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Abstract. This paper aims at investigating the feasibility of using Par-
aView as visualization software for the analysis and optimization of par-
allel CFD codes’ performance. The currently available software tools for
reading profiling data do not match the generated measurements to the
simulation’s original mesh and somehow aggregate them (rather than
showing them on a time-step basis). A plugin for the open-source per-
formance tool Score-P has been developed, which intercept an arbitrary
number of manually selected code regions (mostly functions) and send
their respective measurements – amount of executions and cumulative
time spent – to ParaView (through its in situ library, Catalyst), as if they
were any other flow-related variable. Results show that (i) the impact of
mesh partition algorithms on code performance and (ii) the load imbal-
ances (and their eventual relationship to mesh size/simulation physics)
become easier to investigate.

Keywords: Parallel computing · Performance analysis · In situ
processing

1 Introduction

Many tools for analyzing the performance of parallel applications exist; one
example of them is Score-P11 [11], whose development the University of Dresden
participates in. It acts as a wrapper which encapsulates the original code, thus
can be easily turned on or off by the user at compilation stage. This is illustrated
in Fig. 1 below.

The original version of this chapter was revised: The two videos were added. The cor-
rection to this chapter is available at https://doi.org/10.1007/978-3-030-48340-1 64

1 Scalable Performance Measurement Infrastructure for Parallel Codes – an open-
source “highly scalable and easy-to-use tool suite for profiling, event tracing, and
online analysis of HPC applications”: https://www.vi-hps.org/projects/score-p/.
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parallel application performance add-on output

Fig. 1. Schematic of software components for performance analysis tools.

parallel application in-situ add-on output

Fig. 2. Schematic of software components for in situ visualization.

As a separate category of add-ons, tools for enabling in situ visualization [5]
of applications’ output data (like temperature or pressure in a CFD simulation)
already exist too; one example is Catalyst2 [3]. It also works as an optional
add-on to the original code and can be activated upon request, by means of
preprocessor directives at compilation stage (Fig. 2).

This paper’s goals are two-fold. First, unify the overlapping functionalities of
both kinds of tools insofar as they augment a parallel application with additional
functionality which is not strictly required for the application to work in the first
place. Both collect or “steal” data from the parallel application and transfer it
out via a side channel. Second, make use of the advanced visualization function-
alities of dedicated visualization software tools for the purpose of performance
analysis. With this we propose to map parallel performance properties to the
simulation geometry as it is already done for flow-related properties. Figure 3
illustrates the idea.

The high-performance computing (HPC) performance tools usually output
either performance profiles or event traces. In the case of Score-P, they are:

– performance profiles in the Cube4 format to be visualized at Cube3 [14];
– parallel event traces in the OTF2 format to be visualized at Vampir4 [10].

But neither of them, nor the other currently available performance tools (to
be explained in Sect. 2), match their measurements to the original simulation’s
geometry; what makes the proposal novel. On the other hand, the proposal is
2 An open-source “in situ use case library, with an adaptable application program-

ming interface (API), that orchestrates the delicate alliance between simulation and
analysis and/or visualization tasks”: https://www.paraview.org/in-situ/.

3 A free, but copyrighted “generic tool for displaying a multi-dimensional performance
space consisting of the dimensions (i) performance metric, (ii) call path, and (iii)
system resource”: http://www.scalasca.org/software/cube-4.x/download.html.

4 An “easy-to-use framework that enables developers to quickly display and analyze
arbitrary program behavior at any level of detail”: https://vampir.eu/.

https://www.paraview.org/in-situ/
http://www.scalasca.org/software/cube-4.x/download.html
https://vampir.eu/
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Fig. 3. Schematic of the software components for a combined add-on.

deemed also useful as, especially in CFD applications, the partitioning of the
compute mesh for parallelization has direct influence on performance and load
balancing. Hence for performance analysis and optimization a combined view
into simulation properties and performance properties is helpful.

A design requirement is that the combined solution must be able to be inte-
grated into a parallel code easily, yet without becoming a permanently required
component. Instead, it needs to be easy to switch on and off on demand, as it
is for each of its constitutive parts. As evaluation case, the Rolls-Royce in-house
CFD code (Hydra) [12] will be used.

2 Related Work

Apart from Score-P → Cube and Score-P → Vampir (mentioned above), other
workflows – with graphical support – used for performance analysis include:

– HPCToolkit5 [1], whose outputs are visualized through hpcviewer (profiling)
and hpctraceviewer (tracing);

– Periscope6 [7], whose outputs are visualized through Pathway (an Eclipse-
based graphical user-interface);

– Tau7 [18], whose outputs are visualized through ParaProf [6] (profiling) and
Vampir (tracing), among others;

– Paraver8 [13] and Dimemas9 [4], with integrated visualization capabilities;

5 An open-source “integrated suite of tools for measurement and analysis of program
performance on computers”: http://hpctoolkit.org/.

6 A free “suite of tools designed to assist the HPC application developer in the opti-
mization of their application”: https://periscope.in.tum.de/.

7 A “portable profiling and tracing toolkit for performance analysis of parallel pro-
grams written in Fortran, C, C++, UPC, Java, Python”: http://www.cs.uoregon.
edu/research/tau/home.php.

8 A “very powerful performance visualization and analysis tool based on traces that
can be used to analyse any information that is expressed on its input trace format”:
https://tools.bsc.es/paraver.

9 A “simulation tool for the parametric analysis of the behaviour of message-passing
applications on a configurable parallel platform”: https://tools.bsc.es/dimemas.

https://github.com/HPCToolkit/hpcviewer
https://github.com/HPCToolkit/hpcviewer
https://www.readex.eu/index.php/pathway/
http://hpctoolkit.org/
https://periscope.in.tum.de/
http://www.cs.uoregon.edu/research/tau/home.php
http://www.cs.uoregon.edu/research/tau/home.php
https://tools.bsc.es/paraver
https://tools.bsc.es/dimemas
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– SLOG-2 , a drawable logging format visualized through Jumpshot10 [8];
– Scalasca11 [9] as an optional add-on to either Score-P or Tau;
– READEX 12 [17], with a bunch of visualization options.

None of them, however, currently match the generated data back to the
simulation’s geometry. Furthermore, displaying profiling results on a time-step
basis is not straightforward. This paper would like to address those issues.

3 Prerequisites

The goal aimed by this research depends on the combination of two basic, scien-
tifically established methods: performance measurement and in situ processing.

3.1 Performance Measurement

When applied to a source file’s compilation, Score-P automatically inserts probes
between each code “region” (mostly function calls, but also constructors, destruc-
tors etc.), which will at run-time measure:

– the number of times that region was executed, and;
– the total time spent in those executions.

By each rank/thread within the simulation. Its application is done by simply
prepending the word scorep into the compilation command, e.g.: scorep mpicc
foo.c. The tool is also equipped with an API, which allows the user to extend
its functionalities through plugins [15]. The combined solution proposed by this
paper takes the form of such a plugin.

3.2 In Situ Processing

In order for Catalyst to interface with the simulation code, an adapter needs to be
built, which is responsible for exposing the native data structures (mesh and flow
properties) to the coprocessor component. Its interaction with the simulation
code happens through three function calls, illustrated in Fig. 4.

Once implemented, the adapter allows the generation of post-mortem files (by
means of the VTK 13 [16] library) and/or the live visualization of the simulation,
both through ParaView14 [2].
10 A “Java-based visualization tool for doing postmortem performance analysis”:

https://www.mcs.anl.gov/research/projects/perfvis/.
11 A “a software tool that supports the performance optimization of parallel programs

by measuring and analyzing their runtime behavior”: http://www.scalasca.org/.
12 A tool suite that “supports users to improve the energy-efficiency of their HPC

applications”: https://www.readex.eu/.
13 An open-source “software for manipulating and displaying scientific data”: https://

www.vtk.org/.
14 An open-source “multi-platform data analysis and visualization application”:

https://www.paraview.org/.

https://www.mcs.anl.gov/research/projects/perfvis/software/log_format/index.htm#SLOG-2
https://www.mcs.anl.gov/research/projects/perfvis/
http://www.scalasca.org/
https://www.readex.eu/
https://www.vtk.org/
https://www.vtk.org/
https://www.paraview.org/
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Fig. 4. Illustrative example of changes needed in a simulation code due to Catalyst.

4 Combining Both Tools

A Score-P plugin has been developed, which allows performance measurements
for an arbitrary number of manually selected code regions to be pipelined to
the simulation’s Catalyst adapter. It must be activated at run-time through
an environment variable (export SCOREP SUBSTRATE PLUGINS=Catalyst), but
works independently of Score-P’s profiling mode being actually on or off. Figure 5
illustrates the modifications needed in the source.

Apart from the three basic calls (initialize, “run” and finalize; like with the
Catalyst adapter), a call must be placed immediately before each function to be
pipelined; e.g.:

#ifdef CATALYST_SCOREP
! add this region to the list of plugin variables
CALL cat_sco_pipeline_me()

#endif

CALL desired_function(argument_1, argument_2...)

The above layout ensures that the desired function will be captured when
executed at that specific moment and not in others (if the same routine is called
multiple times – with different inputs – throughout the code, as it is usual for
CFD simulations). The selected functions may or not be nested.

Finally, the user needs to add a small piece of code into the Catalyst adapter’s
source, in order for the plugin-generated variables to be pipelined (together with
the traditional simulation variables), as shown in Fig. 6. It contains two vectors
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Fig. 5. Illustrative example of further changes needed in the code due to the plugin.

because for each selected region inside the simulation’s code, the plugin will
generate two variables (which correspond to the two basic measurements made
by Score-P; see above).

5 Early Evaluation

5.1 Settings

Hydra is Rolls-Royce’s in-house CFD code [12]. Figure 9 shows the test case
selected for this paper: it represents a generic Q3D idealized model for a turbine
stage. Preliminary analyses with Score-P → Cube revealed two code functions
to be especially time-consuming: iflux edge and vflux edge (both mesh-related);
they were selected for pipelining.

All simulations were done using an entire node in Dresden University’s HPC
cluster (Taurus), with 12 ranks (i.e. pure MPI, no OpenMP), one per core,
each with the entire core memory (3875 MB) available. One full engine’s shaft
rotation was simulated, comprised of 100 time-steps (i.e. one per 3,6°), each
internally converged through 40 iteration steps. Catalyst was generating post-
mortem output files every fifth time-step (i.e. every 18°), what led to 20 “stage
pictures” by the end of the simulation. Finally, version 4.0 of Score-P was used
in association with release 2018a of Intel® compilers.

5.2 Results

Hydra supports multiple mesh partition algorithms, selectable at run-time. We
compared them with our newly proposed approach. Figure 7 shows the time spent

https://www.mpls.ox.ac.uk/research-section/the-hydra-code-rolls-royces-standard-aerodynamic-design-tool
https://tu-dresden.de/zih/hochleistungsrechnen/hpc
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Fig. 6. Addition needed in the Catalyst adapter’s code due to the plugin.

inside the two chosen functions in two different grid partitions: the upper images
refer to geometric mesh partitioning and the lower ones were produced using
ParMETIS;15 the left-hand side pictures refer to function iflux edge, whereas
the right-hand side to vflux edge. Here only one time-step is represented, but –
as opposed to the traditional way of visualizing profiling results (which aggregate
multiple time-steps into one single measurement) – in ParaView it is possible
to see each time-step individually and even play them (as frames of a video).
Finally, the minimum and maximum thresholds in each of the four pictures’
scales are adjusted to comprise all time-steps.

The analysis of the results reveals that, when compared against the geometric
mesh partition, using ParMETIS brings slight benefits to the selected functions’
performance: the overall maximum execution time (per time-step) drops in both
of them, the overall minimum in vflux edge; and the max/min ratio of the exe-
cution time (per time-step) for both of them is also decreased.

Playing the saved time-steps in ParaView reveals a trend in all four lay-
outs: the slowest/fastest rank to execute each function is always the same. This
means there are still load imbalances when using ParMETIS; otherwise, the
slowest/fastest rank should randomly change each time-step (due to stochastic
phenomena at hardware-level during run-time). See the respective video.

Figure 8 compares the results when profiling is activated (below) or not
(above). They let clear that doing simultaneous code profiling significantly slows
each region’s execution time, but the max/min ratio remains roughly the same:

15 An open source “MPI-based parallel library that implements a variety of algo-
rithms for partitioning unstructured graphs, meshes, and for computing fill-reducing
orderings of sparse matrices”: http://glaros.dtc.umn.edu/gkhome/metis/parmetis/
overview.

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
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Fig. 7. Comparison between two code functions in two mesh partitions.

– from 0.57/0.46 ≈ 1.24 to 0.75/0.60 = 1.25 in iflux edge;
– from 0.85/0.69 ≈ 1.23 to 0.97/0.78 ≈ 1.24 in vflux edge.

This means the overhead associated with each feature (Score-P’s profiling
and/or the plugin) is linear, hence the results are valid from a comparative
point of view. Indeed, playing the respective video reveals the same trend (slow-
est/fastest rank) as in the previous comparison.

Finally, the generated performance variables are accessible also live (interac-
tively) in ParaView. In Fig. 9, notice the “catalyst” icon on the Pipeline Browser,
as well as the presence of the selected code regions’ measurements among the
Data Arrays.

5.3 Overhead

Table 1 analyses the impact of the proposed plugin on the code’s performance.
ParMETIS was used for mesh partitioning.

Memory. The “memory” row in Table 1 refers to the peak memory consumption
per rank, reached somewhen during the simulation. From the numbers it is clear
that the memory overhead introduced by Score-P is negligible (less than 10%);
and that the memory overhead introduced by the plugin is also negligible. It
may even require less memory than doing the traditional profiling (depending
upon the number of code regions being pipelined) and, in our case, was below
the statistical margin of oscillation (given profiling + plugin took less memory
than profiling only). Indeed, in order to pipeline the two code functions shown
above, it was not necessary to increase the default amount of memory (16 MB)
that Score-P reserves for itself.
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Fig. 8. Comparison between two code functions when profiling is activated (below) or
not (above).

Table 1. Analysis of time and memory overhead of the plugin.

Profiling + plugin Profiling only Plugin only Without Score-P

Memory (kB) 290432 (6%) 294120 (7%) 284440 (4%) 273956 (-)

Run-time lightweight 4m18 s (8%) 4m10 s (5%) 4m06 s (3%) 3m58 s (-)

Run-time heavyweight 8m30 s (114%) 7m05 s (79%) 6m48 s (71%) 3m58 s (-)

Time. The run-time overhead is more critical and is shown in Table 1 with two
cases. The light-weight instrumentation case shows the overhead of the presented
approach with a sensible set of instrumented subroutines as it may have been
achieved with carefully selecting the most interesting subroutines for the per-
formance analysis process. This is the suggested way according to the Score-P
documentation. In that case, the plugin produces a run-time overhead of 3%.
This is less than Score-P in profiling mode with 5%. If both are used together, the
overhead adds up. This is a sensible overhead and suitable for practical perfor-
mance analysis. The second case with heavy-weight instrumentation reflects the
worst-case scenario where some short subroutines are called very frequently (sev-
eral billion times in this example). In that case, the overhead can dominate the
entire run-time and the performance analysis insights are not reflecting the pris-
tine parallel performance behavior. However, this scenario in Table 1 shows that
our plugin behaves similar to Score-P in profiling mode; actually even slightly
better with 71% overhead compared to 79%.
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Fig. 9. Geometry used in the simulations.

6 Conclusions and Future Work

Visualization techniques are usually not the specialization field of researches
working with code performance: it is more reasonable to take advantage of the
currently available graphic programs (like ParaView) than attempting – from
scratch – to equip the existing profiling tools with their own GUIs. In this
threshold, the developed plugin adds to the currently available spectrum of per-
formance optimization resources the capacity to:

– match performance-related measurements against the simulation’s mesh,
what makes the impact of grid partition algorithms on code performance
easier to investigate;

– analyze performance-related measurements on a time-step basis, what makes
the load imbalances (and their eventual relationship to mesh size/flow
physics) easier to diagnose.

We plan to extend this work in multiple directions:

More Extensive Evaluation Cases. To run the plugin in bigger test cases, as
the difficulty in matching each parallel region’s id number with its respective grid
part (hence the benefit of matching performance data back to the simulation’s
mesh) increases with scaling. Concomitantly, to run the plugin in test cases
which comprise regions with distinct flow physics, when the computational load
becomes less dependent on the number of points/cells per domain and more
dependent on the flow features themselves (given their non-uniform occurrence):
chemical reactions in the combustion chamber, shock waves in the inlet/outlet
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(at the supersonic flow regime), air dissociation in the free-stream/inlet (at the
hypersonic flow regime) etc.

Improve and Further Integrate Tool’s Runtime Components. To
automatize the selection of code regions to be pipelined, what currently needs
to be manually done by the user at compile time (as shown in Sect. 4).

Develop New Visualization Schemes for Performance Data. To take
advantage of the multiple filters available in ParaView for the benefit of the per-
formance optimization branch, e.g. by recreating in it the statistical analysis –
display of average and standard deviation between the threads/ranks’ measure-
ments – already available in other tools.
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
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