding performance gains were due
to specific system design choices and hyperparameter optimizations rather than
embedding algorithms [10]. Although it is advisable to adjust the entire hyperparam-
eters for the task at hand, this approach may be expensive in terms of calculation.
Therefore, they provided some “thumb rules” for the solution.

In general, the quality of word representation was measured using either a model or
an analogy and similarity datasets. The quality of Word2Vec word embeddings is
assumed to affect the accuracy of the classification model. Embedding models often
associate each word with a single vector representing its properties. Therefore, eval-
uation methods should analyze the accuracy and completeness of these properties.
Multi-label classification is a convenient way to carry out this evaluation [13]. Noor-
alahzadeh et al. conducted evaluations of both general and domain-specific embeddings
[14]. Evaluation of embedding models was provided by the task of domain-specific
sentence classification.

Analogy and similarity datasets were often used to measure the quality of word
representations, consisting of questions and answers that query the semantic and
syntactic relations of words. Mikolov et al. used 8869 semantic, 10675 syntactic
questions in total, consisting of 5 semantic question types and 9 syntactic question
types to measure the quality of word vectors [7]. Lia et al. experimented on Word-
Sim353 and the TOEFL dataset to measure semantic and syntactic relationships [11].
In their study, they compare the methods used for representing words as vectors.

3 Word2Vec Word Embedding and Used Environment

Word2Vec was proposed by Mikolov et al. in 2013 to represent a word as a vector [8].
It takes a large corpus as input and usually produces vectors of several hundreds of
dimensions. Word2Vec represents words in vector space based on the unsupervised
prediction. Word2Vec aims to minimize the distance value of words that are the same
or semantically and syntactically close to maximize the similarity value. CBOW and
SG are commonly used methods. The CBOW method estimates the center word by
using adjacent words. Rather, the SG attempts to predict neighboring words using the
center word. The SG model consists of input, hidden and an output layer. The input
layer uses a one-hot encoding. In one-hot encoding, an index is assigned to each word.

508 B. Yildiz and M. Tezgider

The value corresponding to the word index in the vector is set to 1, and the others to 0.
The output layer uses a softmax classifier. The number of neurons in the hidden layer
determines the size of the Word2Vec vector because weights in the hidden layer are
used to represent words as vectors.

Deep learning models benefit from parallel processing. However, it can be argued
that no learning algorithm is really embarrassingly parallel, but some are almost
embarrassingly parallel. As with previous parallel applications [15–17], procedures
such as parallel processing, pipelining and orchestration should be used in the best way.
In addition, deep learning, word embedding as well, is basically an optimization
problem. In other words, optimizing hyperparameter is one of the most important
functions.

We investigated important hyperparameters that affect the quality of Word2Vec
word representation. Minimum word count, vector size, window size and number of
iterations were the hyperparameters on which experimented. The quality of Word2Vec
word embeddings is assumed to affect the accuracy of the classification model in which
word embeddings are used. From this hypothesis, a deep learning classification model
was used to evaluate the word embeddings. The classification was performed with the
word embeddings created with different hyperparameter sets. The classification model
and the data were kept unchanged and only the Word2Vec hyperparameters were
adjusted. Based on the success of the classification model, we concluded the successful
hyperparameters to create better word embeddings. Keras library and TensorFlow
infrastructure were utilized for the classification. Gensim library [18] was used to
construct Word2Vec word vectors. We created the word vectors by choosing combi-
nations of 5, 10, 15, 20, 25 values as window size; 1, 2, 5, 10, 20, 30 values as the
minimum word count; 50, 100, 150, 200, 250, 300 values as the vector size; 5, 10, 15,
20, 25, 30, 35, 40, 45, 50, 55, 60 values as the number of iterations.

Grid search and random search are among the well-known parameter optimization
methods. In both methods, the processing can take a very long time to determine the
hyperparameter values. For the grid search, when the hyperparameter values mentioned
above are used, the 2160 combinations must be tried. A single word embedding can
take more than a day depending on the hyperparameters. Therefore, we used two
approaches to set up Word2Vec hyperparameters.

In the first approach, we initially started with the default values in Table 1. In each
step, only one of the Word2Vec hyperparameters was updated to create word
embeddings. For a single hyperparameter, we created as many word embeddings as the
number of values of the hyperparameter. After evaluating each hyperparameter, the
most appropriate word embedding was obtained with the hyperparameter set using the
best hyperparameter values.

Table 1. Default values of Word2Vec model hyperparameters.

Minimum word count 5 Window size 5
Vector size 100 Number of iterations 5

Learning Quality Improved Word Embedding with Assessment of Hyperparameters 509

The second approach similarly starts with the default hyperparameters. In each step,
a hyperparameter value that produces the best result is determined and used in place of
the default value of that parameter in the next steps. This model continues progres-
sively. At the last stage, parameters that produce the best results are saved as the best
hyperparameter set.

3.1 Classification Model

To investigate Word2Vec word representation using text classification, we constructed
a model by using CNN, which is a deep learning model. Two convolutional layers, two
maximum pooling layers, one flatten layer, two fully connected (dense) layers were
used. Like the input layer, the embedding layer has dimensions of 160 x “vector size”.
The maximum text length was set to 160 words. For shorter texts containing fewer than
160 words, a vector of zeroes was added. In the first CNN layers, 64 filters with ReLU
activation function were used. Kernel size was set to 5 for the first CNN layer, and 2 for
the second CNN layer. Maximum pooling size was set to 2 for the first maximum
pooling layer and was set to 3 for the second maximum pooling layer. Stride size was
set to 1 for both layers. 0.5 value for the dropout layer was used to prevent overfitting.
A fully connected layer of 128 units was used with ReLU activation function. Softmax
activation function was used in the output layer consisting of 10 units. Adam was used
as the optimization function and categorical cross entropy was used as the loss
function.

3.2 Dataset

3 million Turkish texts with approximately 300 million words were used to create
Word2Vec word embeddings. Corpus consists of about 2.8 million unique tokens.
From the texts used for Word2Vec creation, 149504 text documents for classification
were selected. The documents were labeled with 10 different classes. 104448 docu-
ments corresponding to 70% of the total documents were used for training, 22528
documents corresponding to 15% of the total documents were used for verification and
22528 documents corresponding to 15% of the total documents were used for testing
purposes.

3.3 Hyperparameters

Words that appear only very few times in the hundreds of million words corpus are
probably uninteresting typos or mistakes. Moreover, there is insufficient data to make a
reasonable training on these words, so it is best to throw them away. Minimum word
count hyperparameter is used to remove words by the number of appearance in the
documents. For example, if the minimum word count parameter is set to 5, which is the
default value of the Gensim library used, words that are presented less than 5 times will
be discarded.

The vector size hyperparameter defines the vector dimension of Word2Vec. This
hyperparameter also specifies the number of units in the hidden layer of the Word2Vec
model. Therefore, the vector size also affects the cost of computation. Increasing the

510 B. Yildiz and M. Tezgider

vector size will also increase the cost. However, the larger vector size may lead to
better and more accurate models even though it may require more training data.

The window size indicates how many words to use for prediction from the left and
right of the input word. The window size is the most noteworthy hyperparameter
associated with the context. When it is set to 5, which is the default value of the Gensim
library, 5 words will be used to the left and right of the input word for content
prediction. Larger window size tends to capture more topic and domain information
while smaller window size tends to capture more about ‘functional’ and ‘synonymic’
models, which may lead to better performance on similarity measurements [19, 20].

The number of iteration determines how many times the data is to be trained.
Increasing the number of iterations generally improves the quality of word represen-
tation, but also significantly increases the duration of training.

4 Measurement and Evaluation

We investigated the quality of the word embedding by using a classification model.
Word2Vec word embeddings created with the hyperparameters using the SG method
were evaluated by using the classification model and dataset that were kept both
unchanged. The classification was repeated with the word embeddings obtained by
changing the value of one of the hyperparameters at a time. The optimum values of the
hyperparameters were determined by evaluating the accuracy and loss values of the
classification.

The two approaches mentioned in the methodology section were used for the
classification to determine the hyperparameters. The results obtained by the first and
second approaches will be explored below. Since the experiment of the minimum word
count hyperparameter is the same for both approaches, the results are given only in the
first approach. The second approach is continued using this result.

4.1 Decisive Approach

In Decisive Approach (DA), only the value of hyperparameter examined was changed.
We started evaluating Word2Vec’s minimum word count because it influenced the
number of words of the Word2Vec dictionary. We created six models by setting the
minimum word count hyperparameter to 1, 2, 5, 10, 20 and 30. The remaining
parameters are fixed to the values given in Table 1.

We did not take any action to correct the misspelled words or typos because we
want to make sense of the words that people wrote incorrectly. Depending on the
geographical region, there are also some local forms of words that can be seen as a
misspelled word. Therefore, we will use “token” instead of “word” to indicate any
original word form in the documents. Because a token contains a regular word as well
as a prefixed, affixed or misspelled word, the number of unique tokens may signifi-
cantly exceed the number of words in a language. We saw this situation in our
Word2Vec dictionary because there were 2.895.675 unique tokens. When the tokens
used once or twice were examined, it was found that the vast majority of these tokens
were misspelled. Very few tokens were very rarely used words.

Learning Quality Improved Word Embedding with Assessment of Hyperparameters 511

The statistical details of the tokens for Word2Vec models using different values of
minimum word count are given in Table 2. When the value of minimum word count is
set to 1, all 2.895.675 unique tokens are used and the total number of tokens in the
dictionary is 297.149.774. When the minimum word count is given as 2, 1.537.529
tokens that repeat once are removed from the vocabulary. The remaining 1.358.146
unique tokens correspond to about 47%. However, the total number of tokens does not
change significantly. Less than 1% of all tokens are removed in the dictionary. This is
better seen when the minimum word count is 30; while only 7,72% of the unique
tokens remain, the percentage of the remaining total tokens is 96,97%. The sudden
drop in the number of unique tokens is primarily due to misspelled words. The fre-
quency of a word in documents used when training the Word2Vec model affects its
correct positioning in the vector space. Less repetitive words in the corpus are thought
to be not positioned correctly in the vector space. Accuracy and loss values of the
classification model trained using the word vectors are significantly affected by the
correct placement in this space. Therefore, the removal of very few repetitive words has
a positive effect on classification success. When the value of minimum word count is
increased, the accuracy of the classification model increases and the value of loss
reduces, shown in Fig. 1.

Table 2. Word2Vec vectors and statistics

Minimum
word
count

Removed
unique
tokens

Remaining
unique
tokens

Percentage of
remaining
unique tokens

Removed
total
tokens

Remaining
total tokens

Percentage of
remaining
total tokens

1 0 2.895.675 100 0 297.149.774 100
2 1.537.529 1.358.146 46,9 1.582.536 295.567.238 99,46
5 2.236.456 659.219 22,76 3.002.271 294.147.503 98,98
10 2.493.595 402.080 13,88 4.916.341 292.233.433 98,34
20 2.611.046 284.629 9,82 7.138.619 290.011.155 97,59
30 2.672.127 223.548 7,72 8.994.314 288.155.460 96,97

Fig. 1. Classification accuracy and loss for the various values of minimum word count

512 B. Yildiz and M. Tezgider

After the minimum word count, the effect of vector size hyperparameter of
Word2Vec was examined. Word2Vec vectors were created by using hyperparameters
of experiment 2 column in Table 3. When the classification was applied by using the
same model and dataset, we obtained the accuracy and loss rates shown in Fig. 2.
Keeping the vector size too large or too small affects the success of the classification
negatively. It should be aimed to find an optimum vector size according to the available
datasets. We observed that vector size, ranging from 50 to 300, has an impact on the
classification accuracy of about 2%. The most appropriate value of the vector size for
the dataset used in this study was 250. But when the amount of data is increased, using
a larger-sized vector would be a more accurate approach [7].

Window size is an important hyperparameter to detect the context of a word.
Therefore, it is expected that it will significantly affect the classification success. Using
the same model and dataset, we used Word2Vec embeddings prepared using the
hyperparameters of the experiment 3 column in Table 3 for classification. A higher
value of window size appears to have a positive effect on the classification success
shown in Fig. 2. While the value of window size increases, the classification accuracy
also increases. When the window size increases from 5 to 25, a 5% improvement in
classification success is achieved. Therefore, it can be deduced that context is important
for classification and significantly affects the classification accuracy.

The hyperparameters of the experiment 4 column in Table 3. were used to examine
the effect of the number of iterations used to train Word2Vec model. The classification

Table 3. Hyperparameters for DA after minimum word count experiment

Parameters Experiment 2 Experiment 3 Experiment 4

Minimum
word count

5 5 5

Vector size 50, 100, 150,
200, 250, 300

100 100

Window
size

5 5, 10, 15, 20 ,25 5

Number of
iterations

5 5 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60

Fig. 2. Effect of vector size and window size on classification accuracy and loss for DA

Learning Quality Improved Word Embedding with Assessment of Hyperparameters 513

results obtained using word vectors are given in Fig. 3. While the number of iterations
increased from 5 to 60, the success of classification increased by about 6%. This
improvement shows that the number of iterations is an important hyperparameter.
However, the contribution of the number of iterations to the classification success starts
to slow down after 15 iterations. Therefore, an iteration value that gives a certain
success can be selected because each iteration requires extra time for training.

4.2 Progressive Approach

In Progressive Approach (PA), after determining the value of parameters that give the
best result for classification, unlike DA, the best value is used instead of the default
value for the subsequent steps. Since the minimum word count parameter was inves-
tigated in DA, we did not repeat this step and used the results of the minimum word
count from DA. Minimum word count will be 30 as the best value for the subsequent
experiments.

Fig. 3. Effect of number of iteration on classification accuracy and loss for DA

Table 4. Hyperparameters for PA after minimum word count experiment

Parameters Experiment 2 Experiment 3 Experiment 4

Minimum
word count

30 30 30

Vector size 50, 100, 150,
200, 250, 300

250 250

Window
size

5 5, 10, 15, 20, 25 25

Number of
iterations

5 5 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60

514 B. Yildiz and M. Tezgider

The effect of vector size was examined using the hyperparameters of experiment 2
in Table 4. The results are given in Fig. 4. The best result is when the vector size is
250, which is the same as in DA. With the best minimum word count value, the vector
size provides an almost 1.5% improvement with a value of 250. This was almost 2%
for DA. We will use the 250 for the vector dimension parameter for the next steps.

The hyperparameters of experiment 3 in Table 4 were used to measure the effec-
tiveness of the window size. The results are shown in Fig. 4. Increasing the window
size value increases the classification success by less than 4%. In DA, the rate of
improvement was 5%. As PA uses the best values in the past steps, the success of
classification is seen to be increased at a lesser rate. The window size value will be used
as 25 for the next steps because the best result is obtained with the value of 25.

The hyperparameters of experiment 4 in Table 4 were used to examine the effect of
the number of iterations. The results are shown in Fig. 5. The increase in the number of
iterations increases the success of classification by about 1%. In the first method, the
contribution of the number of iterations to the classification success was about 6%.
Since other parameters contribute to the improvement of classification in the previous
steps, the number of iterations in this method seems to be less effective. The best result
was taken at 45 iterations. However, the value of 60 also showed a very close success.

Fig. 4. Effect of vector size and window size on classification accuracy and loss for PA

Fig. 5. Effect of iteration number on classification accuracy and loss for PA

Learning Quality Improved Word Embedding with Assessment of Hyperparameters 515

4.3 Comparing Word2Vec Models Using the Best and Default
Hyperparameters

In PA, the parameters that produce the best result in the final stage are chosen as a
successor. The best parameters obtained by DA were the same as the best parameters
obtained with the second method, except the number of iterations.

Table 5 shows the parameters for the best and worst cases in terms of the loss and
accuracy of Word2Vec parameter evaluations. When we applied the classification
model to classify the documents into 10 classes by using different parameters of
Word2Vec, we got about 9% improvement in the classification accuracy.

5 Conclusion

In this study, we evaluated Word2Vec hyperparameters that affect the quality of word
representation. A classification model was used to determine the Word2Vec hyper-
parameters. The results clearly show that Word2Vec hyperparameters affect the clas-
sification accuracy and thus the quality of word representation. We observed a 9%
increase in the accuracy of our classification model. Considering that the classification
process is done in 10 classes, the success rate achieved by setting only Word2Vec
hyperparameters cannot be ignored. The Progressive Approach has been observed to
offer faster convergence and more efficient performance improvement. Therefore, using
the best value of each hyperparameter in the next steps is a wise choice for Word2Vec
hyperparameter tuning.

We must state that there are no rules-of-thumb for a good word embedding
applying to every purpose. However, we make the following conclusions for better
word embedding. It was observed that the vector size, window size, and iteration
number were the main hyperparameters affecting the word representation quality.
Setting these parameters too large or too small can adversely affect success. The larger
window size captures the topic and semantic better, but the smaller window size is
more relevant to the syntactic relationship. The optimum vector size depends on the

Table 5. Word2vec parameters set for best and worst classification accuracy

Method Min.
word
count

Vector
size

Window
size

Number of
iterations

Loss Accuracy

Default
values

5 100 5 5 0,5817 83,07

Decisive
approach

30 250 25 60 0,3397 91,42

Progressive
approach

30 250 25 45 0,3408 91,46

516 B. Yildiz and M. Tezgider

size of the datasets. Larger datasets require a larger vector size. Although the higher
number of iterations requires more computing time, it is generally better for word
representation quality.

The minimum word count determines the number of unique words in the dictionary
and affects the amount of memory used. Very few repetitive words are often misspelled
or very rare. Training these words in the Word2Vec model does not contribute to the
quality of word representation. As can be seen in the results, with the small increase in
the minimum word count, the number of the unique word in the dictionary is halved.
This helps to remove words that are insignificant for the model. Therefore, performance
gains are achieved by decreasing very rare and misspelled words.

The frequency of words affects the optimal value of hyperparameters. More fre-
quent words may not require a larger window size for a good representation of the
words. Therefore, the smaller window size value may be as good as the larger values
when the dataset grows.

References

1. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by
latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)

2. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retriev. 2(1–
2), 1–135 (2008)

3. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759 (2016)

4. Wang, P., Xu, B., Xu, J., Tian, G., Liu, C.-L., Hao, H.: Semantic expansion using word
embedding clustering and convolutional neural network for improving short text classifi-
cation. Neurocomputing 174, 806–814 (2016)

5. Liu, J., Chang, W.-C., Wu, Y., Yang, Y.: Deep learning for extreme multi-label text
classification. In: Proceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 115–124 (2017)

6. Hinton, G.E.: Learning distributed representations of concepts. In: Proceedings of the 8th of
the Cognitive Science Society, vol. 1, pp. 12 (1986)

7. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781 (2013)

8. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of
words and phrases and their compositionality. In: Advances in Neural Information
Processing System, pp. 3111–3119 (2013)

9. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In:
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,
pp. 1532–1543 (2014)

10. Levy, O., Goldberg, Y., Dagan, I.: Improving distributional similarity with lessons learned
from word embeddings. Trans. Assoc. Comput. Linguist. 3, 211–225 (2015)

11. Lai, S., Liu, K., He, S., Zhao, J.: How to generate a good word embedding. IEEE Intell. Syst.
31(6), 5–14 (2016)

12. Caselles-Dupré, H., Lesaint, F., Royo-Letelier, J.: Word2Vec applied to recommendation:
hyperparameters matter. arXiv preprint arXiv:1804.04212 (2018)

Learning Quality Improved Word Embedding with Assessment of Hyperparameters 517

http://arxiv.org/abs/1607.01759
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1804.04212

13. Yaghoobzadeh, Y., Kann, K., Schütze, H.: Evaluating word embeddings in multi-label
classification using fine-grained name typing. In: The 3rd Workshop on Representation
Learning for NLP (RepL4NLP), Melbourne, Australia, pp. 101–106 (2018)

14. Nooralahzadeh, F., Øvrelid, L., Lønning, J.T.: Evaluation of domain-specific word
embeddings using knowledge resources, LREC (2018)

15. Yildiz, B., Fox, G.C.: Toward a modular and efficient distribution for web service handlers.
Concurr. Comput.: Pract. Exp. 25(3), 410–426 (2013)

16. Yildiz, B., Fox, G., Pallickara, S.: An orchestration for distributed web service handlers. In:
3th International Conference on Internet and Web Applications and Services, pp. 638–643
(2008)

17. Aktas, M.S., Kaplan, S., Abacı, H., Kalipsiz, O., Ketenci, U., Turgut, U.O.: Data imputation
methods for missing values in the context of clustering. In: Big Data and Knowledge Sharing
in Virtual Organizations (IGI Global, 2019), pp. 240–274 (2019)

18. Rehurek, R., Sojka, P.: Software framework for topic modelling with large corpora. In:
Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks (2010)

19. Lison, P., Kutuzov, A.: Redefining context windows for word embedding models: an
experimental study. arXiv preprint arXiv:1704.05781 (2017)

20. Goldberg, Y.: A primer on neural network models for natural language processing. J. Artif.
Intell. Res. 57, 345–420 (2016)

518 B. Yildiz and M. Tezgider

http://arxiv.org/abs/1704.05781

	Learning Quality Improved Word Embedding with Assessment of Hyperparameters
	Abstract
	1 Introduction
	2 Related Work
	3 Word2Vec Word Embedding and Used Environment
	3.1 Classification Model
	3.2 Dataset
	3.3 Hyperparameters

	4 Measurement and Evaluation
	4.1 Decisive Approach
	4.2 Progressive Approach
	4.3 Comparing Word2Vec Models Using the Best and Default Hyperparameters

	5 Conclusion
	References

